
  

 

EDAA40EDAA40

Discrete Structures in Computer ScienceDiscrete Structures in Computer Science

3: Functions3: Functions

Jörn W. Janneck, Dept. of Computer Science, Lund University

a

b

A

c

1
2

B

3
4

2

sets relations functions infinityinvestigate

definition, construction,
recursion, induction

(also: proofs, logic)

working with infinite
(or arbitrarily large) stuff

graphs trees
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introduction

A function:

name
parameter/argument

(name for what you feed into the function)

rule/expression
(how you compute the output)
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functions are special relations

A relation                       is a function iff

We then also write

f 1 2 3 4

a 1 0 0 0

b 0 0 1 0

c 1 0 0 0
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aren't
functions:
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domain, range, codomain

actual values, left domain domain

actual values, right range range

A source domain

B target codomain

When talking about functions, some of the terminology is
the same as for relations in general, some is not:
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set of functions

The set of all functions from A to B is written as

So these all say the same thing: 
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about      … 

f 1 2 3 4
a 1 0 0 0
b 0 0 1 0
c 1 0 0 0

Why         ? 

we make a choice
for each of these, #(A) times

each time, we chose from
these #(B) options

So for the number of functions from A to B, we have                                     .

How many relations                      ?
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describing the actual mapping

In addition to domain and codomain, we also need to describe the
actual mapping defining the function. We use this arrow         for that purpose.        

We can do without the name:

If domain and codomain are understood:
Examples:
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functions of multiple arguments

Functions of multiple arguments (2, 3, …, n-place functions)  are simply
functions of Cartesian products:

To reduce notational noise, we won't be fussy about parentheses:

This especially applies to using a function. Instead of writing

… we just go for
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restriction

Given a function                       , its restriction to a set               
is defined as 
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alternative syntax
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image

Given a function                       and a set               , 
the image of X under f is defined as 
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closure

An endofunction is one whose domain and codomain are the same set:

Given an endofunction                        and a set               , 
the closure of X under f            is defined as the smallest                
such that  

Construction:
(compare transitive closure)
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closure (cont’d)
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composition

Given functions                        and                        their composition  
                             defined as:
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Function composition is just a special case of composition of relations:

It is associative:

So we can omit the
parentheses and write

Show this.
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injection, surjection, bijection

A function                       is injective (and thus an injection) iff

A function                       is surjective (and thus an surjection) iff

Notation:

Notation:

A function                       is bijective (and thus an bijection) iff
it is both injective and surjective. Notation:
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injection, one-to-one surjection, onto bijection
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injection, surjection, bijection

injective ? surjective? bijective?
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inverse

Given function                        its inverse (converse)
is defined as:

Nothing new here – this is just a rephrasing of the definition of 
converses of relations in “function speak”.
The term converse is traditionally applied to relations, inverse to functions.
There is no mathematical distinction between the two.

In general, the inverse of a function is not a function.

Why not?
When would it be a function?
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comparing cardinals, equinumerosity
One way to use functions is to compare the cardinalities of sets.
This is especially important for infinite sets.

For any two sets A and B, if there is an injection                         then 

This might feel like it's just the other way: if B is at least as big as A, then
there is an injection. In reality, we are defining the order relation
on cardinalities. We'll come back to this in the next lecture. 

For any two sets A and B, if there is a bijection                          then

Sets with the same cardinality are called equinumerous (aka of the same size).

If sets A and B are equinumerous, we write
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Cantor-Schröder-Bernstein theorem (CSB)

For any two sets A and B, if there are two injections
and

then there exists a bijection

Corollary:
If                              and                             then                           .

(Proof is a little tricky, we will omit it here. See course page for refs.)

When working with infinite stuff, this theorem makes our lives a lot easier.

20

Cantor-Schröder-Bernstein theorem

“It’s not what you know, but what you can prove.”
Det. Alonzo Harris, LAPD

Why does CSB require a proof? Didn't we know this already?/Isn’t it obvious?

What property does this establish for       on cardinal numbers? 

Note: 
The theorem tells us that there is a bijection.
It does not tell us, what it looks like!
In other words, it is non-constructive.

Make sure you clearly distinguish between what is defined, 
and what needs to be proven.


