

describing the actual mappingIn addition to domain and codomain, we also need to describe the
actual mapping defining the function. We use this arrow \mapsto for that purpose. $f: A \rightarrow B$
 $x \mapsto (something with x)$ We can do without the name:
 $A \rightarrow B$
 $x \mapsto (something with x)$ Examples:
 $x \mapsto x^2$
 $f: A \rightarrow B$
 $v \mapsto \begin{cases} 1 & \text{if } v = a \text{ or } v = c \\ 3 & \text{if } v = b \end{cases}$ $A \rightarrow B$
 $v \mapsto \begin{cases} 1 & \text{if } v = a \text{ or } v = c \\ 3 & \text{if } v = b \end{cases}$

$f_X : X \longrightarrow B$ $a \longmapsto f(a)$	$f \mid_X$
, ()	alternative syntax
	1 A Maria
$f:A\longrightarrow B$	$f_X: X \longrightarrow B$
à <u>à</u>	X BA

Given an endofunction $f: A \longrightarrow A$ and a set $X \subseteq A$, the <i>closure of X under f</i> $f[X]$ is defined as the smallest $Y \subseteq A$ such that $X \subset Y$ and $f(Y) \subseteq Y$	* 57
we an endofunction $f:A\longrightarrow A$ and a set $X\subseteq A$, the closure of X under $f:f[X]$ is defined as the smallest $Y\subseteq A$ such that $X\subseteq Y$ and $f(Y)\subseteq Y$	
Construction: compare transitive closure) $Y_0 = X$ $Y_{n+1} = Y_n \cup f(Y_n)$ $f(X) = \bigcup V_X$	$f[\{1\}] ?$ $f(\{2\}) ?$ $f[\{2\}] ?$ $f[\{4\}] ?$

omparing cardinals, equinumerosity
Dne way to use functions is to compare the cardinalities of sets. This is especially important for infinite sets.
For any two sets A and B, if there is an injection $\ f:A \hookrightarrow B$ then $\ \#({\bf A}) \leq \#(B)$
his might feel like it's just the other way: if B is at least as big as A, then here is an injection. In reality, we are defining the order relation on cardinalities. We'll come back to this in the next lecture.
For any two sets A and B, if there is a bijection $\ f:A\longleftrightarrow B$ then $\#(\mathbf{A})=\#(\mathbf{B})$
Sets with the same cardinality are called <i>equinumerous</i> (aka of the same size).
If sets A and B are equinumerous, we write $A \sim B$
VEX VIIII X X X

Why does CSB require a proof? Didn't we know this already?/Isn't it obvious? What property does this establish for $\leq~$ on cardinal numbers?

Note:

?

Make sure you clearly distinguish between what is defined, and what needs to be proven.

> "It's not what you know, but what you can prove." Det. Alonzo Harris, LAPD

> > 20

The theorem tells us *that there is* a bijection. It does *not* tell us, what it looks likel In other words, it is *non-constructive*.