Optimising Compilers: Exercises 5

float a[N]I[M], b[NI[M], c[N][M];

void h()

{
int i;
int Js

for (i = 2; i < 100; i++) {
for (j =2+ 3 % i; j < 1000 - i; j++) {

alilljl=ali-2103+31;
b[iJ[j1=01bl1i 10 - 21;
clilljl=cli+11[j+2];
}
}
}
Figure 1: Example loop.
1. Show the distance matrix D of the loop L above.
2. Find a unimodular matrix U so that the inner loop can execute in parallel.
3. Find the loop limits of the new loop Ly.
Solutions

1. There are three pairs of references, and we should do data dependence
analysis for each pair. For each pair, let the reference on the left be
denoted A and the one on the right be denoted B. We need to determine

whether the equation
IA + a9 =JB +Dbg

has a solution.

For the matrix a we find the data dependence and the dependence distance
as follows. Firstly, we have
1 0
A= (0 7)

aO:(O 0),

and



and

5(5)

bo=( -2 3).

and

Here I = (i1,j1) and J = (i2,j2) represent the index variables. The
equation becomes

(L J)(_A;g):bo—ao.

or
1 0
. . . . 1
(i1 J1 iz j2) _01 0 =(-23)-(0 0).
0o -1
We see that
11 — 19 = —2
and
Jj1—jo = 3.

Let us write 41 = t; and ip = ¢; + 2. Also, j1 =tz and jo» =t; — 3. Thus
I=(t1,t2) and J = (1 +2,t2—3) is a solution to the dependence equation,
which we can see lies within the loop bounds. The dependence distance,
in general, dis Qif I=J, I-J,if J <I,and J—L if I < J. In our
case d = (2, —3), which means the write instruction accesses a particular
matrix element before that element is accessed by the read instruction.

For matrix b, we have

and
ag—(O 0),

and
1 0
5= 1)

and
bo=(0 —2)



The equation becomes

or
1 0
. . . . 1
(in 51 2 J2) _01 0 =(0 -2)-(0 0)
0o -1
We see that
i1—12=0
and
Jj1—Jjo = —2.

Let us write 47 = t; and is = t1. Also, j1 = t2 and jo = t2 + 3. Thus
I = (t1,t2) and J = (¢1,t2 + 2) is a solution to the dependence equation,
which we again can see lies within the loop bounds. The dependence
distance is d = (0,2), which again means the write accesses a particular
matrix element before that element is accessed by the read.

Finally, for matrix c, we have

(1)

and
aO:(O 0),

and
1 0
5= 1)

and

The equation becomes

or



We see that

11 —1o=1
and
J1—J2=2.

Let us write i1 = ¢ and io = t; — 1. Also, j; = t2 and jo = to — 2.
Thus I = (t1,¢2) and J = (t1 — 1,5 — 2) is a solution to the dependence
equation, which we again can see lies within the loop bounds. To deter-
mine the dependence distance, we check whether J — T or I — J gives a
lexicographically positive distance vector. In this case, 0 < I — J, so,
the dependence distance is d = (1,2), and this time the read accesses a
particular matrix element before that element is accessed by the write.

The distance matrix becomes

2 -3
D= 0 2
1 2
. We want to find a unimodular matrix U so that for Dy = DU each
element in the first column is at least one. Let u = (u1, ug, ..., uy,) denote

the first column of U and let the rows of D be denoted by d;. Thus for
each d; we must have dju > 1.

With the distance matrix found in the previous question, no loop L; can be
executed in parallel. Searching for a transformation, we get the following
system of inequalities:

2u1 — BUQ Z 1
2U2 2 1
ur  + 2U2 > 1
We interchange the first two equations:
2U2 2 1
2U1 - 3’(1,2 2 1
U + 2up > 1

Since there are no upper bounds on u;, there are infinitely many solutions
to this equation. We choose the smallest integer u; which satisfies the
inequalities. So, uy is chosen as [1/2] = 1. Then we proceed with wuq,
for which there are two inequalities: u; > [(1 4 3u2)/2] = 2 and vy >

[(1 —2u2)] = —1, so uy is chosen as the maximum of these, or u; «— 2.

We get
2 1
o= (1)



and

1
Dx U= 2
4

_= O N

The new loop nest Ly thus carries all dependences in the outermost loop
L1, with the consequence that Lo can execute in parallel.

. To find the loop limits of the transformed loop Ly, we first express the
original index variables (ie, 1 and j) using the new:

_ 0 1
I=KU 1:(k1k2)<1 _2>.

This gives i = ko and j = k1 — 2ka. We then insert this into the loop
bound inequalities of the original loop:

2<1<99
and
2430 <5 <999 — 1.
That is,
2 < ko <99
and

2+ 3ke < k1 — 2k <999 — k.
Solving this using Fourier-Motzkin elimination gives:

12 <k <1098

and
max(2, k1 —999) < ko <min(99, [(—2+ k1)/5]).

The resulting program is demonstrated in on the following page.



#include <stdio.h>

#define MIN(a, b) ((a)<(b)?(a): (b))
#define MAX(a, b) ((a)>(b)?(a): (b))

int main()
{
int i, j;
int k1, k2;
int sum;
int iterations;

sum = iterations = 0;
for (i = 2; i < 100; ++i) {
for (j =2+ 3 x i; j < 1000 - i; ++j) {
sum += i * j;
iterations += 1;
//printf ("S(4d, %D)\n", i, j);

}

printf ("Original loop:\n");

printf ("sum = %d\n", sum);
printf("iterations = %d\n", iterationms);
printf ("\n");

sum = iterations = 0;
for (k1 = 12; k1 <= 1098; ++k1) {
for (k2 = MAX(2, k1-999); k2 <= MIN(99, (-2+k1)/5); ++k2) {

i=k2;
j =kl - 2 % k2;
sum += i * j;
iterations += 1;
//printf ("T(%4, %d)\n", i, j);

}
printf ("New loop:\n");
printf("sum = %d\n", sum);

printf("iterations = %d\n", iterationmns);

return 0;



