EDAA40

Discrete Structures in Computer Science

Administrivia

Jorn W. Janneck, Dept. of Computer Science, Lund University

learnings: notation, concepts, skills

basic concepts, terminology/language & notation for math foundations
and discrete structures relevant to CS

some hands-on experience with simple structures

Clojure

overview

1=
) P
R={z:z ¢x} OCPxQ f:A— B I__XJ_._ﬁ
sets D relations) functions I infinity

SRR G YR
working with infinite

(or arbitrarily large) stuff

graphs D) trees definition, construction,
e recursion, induction
T (also: i
ofix 4 ok o : proofs, logic)

6

ox|x

x| o

x|olo
o

0x|x

x[xJo

x]olo xJolo
+10 +10

textbook

Sets, Logic and Maths for Computing

(SLAM)
Collecting Things Together: Sets

David Makinson Comparing Things: Relations

Sets, Logic and Maths
for Computing Recycling Outputs as Inputs: Induction and Recursion

Second Edition

Associating One Item with Another: Functions

Counting Things: Combinatorics
Weighing the Odds: Probability
Squirrel Math: Trees

Yea and Nay: Propositional Logic

‘-ﬁ_ Springer

Something About Everything: Quantificational Logic

course components

@ P

Lectures

strongly recommended
» basic source of new material

\ /

Programming Contest

optional
* intended to get you “into”
the Clojure language
\. win points for the exam!

§

/

Exercises

strongly recommended
» recap of material in lectures

A\

2 &
Labs

required
* must be passed for credits

 diagnosis — seminars, Piazza * putting math into practice

4

David Makinson

Sets, Logic and Maths
for Computing

Second Edition

» background material, more extensive discussion,
alternative explanations, examples

 additional exercises
(not always with solutions — seminars, Piazza)

7
\

4

~

Seminars

optional
+ free form: bring questions
from lectures, labs, exercises
\. | usually bring material, too /

structure and schedule

(= N\ Ry 2\ Y/ Vi Y I\ Y/
Lecture Lecture 1 Lecture 1 Lecture Lecture Lecture Lecture 1 Lecture
1000h, E:B 1000h, E:B 1000h, E:B 1000h, E:B 1000h, E:B 1000h, E:B 1000h, E:B 1000h, E:B
Lab (A-C) Lab (A-C) Lab (A-C) Lab (A-C) Lab (A-C)
1500h 1500h 1500h 1500h 1500h
Lab (D-F) Lab (D-F) Lab (D-F) Lab (D-F) Lab (D-F)
1000h 1000h 1000h 1000h 1000h
Lecture 1 Seminar Seminar
1000h, E:B 1300h, MA6 1300h, MA6
Seminar Seminar Seminar Seminar Seminar Seminar
1300h, MA6 1300h, MA6 1300h, MA6 1300h, MA6 1300h, MA6 1300h, MAG
N 1 (cw 13)/\ w2 (cw 14)/\ w 3 (cw 15)/\\ w4 (cw 16‘ w5 (cw 19)/\ w 6 (cw 20)/\ w7 (cw 21)/\ w 8 (cw 22))

questions, feedback: Piazza

m W Janneck

- Question History:)]

| A} B sop oo
Lab5-6 b

‘We are a bit confused if our answer is correct to question&inlab 5.

Our suggestionisa < b = fla) < f(b), which should be transistive, irreflexive and antisymmetric.

We wonder if our assumption is correct and how the answer in the solutions can be correct, i.e.a < b = len(a) < len(b) since for example len(10) < len(11) fails the irreflexive requirement.

nced), e

wih tw

where instructors collestively canstiuct a single answer

on 6, what doss 2N na
t of natural n s

Imhaving proble "We wonder if our assumption is correct”

how i read the quantificational lagic: For a

N ‘ It's an interesting answer because | think it works, and meets the requirements. It feels strangely circular to use f in the context of a definition whose purpose is to prove that the recursion in f is well-founded, but as an answer to the question | think it is correct.

"I..] and how the answer in the solutions can be correct, i.e. & < b=lenia)</en(b) since for example len(m)dmm)fails the irreflexive requirement."

Does it? Please explain.

-- Jorn

jving questions and comments

9 marths ago
Alright, thanks for the reply!

Our confusion with using len is that len{10) = 2 and len(11) = 2, but the comparison operator < is strict so what does 2 <~ 2 even mean in this context?

¢ 9 manths sg0 Well, what this boils down to is that 10 £ 11, slm:ec\earlylen{lo) # len(11). But that's okay, since what matters here is that we want to show that the recursion in f is well-founded. So all we need from this order is that the
argument ﬂff{l . 5) and the things it calls itself on (the 5') are ordered in such a way that s' ~ 5. Ifthat's the case (and it is for the order defined via the length —-- if you check the definition, the 5’ are always shorter than the s, because they are the s with one Dor 1 "peslsd
off" of it from the front), and if the order is well-founded (i.e. there are no infinite descending chains) then we know that f must terminate.

ce between codomain,

52517 <
5/2517 ¥
o print the [Spacial Mentions Online Now | T
and ta the ald exan -
x Jom W. Janneck answered Exam 2016-05-30 guestion 4 in 34 min. 6 menths ago I} |
. 50517 Privacy Poficy Copyight Policy Termsof Use Biog Feport Bugl

programming contest (experimental)

(defn create-mindless-divider

The premise: species of amoebas are competing in a
. limited world for resources. T
The TGSkZ WriTe The program 1_0 COHTI"OI your‘ Species. (if 2< energy (+ MinDivideEnergy (/ (- MaxAmoebaEnergy MinDivideEnergy) 2)))

scmd :rest})

(if (< (rand) division-prob)
{:cmd :divide, :dir (rand-int 8)}
{:cmd :move, :dir (rand-int 8)}

)

The winner is the group creating the most successful amoebas.

(defn create-slightlybrainy
[low-energy divide-energy]

(fn [energy health species env data]
(et

- [
do-move (fn []
(let ;; otherwise we gotta move...
[
. empty-nb (empty-neighbors env)
by-fuel (sections-by-fuel empty-nb env)
]
(if (empty? empty-nb)
{:cmd :rest} ;i hunker down, we can't move --- FIXME: perhaps we should hit someone?
{:cmd :move :dir (last by-fuel)} ;; move toward the most fuel
)
)
)
do-fuel (fn []
(if (< MaxFuelingEnergy (:fuel (env Here))) ;; are we *at* a McDonald's?
{:cmd :rest} 7+ chomp chomp
(do-move)
)
)
do-hit (fn []
(let
[h (hostiles species Neighbors env)]
(if (empty? h) ;; nobody to hit?
(do-fuel) ;i eat
{:cmd :hit :dir (Neighbor-To-Dir (rand-nth h))}
)
)
)
do-div (fn [empty-nb]
{:cmd :divide :dir (rand-nth empty-nb)}
O))
The objective is to give you more]
(cond
. . . (< energy low-energy) ;; need some chow?
ractice with Clojure, our language (do-Fue)
' (< divide-energy energy) ;; parenthood
(let

[empty-nb (empty-neighbors env)]

for the labs.

(if (empty? empty-nb) ;; nowhere to put that crib?
(do-hit) ;i then screw parenthood, hit someone
(do-div empty-nb) ;i oooh, look, it's... an amoeba :-(
)
)
N . . (hostiles species Neighbors env) ;; someone looking at us funny?
More on this in the seminar i
. relse

(do-fuel) ;i let's eat some more

sidebars

sidebars contain "non-essential” material
I.e.

nothing introduced in a sidebar
will be required in an exam

BUT it may help understand other material,
or put it in context

exam

1. It's "all math", so no Clojure programming tasks.
2. It's "open book", so notes, books, printed material, etc. are allowed.
3. No electronic and communication devices of any kind.

4. Stuff that might be tested includes anything discussed in the lectures
(except "sidebar” material).

10

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

