Optimising Compilers: Exercises 5

```
a[N][M], b[N][M], c[N][M];
float
void h()
{
       int
              i;
       int
              j;
       for (i = 2; i < 100; i++) {
              for (j = 2 + 3 * i; j < 1000 - i; j++) {
                     a[i][j] = a[i - 2][j + 3];
                     b[i][j] = b[i] [j-2];
                     c[i][j] = c[i+1][j+2];
              }
       }
}
```

Figure 1: Example loop.

- 1. Show the distance matrix \mathbf{D} of the loop \mathbf{L} above.
- 2. Find a unimodular matrix U so that the inner loop can execute in parallel.
- 3. Find the loop limits of the new loop L_U .

Solutions

1. There are three pairs of references, and we should do data dependence analysis for each pair. For each pair, let the reference on the left be denoted **A** and the one on the right be denoted **B**. We need to determine whether the equation

$$IA + a_0 = JB + b_0$$

has a solution.

For the matrix a we find the data dependence and the dependence distance as follows. Firstly, we have

$$\mathbf{A} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$$

and

$$\mathbf{a_0} = \left(\begin{array}{cc} 0 & 0 \end{array} \right),$$

and

$$\mathbf{B} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

and

$$\mathbf{b_0} = (-2 \ 3).$$

Here $\mathbf{I}=(i_1,j_1)$ and $\mathbf{J}=(i_2,j_2)$ represent the index variables. The equation becomes

$$\left(\begin{array}{cc} \mathbf{I}; & \mathbf{J} \end{array}\right) \left(\begin{array}{c} \mathbf{A} \\ -\mathbf{B} \end{array}\right) = \mathbf{b_0} - \mathbf{a_0}.$$

or

$$\left(\begin{array}{ccc} i_1 & j_1 & i_2 & j_2 \end{array} \right) \left(\begin{array}{ccc} 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1 \end{array} \right) = \left(\begin{array}{ccc} -2 & 3 \end{array} \right) - \left(\begin{array}{ccc} 0 & 0 \end{array} \right).$$

We see that

$$i_1 - i_2 = -2$$

and

$$j_1 - j_2 = 3.$$

Let us write $i_1 = t_1$ and $i_2 = t_1 + 2$. Also, $j_1 = t_2$ and $j_2 = t_j - 3$. Thus $\mathbf{I} = (t_1, t_2)$ and $\mathbf{J} = (t_1 + 2, t_2 - 3)$ is a solution to the dependence equation, which we can see lies within the loop bounds. The dependence distance, in general, \mathbf{d} is $\mathbf{0}$ if $\mathbf{I} = \mathbf{J}$, $\mathbf{I} - \mathbf{J}$, if $\mathbf{J} \prec \mathbf{I}$, and $\mathbf{J} - \mathbf{I}$, if $\mathbf{I} \prec \mathbf{J}$. In our case $\mathbf{d} = (2, -3)$, which means the write instruction accesses a particular matrix element before that element is accessed by the read instruction.

For matrix b, we have

$$\mathbf{A} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

and

$$\mathbf{a_0} = (0 \ 0),$$

and

$$\mathbf{B} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

and

$$\mathbf{b_0} = (0 \quad -2).$$

The equation becomes

$$\left(\begin{array}{cc} \mathbf{I}; & \mathbf{J}\end{array}\right)\left(\begin{array}{c} \mathbf{A} \\ -\mathbf{B}\end{array}\right) = \mathbf{b_0} - \mathbf{a_0}.$$

or

$$\left(\begin{array}{ccc} i_1 & j_1 & i_2 & j_2 \end{array} \right) \left(\begin{array}{ccc} 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1 \end{array} \right) = \left(\begin{array}{ccc} 0 & -2 \end{array} \right) - \left(\begin{array}{ccc} 0 & 0 \end{array} \right).$$

We see that

$$i_1 - i_2 = 0$$

and

$$j_1 - j_2 = -2.$$

Let us write $i_1 = t_1$ and $i_2 = t_1$. Also, $j_1 = t_2$ and $j_2 = t_2 + 3$. Thus $\mathbf{I} = (t_1, t_2)$ and $\mathbf{J} = (t_1, t_2 + 2)$ is a solution to the dependence equation, which we again can see lies within the loop bounds. The dependence distance is $\mathbf{d} = (0, 2)$, which again means the write accesses a particular matrix element before that element is accessed by the read.

Finally, for matrix c, we have

$$\mathbf{A} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right)$$

and

$$\mathbf{a_0} = \begin{pmatrix} 0 & 0 \end{pmatrix},$$

and

$$\mathbf{B} = \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array}\right)$$

and

$$\mathbf{b_0} = \begin{pmatrix} 1 & 2 \end{pmatrix}.$$

The equation becomes

$$\left(\begin{array}{cc} \mathbf{I}; & \mathbf{J}\end{array}\right)\left(\begin{array}{c} \mathbf{A} \\ -\mathbf{B}\end{array}\right) = \mathbf{b_0} - \mathbf{a_0}.$$

or

$$\left(\begin{array}{ccc} i_1 & j_1 & i_2 & j_2 \end{array} \right) \left(\begin{array}{ccc} 1 & 0 \\ 0 & 1 \\ -1 & 0 \\ 0 & -1 \end{array} \right) = \left(\begin{array}{ccc} 1 & 2 \end{array} \right) - \left(\begin{array}{ccc} 0 & 0 \end{array} \right).$$

We see that

$$i_1 - i_2 = 1$$

and

$$j_1 - j_2 = 2.$$

Let us write $i_1 = t_1$ and $i_2 = t_1 - 1$. Also, $j_1 = t_2$ and $j_2 = t_2 - 2$. Thus $\mathbf{I} = (t_1, t_2)$ and $\mathbf{J} = (t_1 - 1, t_2 - 2)$ is a solution to the dependence equation, which we again can see lies within the loop bounds. To determine the dependence distance, we check whether $\mathbf{J} - \mathbf{I}$ or $\mathbf{I} - \mathbf{J}$ gives a lexicographically positive distance vector. In this case, $\mathbf{0} \prec \mathbf{I} - \mathbf{J}$, so, the dependence distance is $\mathbf{d} = (1, 2)$, and this time the read accesses a particular matrix element before that element is accessed by the write.

The distance matrix becomes

$$\mathbf{D} = \left(\begin{array}{cc} 2 & -3 \\ 0 & 2 \\ 1 & 2 \end{array} \right).$$

2. We want to find a unimodular matrix \mathbf{U} so that for $\mathbf{D}_{\mathbf{U}} = \mathbf{D}\mathbf{U}$ each element in the first column is at least one. Let $\mathbf{u} = (u_1, u_2, ..., u_m)$ denote the first column of \mathbf{U} and let the rows of \mathbf{D} be denoted by \mathbf{d}_i . Thus for each \mathbf{d}_i we must have $\mathbf{d}_i \mathbf{u} \geq 1$.

With the distance matrix found in the previous question, no loop L_i can be executed in parallel. Searching for a transformation, we get the following system of inequalities:

We interchange the first two equations:

$$\begin{array}{ccccc} & & 2u_2 & \geq & 1 \\ 2u_1 & - & 3u_2 & \geq & 1 \\ u_1 & + & 2u_2 & \geq & 1 \end{array}$$

Since there are no upper bounds on u_i , there are infinitely many solutions to this equation. We choose the smallest integer u_i which satisfies the inequalities. So, u_2 is chosen as $\lceil 1/2 \rceil = 1$. Then we proceed with u_1 , for which there are two inequalities: $u_1 \ge \lceil (1+3u_2)/2 \rceil = 2$ and $u_1 \ge \lceil (1-2u_2) \rceil = -1$, so u_1 is chosen as the maximum of these, or $u_1 \leftarrow 2$. We get

$$\mathbf{U} = \left(\begin{array}{cc} 2 & 1\\ 1 & 0 \end{array}\right)$$

and

$$\mathbf{D} \times \mathbf{U} = \left(\begin{array}{cc} 1 & 2 \\ 2 & 0 \\ 4 & 1 \end{array} \right).$$

The new loop nest L_U thus carries all dependences in the outermost loop L_1 , with the consequence that L_2 can execute in parallel.

3. To find the loop limits of the transformed loop L_U , we first express the original index variables (ie, i and j) using the new:

$$\mathbf{I} = \mathbf{K}\mathbf{U}^{-1} = (k_1 k_2) \begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix}.$$

This gives $i = k_2$ and $j = k_1 - 2k_2$. We then insert this into the loop bound inequalities of the original loop:

$$2 \le i \le 99$$

and

$$2 + 3i \le j \le 999 - i$$
.

That is,

$$2 \le k_2 \le 99$$

and

$$2 + 3k_2 \le k_1 - 2k_2 \le 999 - k_2.$$

Solving this using Fourier-Motzkin elimination gives:

$$12 < k_1 < 1098$$

and

$$\max(2, k_1 - 999) \le k_2 \le \min(99, \lfloor (-2 + k_1)/5 \rfloor).$$

The resulting program is demonstrated in on the following page.

```
#include <stdio.h>
#define MIN(a, b) ((a)<(b)?(a):(b))
#define MAX(a, b) ((a)>(b)?(a):(b))
int main()
{
        int i, j;
        int k1, k2;
        int sum;
        int iterations;
        sum = iterations = 0;
        for (i = 2; i < 100; ++i) {
                for (j = 2 + 3 * i; j < 1000 - i; ++j) {
                        sum += i * j;
                        iterations += 1;
                        //printf("S(%d, %d)\n", i, j);
                }
        }
        printf("Original loop:\n");
        printf("sum = %d\n", sum);
        printf("iterations = %d\n", iterations);
        printf("\n");
        sum = iterations = 0;
        for (k1 = 12; k1 \le 1098; ++k1) {
                for (k2 = MAX(2, k1-999); k2 \le MIN(99, (-2+k1)/5); ++k2) {
                        i = k2;
                        j = k1 - 2 * k2;
                        sum += i * j;
                        iterations += 1;
                        //printf("T(%d, %d)\n", i, j);
                }
        }
        printf("New loop:\n");
        printf("sum = %d\n", sum);
        printf("iterations = %d\n", iterations);
        return 0;
}
```