
Exam in Optimising Compilers

(DAT230/EDA230)

October 17, 2007, 8.00 — 13.00

Examinator: Jonas Skeppstedt, tel 0733 549 314

a

b c

d e

f g

h

i

Figure 1: Control flow graph.

1. (10p) Explain how the Lengauer-Tarjan algorithm (the O(N2)-version)

finds the dominator tree in the control flow graph in Figure 1. For

each vertex, your solution should explain:

• when is the vertex put in a bucket?

• in which bucket?

• when is it deleted from the bucket?

• when does the algorithm find the immediate dominator for the

vertex?

Answer: see book.

2. (10p) Consider again the control flow graph in Figure 1. Suppose

there is a use of variable x in each vertex and an assignment to x in

1



vertices a, c and e. In vertices a and c the definition is before the

use and in vertex e the definition is after the use.

Translate the program to SSA form. Show the contents of the rename

stack and when the stack is pushed and popped. You do not have to

show how you compute the dominance frontiers.

Answer: see book.

3. (10p) Again refer to Figure 1. For each of vertex e, f, g and i, which

vertices (if any) is that vertex control dependent on? You do not have

to show how you arrived at that result, but you should explain in a few

sentences how it is done in a compiler.

Answer: A vertex v is control dependent on a vertex u if u is a member

of the dominance frontier of v in the reverse control flow graph.

CD−1(e) = {b, c, g}

CD−1(f) = {b, c, e}

CD−1(g) = {e}

CD−1(i) = ∅

int f(int a)

{

int b, c, d;

b = a + 1;

c = a + 1;

d = b * c;

while (a < d) {

b = c + a;

c = b + a;

a = a + 1;

}

return b + c;

}

Figure 2: C function for question on partition-based global value numbering.

2



4. (10p) How does partition-based global value numbering (GVN) on SSA

form optimise the program in Figure 2? Show how the algorithm pro-

ceeds.

Answer:

b0 ← a0 + 1

c0 ← a0 + 1

d0 ← b0 × c0

a1 ← φ(a0, a2)

b1 ← φ(b0, b2)

c1 ← φ(c0, c2)

a1 ≥ d0?

b2 ← c1 + a1

c2 ← b2 + a1

a2 ← a1 + 1

The instructions are partitioned into an initial set of blocks π0:

B0 = {a0}

B1 = {b0 ← a0 + 1, c0 ← a0 + 1, b2 ← c1 + a1, c2 ← b2 + a1, a2 ← a1 + 1}

B2 = {a1 ← φ(a0, a2), b1 ← φ(b0, b2), c1 ← φ(c0, c2)}

We show the N2-version of GVN. When B1 is checked, it is split into B′

1

and B′′

1 . First one member from B1 is put in B′

1 and then the others are

compared with it, and either also are put in B′

1
if they are equivalent,

or otherwise are put in B′′

1
.

3



The first new block is thus B′

1
which becomes:

B′

1
= {b0 ← a0 + 1, c0 ← a0 + 1}

B′′

1 = {b2 ← c1 + a1, c2 ← b2 + a1, a2 ← a1 + 1}

When B2 is checked, none of the second and third members are equiv-

alent to the first since a0 belongs to a singleton block:

B′

2 = {a1 ← φ(a0, a2)}

B′′

2
= {b1 ← φ(b0, b2), c1 ← φ(c0, c2}

For the next iteration, we rename the blocks as follows:

B0 = {a0}

B1 = {b0 ← a0 + 1, c0 ← a0 + 1}

B2 = {b2 ← c1 + a1, c2 ← b2 + a1, a2 ← a1 + 1}

B3 = {a1 ← φ(a0, a2)}

B4 = {b1 ← φ(b0, b2), c1 ← φ(c0, c2)}

Now B2 will be split into:

B′

2 = {b2 ← c1 + a1}

B′′

2
= {c2 ← b2 + a1, a2 ← a1 + 1}

B4 will also be split:

B′

4
= {b1 ← φ(b0, b2)}

B′′

4
= {c1 ← φ(c0, c2)}

Renaming the blocks for the next iteration we get:

B0 = {a0}

B1 = {b0 ← a0 + 1, c0 ← a0 + 1}

B2 = {b2 ← c1 + a1}

B3 = {c2 ← b2 + a1, a2 ← a1 + 1}

B4 = {b1 ← φ(b0, b2)}

B5 = {c1 ← φ(c0, c2}}

4



After that also B3 will be split and only B1 contains multiple members,

of which the first dominates the second which will be removed. Thus,

only c0 is optimized away by GVN in this code.

5. (10p) What is partial redundancy elimination (PRE)? Explain an an

algorithm for doing PRE on SSA form. Show an example code which

PRE can optimise which partion-based global value numbering cannot.

Answer: see book. For an example of code, we need a partial redun-

dancy such as in:

if (a < b)

c = a * b;

d = a * b;

6. (10p) Explain the principles behind Chaitin’s algorithm. Among other

things, you should explain what the purpose of coalescing is and why

some caution should be observed when coalescing.

Answer: see George/Appel article. With too much coalescing, the IG

may not be possible to color due to too many nodes have too many

neighbors and cannot find an available color.

5


