EDAA40 Discrete Structures in Computer Science

9: Quantificational logic

objective

You should be able to read, understand, and write quantificational logic.

logic with quantifiers (informally)

Given a logical formula α that depends on a variable \mathbf{x} :

 $\forall x(\alpha)$ represents "for all x, α "

 $\exists x(\alpha)$ represents "there exists an x, such that α "

"Forall" is universal quantification, "exists" is existential.

SLAM, p. 218

Examples:

\ /	/-	/	· \	,
$\forall x$	$(\exists y)$	x_{-}	${}_{L}u$)	
	(-b)	(- <i>01</i>	1

$$\forall x \exists y (x \bot y)$$

$$\forall x \exists y (Cxy)$$

	English	Symbols
1	All composer are poets	$\forall x (Cx \rightarrow Px)$
2	Some composers are poets	$\exists x (Cx \land Px)$
3	No poets are composers	$\forall x (Px \rightarrow \neg Cx)$
4	Everybody loves someone	$\forall x \exists y (Lxy)$
5	There is someone who is loved by everyone	$\exists y \forall x (Lxy)$
6	There is a prime number less than 5	$\exists x (Px \land (x < 5))$
7	Behind every successful man stands an ambitious woman	$\forall x [(Mx \land Sx) \to \exists y (Wy \land Ay \land Byx)]$
8	No man is older than his father	$\neg \exists x (Oxf(x))$
9	The successors of distinct integers are distinct	$\forall x \forall y [\neg(x \equiv y) \rightarrow \neg(s(x) \equiv s(y))]$
10	The English should be familiar from Chap. 4!	$[P0 \land \forall x \{Px \to Px + 1\}] \to \forall x (Px)$

quantifying over a set

In practice, we are usually interested in speaking about elements of some set.

In such cases, the set is often specified when the variable is introduced:

$$\forall x \in A \ (\alpha)$$
 represents "for all x in A, α "

 $\exists x \in A \ (\alpha)$ represents "there exists an x in A, such that α "

This is just syntactic sugar:

$$\forall x \in A \ (\alpha) \dashv \vdash \forall x (x \in A \to \alpha)$$

$$\exists x \in A \ (\alpha) \dashv \vdash \exists x (x \in A \land \alpha)$$

True or false?

$$\forall r \in \mathbb{R} \ (\exists n \in \mathbb{N} \ (n=r))$$

$$\exists n \in \mathbb{N} \ (\forall r \in \mathbb{R} \ (n=r))$$

$$\forall n \in \mathbb{N} \ (\exists r \in \mathbb{R} \ (n=r))$$

$$k|n \leftrightarrow \dots \exists a \in \mathbb{Z} \ (ak = n)$$

$$n \in \mathbb{P} \leftrightarrow \dots n \in \mathbb{N}_2 \land \forall k \in \mathbb{N}_2 \ (k|n \to k = n)$$

$$\mathbb{N}_2 = \{ n \in \mathbb{N} : n > 1 \}$$

more syntactic sugar

Often, one quantifier is used to introduce several variables:

```
\forall x,y,z\in A\ (\alpha) represents "forall x, y, z in A, \alpha"
```

 $\exists x,y,z\in A\ (\alpha)$ represents "there exist x, y, z in A, such that α "

This, too, is just syntactic sugar:

$$\forall x, y, z \in A \ (\alpha) \dashv \vdash \forall x \in A \ (\forall y \in A \ (\forall z \in A \ (\alpha)))$$

$$\exists x, y, z \in A \ (\alpha) \dashv \vdash \exists x \in A \ (\exists y \in A \ (\exists z \in A \ (\alpha)))$$

True or false?

$$\forall n \in \mathbb{N} \ (\exists a, b \in \mathbb{N} \ (a < n < b))$$

$$\forall a, b \in \mathbb{N} \ (\exists n \in \mathbb{N} \ (a < n < b))$$

$$\forall a, b \in \mathbb{N} \ (a < b \to \exists n \in \mathbb{N} \ (a < n < b))$$

How can we "fix" this?

$$R \subseteq A \times A \text{ transitive} \leftrightarrow \dots$$

$$\forall a, b, c \in A \ (aRb \land bRc \rightarrow aRc)$$

$$\forall a, b \in A \ (aRb \to R(b) \subseteq R(a))$$

$$\forall (a,b) \in R \ (R(b) \subseteq R(a))$$

the language of quantificational logic

Broad category	Specific items	Signs used	Purpose
Basic terms	Constants	a, b, c, \dots	Name-specific objects: for example, 5, Charlie Chaplin, London
	Variables	x, y, z, \dots	Range over specific objects, combine with quantifiers to express generality
Function	2-Place	f, g, h, \ldots	Form compound terms out of
letters	so 1-place!		simpler terms, starting from the
	n-Place operators, to	00: +, - *, /,	basic ones .
Predicates	1-Place	P, Q, R, \dots	For example, is prime, is funny, is polluted
also other relation	2-Place		For example, is smaller than, resembles
symbols	n-Place		For example, lies between (3-place)
	Special relation sign	=	Identity
Quantifiers	Universal	A	For all
	Existential	3	There is
Connectives 'Not' etc.		$\neg, \wedge, \vee, \rightarrow$	Usual truth tables
Auxiliary Parentheses and commas			To ensure unique decomposition and make formulae easier to read

 $\forall a, b \in A \ (aRb \to R(b) \subseteq R(a))$

$$\forall k \in \mathbb{N}_2 \ (k|n \to k = n)$$

 $\exists a \in \mathbb{Z} \ (ak = n)$

formulae

SLAM, p. 219

more examples...

Zermelo-Fraenkel Set Theory w/Choice (ZFC)

```
\blacktriangleright extensionality \forall x \forall y [\forall z (z \in x \Leftrightarrow z \in y) \Rightarrow x = y].
                regularity \forall x [\exists a (a \in x) \Rightarrow \exists y (y \in x \land \neg \exists z (z \in y \land z \in x))].
         specification \forall w_1, \dots, w_n \, \forall A \, \exists B \, \forall x \, (x \in B \Leftrightarrow [x \in A \land \varphi(x, w_1, \dots, w_n, A)])
                          union \forall \mathcal{F} \exists A \forall Y \forall x [(x \in Y \land Y \in \mathcal{F}) \Rightarrow x \in A].
          replacement \forall A \forall w_1 \forall w_2 \dots \forall w_n [\forall x (x \in A \Rightarrow \exists ! y \phi) \Rightarrow \exists B \ \forall x (x \in A \Rightarrow \exists y (y \in B \land \phi))].
                     infinity \exists X [\varnothing \in X \land \forall y (y \in X \Rightarrow S(y) \in X)].
                power set \forall x \exists y \forall z [z \subseteq x \Rightarrow z \in y].
                       choice \forall X \left[\emptyset \notin X \implies \exists f \colon X \to \bigcup X \ \forall A \in X \left(f(A) \in A\right)\right].
                                                                                                                                                                                       S(x) = x \cup \{x\}
```

7

finite transforms

Suppose we quantify all variables over a finite set D, and we have constant symbols $a_1, ..., a_n$ for each of its elements.

A finite transform of a universally/existentially quantified formula removes the quantifier, and instantiates the body for each element of D in a chained conjunction/disjunction.

Example:
$$\forall x(Px) \text{ becomes } Pa_1 \wedge ... \wedge Pa_n$$

 $\exists x(Px) \text{ becomes } Pa_1 \vee ... \vee Pa_n$

Do this for the following formula, until all quantifiers are gone. $\exists x(Qx \to \forall y(Pxy))$ Assume a domain with two values, with constant names a and b.

$$\exists x (Qx \to (Pxa \land Pxb)) \qquad (Qa \to (Paa \land Pab)) \lor (Qb \to (Pba \land Pbb))$$

equivalences: distribution

The following equivalences hold for any formula α :

$$\forall x(\alpha \wedge \beta) \dashv \vdash \forall x(\alpha) \wedge \forall x(\beta)$$

$$\exists x(\alpha \vee \beta) \dashv \vdash \exists x(\alpha) \vee \exists x(\beta)$$

This should be easy to see if you think about what this would look like in a finite transform.

equivalences: quantifier interchange

The following equivalences hold for any formula α :

$$\forall x(\alpha) \dashv \vdash \neg \exists x(\neg \alpha)$$

$$\exists x(\alpha) \dashv \vdash \neg \forall x(\neg \alpha)$$

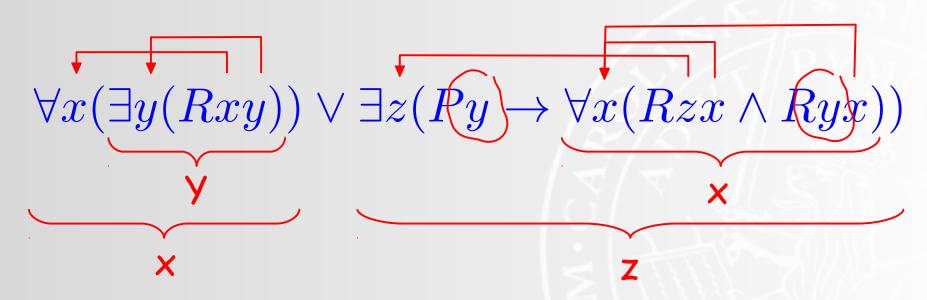
Remember de Morgan's laws?

$$\alpha \wedge \beta \dashv \vdash \neg(\neg \alpha \vee \beta)$$

$$\alpha \vee \beta \dashv \vdash \neg (\neg \alpha \wedge \beta)$$

quantifier scopes

variable uses, and the quantifier they are bound by



quantifier scopes, and the variables bound in/by them

free and bound variable occurrences

A variable occurrence is bound iff it occurs inside the scope of a quantifier that binds that variable.

It is *free* otherwise.

A formula with no free variable occurrences is called *closed*.

A closed formula is a sentence.

free occurrences

$$\forall z[Rxz \to \exists y(Rzy)]$$

bound occurrences

equivalences: vacuity, relettering

Vacuity: If x does not occur free in α , then

$$\forall x(\alpha) \dashv \vdash \alpha \dashv \vdash \exists x(\alpha)$$

This doesn't work if quantifying over an empty set.

Relettering: If x does not occur at all in α , and α' is the result of replacing every bound occurrence of some variable y in α with x, then $\alpha \dashv \alpha'$

Example:

$$\forall y(Ry \to Qyz) \dashv \vdash \forall x(Rx \to (Qxz))$$

interpretations

The value of a formula depends on how you read the symbols in it.

$$\forall z(Rxz \to \exists y(Rzy)) \quad \forall k \in \mathbb{N}_2 \ (k|n \to k=n) \quad \exists a \in \mathbb{Z} \ (ak=n)$$

Also, we need to determine what values the quantified variables can assume.

A domain or universe D are the values that quantified variables range over. (For example: all sets in the case of the axioms of set theory.)

An interpretation v is a function assigning mathematical objects to the symbols occurring in a formula. Specifically...

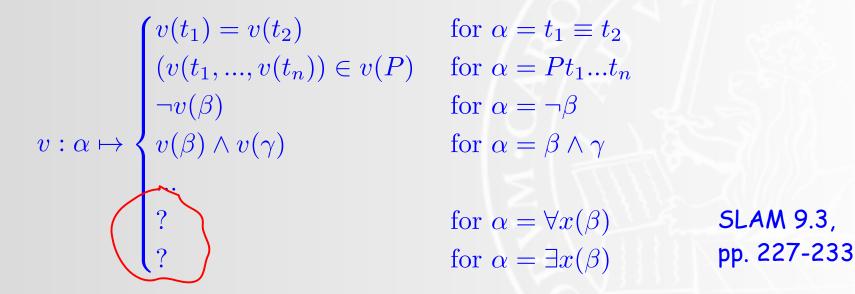
- to each constant a $v(a) \in D$
- to each variable x $v(x) \in D$
- to each n-place function letter f $v(f):D^n\longrightarrow D$
- to each n-place relation letter P $v(P) \subseteq D^n$
- to the identity symbol \equiv the identity over D

evaluating terms and formulae

Given a domain D and an interpretation v, the value of a term t is defined as follows:

$$v: t \mapsto \begin{cases} v(a) & \text{for every constant } a \\ v(x) & \text{for every variable } x \\ v(f)(v(t_1), ..., v(t_n)) & \text{for } t = f(t_1, ..., t_n) \end{cases}$$

With this, we can determine the truth value (0 or 1) of a formula as follows:



logical implication

Given a set of formulae $A=\{\alpha_1,...,a_n\}$ and a formula β , we say that A logically implies β iff there is no interpretation \mathbf{v} such that all the formulae in A are true under \mathbf{v} , but β is false:

$$A \vdash \beta \Longleftrightarrow \neg \exists v (\neg v(\beta) \land \forall \alpha (\alpha \in A \to v(\alpha)))$$

Also:

$$\begin{array}{ll} \alpha \dashv \vdash \beta \Longleftrightarrow \alpha \vdash \beta \land \beta \vdash \alpha & \text{logical equivalence} \\ \emptyset \vdash \alpha & \text{logical truth} \\ \emptyset \vdash \neg \alpha & \text{contradiction} \end{array}$$

A formula that is neither logically true nor a contradiction is contingent.

some implications

