
EDAA40EDAA40

Discrete Structures in Computer ScienceDiscrete Structures in Computer Science

AdministriviaAdministrivia

Jörn W. Janneck, Dept. of Computer Science, Lund University

2

learnings: notation, concepts, skills

basic concepts, terminology/language & notation for math foundations
and discrete structures relevant to CS

some hands-on experience with simple structures

Clojure

3

overview

sets relations functions infinityinvestigate

definition, construction,
recursion, induction

(also: proofs, logic)

working with infinite
(or arbitrarily large) stuff

graphs trees

4

textbook

 Collecting Things Together: Sets

 Comparing Things: Relations

 Associating One Item with Another: Functions

 Recycling Outputs as Inputs: Induction and Recursion

 Counting Things: Combinatorics

 Weighing the Odds: Probability

 Squirrel Math: Trees

 Yea and Nay: Propositional Logic

 Something About Everything: Quantificational Logic

 Just Supposing: Proof and Consequence

Sets, Logic and Maths for Computing
(SLAM)

5

course components

Seminars
optional

• free form: bring questions
 from lectures, labs, exercises
• I usually bring material, too

Labs
 required
• must be passed for credits
• putting math into practice

Exercises
strongly recommended

• recap of material in lectures
• diagnosis → seminars, Piazza

Lectures
strongly recommended

• basic source of new material

Programming Contest
 optional
• intended to get you “into”
 the Clojure language
• win points for the exam!

• background material, more extensive discussion,
alternative explanations, examples

• additional exercises
(not always with solutions → seminars, Piazza)

6

structure and schedule

Lecture
1000h, E:B

Lab (A-C)
1500h

Seminar
1300h, MA6

Lecture
1000h, E:B

w 1 (cw 13)

Lecture
1000h, E:B

Seminar
1300h, MA6

Lecture
1000h, E:B

Lab (D-F)
1000h

Seminar
1300h, MA6

w 2 (cw 14) w 3 (cw 15) w 4 (cw 16) w 5 (cw 19) w 6 (cw 20) w 7 (cw 21)

Lab (A-C)
1500h

Lecture
1000h, E:B

Lab (D-F)
1000h

Seminar
1300h, MA6

Lab (A-C)
1500h

Lecture
1000h, E:B

Lab (D-F)
1000h

Seminar
1300h, MA6

Lab (A-C)
1500h

Lecture
1000h, E:B

Lab (D-F)
1000h

Seminar
1300h, MA6

Lab (A-C)
1500h

Lecture
1000h, E:B

Lab (D-F)
1000h

M
o

n
d

a
y

T
u

e
s

d
a

y
W

e
d

n
e

s
d

a
y

T
h

u
rs

d
a

y
F

ri
d

a
y

Lecture
1000h, E:B

w 8 (cw 22)

Seminar
1300h, MA6

Seminar
1300h, MA6

7

questions, feedback: Piazza

8

programming contest (experimental)

(defn create-mindless-divider
 [division-prob]

 (fn [energy health species env data]

 (if (< energy (+ MinDivideEnergy (/ (- MaxAmoebaEnergy MinDivideEnergy) 2)))
 {:cmd :rest}
 (if (< (rand) division-prob)
 {:cmd :divide, :dir (rand-int 8)}
 {:cmd :move, :dir (rand-int 8)}
)
)
)
)

(defn create-slightlybrainy
 [low-energy divide-energy]

 (fn [energy health species env data]
 (let
 [
 do-move (fn []
 (let ;; otherwise we gotta move...
 [
 empty-nb (empty-neighbors env)
 by-fuel (sections-by-fuel empty-nb env)
]

 (if (empty? empty-nb)
 {:cmd :rest} ;; hunker down, we can't move --- FIXME: perhaps we should hit someone?
 {:cmd :move :dir (last by-fuel)} ;; move toward the most fuel
)
)
)
 do-fuel (fn []
 (if (< MaxFuelingEnergy (:fuel (env Here))) ;; are we *at* a McDonald's?
 {:cmd :rest} ;; chomp chomp
 (do-move)
)
)
 do-hit (fn []
 (let
 [h (hostiles species Neighbors env)]

 (if (empty? h) ;; nobody to hit?
 (do-fuel) ;; eat
 {:cmd :hit :dir (Neighbor-To-Dir (rand-nth h))}
)
)
)
 do-div (fn [empty-nb]
 {:cmd :divide :dir (rand-nth empty-nb)}
)
]

 (cond
 (< energy low-energy) ;; need some chow?
 (do-fuel)
 (< divide-energy energy) ;; parenthood!
 (let
 [empty-nb (empty-neighbors env)]

 (if (empty? empty-nb) ;; nowhere to put that crib?
 (do-hit) ;; then screw parenthood, hit someone
 (do-div empty-nb) ;; oooh, look, it's... an amoeba :-(
)
)
 (hostiles species Neighbors env) ;; someone looking at us funny?
 (do-hit) ;; whack 'em
 :else
 (do-fuel) ;; let's eat some more
)
)
)
)

The premise: species of amoebas are competing in a
 limited world for resources.
The task: write the program to control your species.

The winner is the group creating the most successful amoebas.

The objective is to give you more
practice with Clojure, our language
for the labs.

More on this in the seminar.

9

sidebars

sidebars contain “non-essential” material

i.e.

nothing introduced in a sidebar
will be required in an exam

BUT it may help understand other material,
or put it in context

s
i
d
e
b
a
r

10

exam

1. It’s “all math”, so no Clojure programming tasks.

2. It’s “open book”, so notes, books, printed material, etc. are allowed.

3. No electronic and communication devices of any kind.

4. Stuff that might be tested includes anything discussed in the lectures
 (except “sidebar” material).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

