EDAA40

Discrete Structures in Computer Science

5: A few words on proofs

Jörn W. Janneck, Dept. of Computer Science, Lund University

This lecture is based on parts II and III of Richard Hammack's "Book of Proof".

definitions, theorems, proofs

A definition is a statement that gives a precise meaning to a term or a symbol.

 $A\subseteq B$ iff for all $x,x\in A$ implies $x\in B$

n is even iff there is an integer k such that n=2k

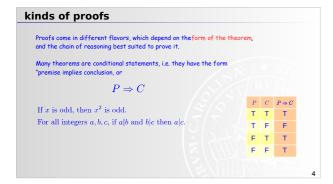
n is odd iff there is an integer k such that n = 2k + 1

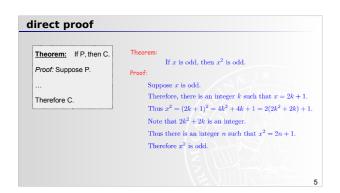
A theorem is a statement that needs to be proven based on definitions (and axioms). $A\times (B\cap C) = A\times B\cap A\times C$ Other words for theorem: proposition, lemma, corollary.

 $\#(\mathbb{N})<\#(2^{\mathbb{N}})$

There are infinitely many prime numbers.

A proof is a is a chain of logical reasoning showing the truth of a theorem.





		Theorem: If $n \in \mathbb{N}$ then $1 + (-1)^n (2n - 1)$ is a multiple of 4.
n	$1 + (-1)^n(2n-1)$	Theorem: If $n \in \mathbb{N}$ then $1 + (-1)^n (2n-1)$ is a multiple of 4.
1	0	Proof: Suppose $n \in \mathbb{N}$. Then n is either even or odd.
2	4	Case 1: Suppose n is even. Then $n=2k$ for some $k\in\mathbb{Z}$.
3	-4	Thus $1 + (-1)^{2k}(2(2k) - 1) = 1 + 1^k(4k - 1) = 4k$.
4	8	That is a multiple of 4.
5	-8	Case 2: Suppose n is odd. Then $n=2k+1$ for some $k\in\mathbb{Z}.$
6	12	Thus $1 + (-1)^{2k+1}(2(2k+1) - 1) = 1 - (4k+2-1) = -4k$
		That is also a multiple of 4.

