
EDAA40 Exercises 5 induction and recursion

Exercises 5 –– induction and recursion

 1.
Show by simple induction that for every positive integer n,  is divisible by 4.
(SLAM Exercise 4.1)

Basis, n = 1:

 , which is divisible by 4.

Induction step from n to n+1:

Assuming that  is divisible by 4, i.e. there is an integer  such that , we need to 
show that so is , i.e. for some integer  we have .

So  exists and is an integer. QED
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 2.
Let us use  as the name for the set of all prime numbers, that is positive integers greater than 1 that
are only divisible by 1 and themselves, so . You can use  in answering 

the following questions, and also the “divides” relation, defined as  iff .

1. The number n primorial is the product of all prime numbers less than or equal to , i.e.

. Let us call the function that computes n primorial , so for example,

, , , ,

 and so forth. The first primorial number is defined to be 

. 

Using simple recursion, give a definition of the function  computing n 
primorial for any , as follows:

2. Is the function … (circle the answer)

(a) injective? YES NO

(b) surjective? YES NO
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3. Using simple recursion, define an injective function . 
Use the fact that for any , the number  is a prime number (a so-called 

primorial prime).
Hint: It's NOT as simple as mapping  to . (Make sure you understand why that is)

The reason is that P is not injective, e.g. P(3) = P(4).

One common answer here is P(n^2) + 1. (Of course that does not result in a recursive 
definition, but let's forget about this for a moment.) This is based on the realization that just 
P(n)+1 is not injective because not every n is a new prime, and so in a lot of cases P(n)+1 = 
P(n+1)+1, making Q not injective. This gave rise to the suspicion/hope that between any n^2
and the next (n+1)^2 there will be at least one prime so that the next Q(n+1) is different 
from Q(n), making Q injective.

Interestingly, that suspicion has a name, it's called Legendre's conjecture, and while it has 
been around for over a hundred years and is almost certainly true, it hasn't been proven yet. I
gave full marks for that answer even if it does not use simple recursion, because it does 
(“almost certainly”) produce an injective Q. However, actually proving it injective would 
involve proving Legendre's conjecture, which, sadly, so far nobody did (you might have 
heard about it in the news otherwise).

4. Prove that  above is injective.

You may use the fact that  for all  without needing to prove it.

Hint: Answering this might become easier if you use a result from a previous task.

Showing the   is injective, we need to show that for all  we have
. Now if  we can assume without loss of generality that . 

We will show that this implies that , as this implies that . In other 

words we will show that  is strictly monotonic. 
So now we need to show that , or alternatively  for

.

For  we have . (because of  (1) and (2))

Assuming that , we need to show that .
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 (using the induction hypothesis and the base case)

(1) definition of Q(n) for n>1 (a+1 and a+k+1 are both >1, because a and k are > 0)
(2) using 
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 3.
Recall that  is the set of all finite sequences of 0s and 1s. Define an injective function

. 

Keep in mind that sequences of 0s and 1s may start and end with any number of 0s, so interpreting 
the string simply as a binary number is not going to result in an injective function, because 
00100100 and 100100 would be mapped to the same natural number.

Use recursion over the structure of the sequence, as follows. The first case deals with the empty 
sequence, the other two cases “peel off” the first element in the sequence and the rest of the 
sequence is called s'.

 4.
As above,  is the set of all finite sequences of 0s and 1s. Define an injective function

. 

Use recursion over , as follows. The first case deals with 0, the other with positive numbers, 
where you can use the values for smaller numbers.
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 5.
Let  and , and correspondingly  and  be the sets of finite sequences 

in  and , respectively.

Using recursion over the structure of the sequence, define two injections  and
, as follows. In both definitions, the first case deals with the empty sequence, the 

other cases “peel off” the first element in the sequence and the rest of the sequence is called s'.

There are, of course, many ways of answering here. The important point is that the resulting f and g 
be injective, and also that they map to A* and X*, respectively.
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 6.
Consider the lower-case alphabet  and the set

of characters. 

We define a small language  of propositional formulae over the set of variable names
, and the following set of rules  with

such that .

1. Show that  by giving a string  such that :

 (

2. Give three strings  such that :

3. Assume a function  that assigns every variable name a value in . 

Using structural recursion, define an evaluation function  that 

interprets the formulae in  in a way consistent with the usual interpretation of the symbols
 (not),  (or), and  (and) in propositional logic. Use arithmetic operators (+, -, *, min, 

max) to compute with the values 0 and 1.
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 7.
Suppose we have a set of five characters  , the set  

consisting only of the letters  and , and a relation .

As you can see,  is a 3-place relation. Let us define a function  such that

In other words, .

Now let  be the set that results from applying  to some set   times in a row, with

, ,  and so forth, so that .

1. Give an element in   a

2. Give an element in   (a,b) 

3. Give an element in   ((a,b),(b,a))

4. Suppose  . 

Give an element in ,  or write “none” if no such element exists: (a,(a,b))
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 8.
Suppose we have a set  partially ordered by a strict order . What would you need to show
in order to demonstrate that  is not well-founded? (in English/Swedish)

An infinite descending chain in A. [or]
A non-empty subset of A without a minimal element.

 9.
1. Is the set  under strict set inclusion  well-founded?   (circle answer)

 YES NO

2. Prove it or provide a counterexample.

S has no minimal element, since for any  for any .

3. Is the set  under strict set inclusion  well-founded?   (circle answer)

YES NO

4. Prove it or provide a counterexample.

S has no minimal element, since  for every

.

It’s also possible to make a more “abstract” argument here that reuses the result from the 
previous task. Since , there is a bijection . Then the set

 has no minimal element under set inclusion, because S has no minimal 

element and .
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 10.
Let the set  be the set of all finite strings consisting of lower-case characters  from a to z, including
the empty string “”. So, for example, “abc”, “string”, and “ordered” are all members of .
The length of a string is the number of characters in it. We shall use  for the number of 

characters in . Note that .

Let < be the strict prefix order on . This means that for any two strings  and , we have  if 
and only if  is a proper prefix of , i.e.  starts with  and then contains at least one more character. 
For example,  and , but ,  and of course

.

Note that for any two strings   and , it is always the case that .

1.  is partially    /    totally ordered (circle the one that applies).

(For the purposes of this question, “partially” should be understood as the opposite of 
“totally”, rather than as its generalization.)

2. Is  well-founded?   (circle answer)

YES NO
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