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4: To infinity and beyond
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why infinity matters to computing

Everything is finite.
So are computers.

Then why do we care about infinity in maths for computing?

Infinity can be used as a mode/, an abstraction, of two kinds of phenomena:

- an awful lot, i.e. very many
e.g. the size of a computer’s main memory

- the absence of a finite bound
e.g. the length of a video stream



a simple problem

You all know the natural numbers: O, 1, 2, 3, 4, ... and so on.

A boolean function on the natural numbers is one that yields for each natural
number either true or false: f(177) = true, £(100234) = false, ...

Let’s suppose we have an infinite computer, i.e. we ignore any physical constraints
of the computer itself, such as address space, memory size, word size, ...

A program for that computer is an arbitrarily long (but finite) string of characters
in some programming language, arbitrarily "powerful”, let's call it L.

The question:
Is it possible fo create a programming language L, such that
every boolean function on the natural numbers can be written
as a program in L?



a simple problem - approach

L 2"

Could there be a surjective function
from L (the set of programs in language L)
onto the set of all functions from the natural numbers to a set of two values?



infinite sets

There are various ways of defining infinite sets.
This is one by Dedekind, 1888:

Richard Dedekind
1831-1916

A is infinite if it is equinumerous fo a proper subset of itself.

¥
That is, there is some S such that ﬂ !
SCAand S~ A

? Show that the natural numbers are an infinite set.
1. Find a proper subset.
2. Construct a bijection between it and the natural numbers.

‘e



denumerable (countable) sets

A is denumerable (countable) if it is equinumerous to the

natural numbers, i.e.
A~N

Denumerable sets are very important to math and CS.
They are the smallest infinite sets. (We won't prove that.)

The cardinality of the natural numbers 4H(N) = N
(and thus all denumerable sets) has a name:

Ng is therefore the smallest transfinite cardinal number.



Z : the integers

Z=A..,—2,—-1,0,1,2,...} is the set of inftegers.

‘@
-
-3 -2 -1 0 1 2 3
And this is the bijection: 2:4<+—N

, 20—1 fori>0
21— !
—23 otherwise
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Q : the rational numbers

Some properties:

r+ 8
2

€Q

1. Q is dense: between any two distinct 7,5 € Q there is

2. Any non-empty open interval ], s|C Q is equinumerous to @

el } : : : : + + -

For example: - ; ; ’ P ; —y 7
-3 -2 il 0 1 2 3
po: ]0,1[p+— Q

%—2f0r:c<%

€T —>
2— L forx>1
x—1 2
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Q : the rational numbers

? #(Q) ? Let's start with the simple stuff, ie. Ny = #(N) < #(Q)

Then we define an injection from Q into Z2 : f: Q —— Z*
p (We assume a fully
& . (p7 q) reduced fraction.)

Therefore, we know that  #(Q) < #(Z?%) = N

Put this together: Ro = #(N) < #(Q) < #(Z*) =Ny



finite sequences/strings

Let A be a finite set of nsymbols A = {a1,...,a,} .
The set of all finite sequences (strings) of these symbols is A”

The empty sequence is € € A™,

? What is A* and #(A") ? if Ais... A= {eo}

‘e A=1{0,1}
A={a,b,c,..,v,w x,y,2}
- . e A =UTF-16
This is one injection:
val : A — N
C1...CI, — Z v(c;)n' 1 with v:A— N
1=1..L a; —J



infinite sequences

An infinite sequence in A is a function s:N — A

The set of all infinite sequences in A: AN

Let A be a finite set of nsymbols A = {ai,...,an} .

? As always: #(AN) 7
A ={e}

A=1{0,1} =2
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Cantor's diagonal construction

1. Let's start by assuming that N ~ 2N je. there must be a

bijection f : N ¢— 2"

Recall that a bijection is also surjective, i.e. f(N) =2

2. Assuming an f, we can construct the

diagonal sequence D:
D=101001,0,0,1,1, ...

3. Invert D:
D=0,1,0,1,1,0,1,1,0,0, ...

4. Note that

D ¢ f(N)

5. This contradicts the assumption

that f is a bijection.

Conclusion:

N
There is no bijection 1N <2
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Georg Cantor

$i: N—2 1845-1918
Y == I N
0 1 2 3 4 5 6 7 8 9
(MWo o 1 1 1 0 0 0 1
1 (1 1 0 0 1 1 0 1
o o1 0 1 1 0 1 0
1 1 1() 1 0 0o 1 0 o0
o 1 0 1(0)1 0 1 0 1
1 1 0 0 1o 0o 1 1
o 1.0 12 0 1@ o0 1 o0
o o o o 1 1 1o o
1 1.0 0 0 1 1 1Q o
o 1 10 0 0 1 1 1Q
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more than Xg

To summarize:
1. We have RNo = #(N) < #(2) = 2%
2. ... but we cannot construct a bijection N +— 28
3. Conclusion:
Ng = #(N) < #(2") = 2%
Ry < 280

We discovered a new transfinite cardinal number: ¢ = 2%o

Proposition: It is the case that n™° = 2% = ¢ for all finite n > 2
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coming back to the simple problem...

L
’ ) How many programs ?
‘e atmostinl? de
) Conclusion?
‘e

2N

How many functions
N—{0,1} ?
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R : the real numbers

PR - ]O,l[RHR - : ' ; ; ' : —
L _9forx<s . . . —— _ _
xH{Q—%forx>% 3 -2 1 0 1 2 3
R~ ]071[R

So for the purposes of determining the cardinality of the real

humbers, we can focus on non-terminating decimal sequences:
0.drds...d,,...

Non-terminating means there is no n such that all digits after d,
are 0. Otherwise, this would be the set of al/ sequences of ten
symbols {0,1,2,3,4,5,6,7,8,9}, with cardinality

10%0 = 2% — ¢
Even so, the cardinality of the real numbers still comes out to
#R) =¢

(proof omitted)



power sets

Note that for No , it is the case that R, < 2% i.e. the set of natural
numbers is strictly smaller than its powerset. This holds more generally:

For any set A, #(A) < #(P(A)) }
same thing

For any cardinal number C, C < 2¢

9 What does that mean for transfinite cardinal numbers?

'®
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Paul Cohen
1934-2007

more transfinite cardinals

So far, we have encountered two transfinite cardinals:
Ng = #(N) and ¢ = 2% = #(R).
As we have seen, there are infinitely many transfinite cardinals.

Starting from RNo , they are called in order
Np < N7 <Ny < ..,

Such that between any two N,,, N, there is no other cardinal number.

Where does ¢ fit in? All we know is that ¢ > N, so it's at least Nj.
So,is ¢ =N1?2 This is the continuum hypothesis (CH).

CH was shown to be independent of ZFC (Cohen, 1963).

Since ZFC doesn't tell us how big those alephs are, we get beths:
:0 <:1 <32 <o

Such that Jo=Ng and ni1 = 9n . At least we know that ¢ =4

Note: We assume ZFC for this discussion, i.e. Zermelo-Fraenkel set theory with
the axiom of choice. Do not worry about it. 19
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