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sets relations functions infinityinvestigate

definition, construction,
recursion, induction

(also: proofs, logic)

working with infinite
(or arbitrarily large) stuff

graphs trees
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relations

Mathematical relations are about connections between objects.

relations between numbers
a divides b, a is greater than b, a and b are prime to each other

relations between sets
subset of, same size as, smaller than

relations between people
customer/client, parent/child, spouse, employer/employee

We will focus on relations between two things. Often, they have 
distinct roles in a relation (superset/subset, parent/child, …), i.e. we 
cannot model them simply as unordered pairs {a, b}.

In order to properly model relations, we first need to introduce ordered pairs.
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ordered pairs, tuples

ordered pair

corollary:

n-tuple
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cartesian product

The (cartesian) product of a pair of sets, or more generally a finite
family of sets, is the set of all ordered pairs or n-tuples.

When the sets are the same, we also write

Occasionally, to avoid fussiness, the following are treated as equal:

If A and B are different, then
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cartesian product

Examples:

Note: 
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relations

A (binary, dyadic) relation R from A to B
(or over A x B) 
is a subset of the cartesian product:

If A and B are the same, i.e.                      , we also say that 
R is a binary relation over A.

Of course, this generalizes to...

An n-place relation R over
A1 x … x An

is a subset of that product:
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notation, examples

For binary relations                       , these are equivalent:

Therefore: but
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examples

Suppose

What does this relation signify? 
When is            ? 

Let's define the relation
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terminology: source, target, domain, range

For binary relations                       :
A is a source. B is a target.

Note that for any R, source and target are not uniquely determined:

For any               and               , we have                               .

By contrast, these are uniquely determined:
the domain of R:
the range of R:

For any relation                       it is always the case that
and
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example

We can represent the same information as a relation from P to Q: 

So that                     but                           .
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relations as tables

0 0 0 0 0 1 1 0 0 1 0

0 0 0 0 1 0 0 1 0 0 1

0 0 0 0 0 0 0 0 1 0 0

1 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0
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drawing relations: digraphs
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drawing relations: digraphs
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converse, complement

For a binary relation                      
its converse (inverse) is the relation  

For a binary relation                      
its complement is the relation  

Notation: There is no firm standard for denoting converse or complement. 
When using symbols such as     or    , the complement is often indicated
by striking through the symbol, i.e.      or     , while the converse is denoted 
by reversing the symbol     . 

some properties:

some properties:
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converse vs complement

Especially when source and target are the same, converse and complement
seem to have a lot in common. Hence the importance of understanding
the differences.
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converse: invert the arrows
complement: absent arrows

For finite A, B, given 
What are              and          ? 



17

converse vs complement

R a b c

a 1 1 0

b 0 1 1

c 1 0 1

R a b c

a 1 0 1

b 1 1 0

c 0 1 1

R a b c

a 0 0 1

b 1 0 0

c 0 1 0

converse: mirror at the diagonal complement: flip zeros and ones
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composition

Given two binary relations                       and                       
their composition is a binary relation on 
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composition

S 1 2

x 1 0

y 1 0

z 0 1

SoR 1 2

a 1 0

b 1 1

R x y z

a 1 1 0

b 0 1 1

What is the relationship between the tables for R and S, 
and their composition?

s
i
d
e
b
a
r
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image

Given a binary relation                       from A to B, for any                        
its image under R, written R(a), is defined as   

1. What is             ?
2. What does it mean?

Can be “lifted” to subsets                :

Note:
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properties: reflexivity

A binary relation                       is reflexive iff for all 
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R a b c

a 1 1 0

b 0 1 1

c 1 0 1

Other examples?
What is the difference between irreflexive and not reflexive?

A binary relation                       is irreflexive iff there is no
such that 
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properties: transitivity

A binary relation                       is transitive iff for all 
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R a b c

a 1 1 1

b 0 0 1

c 0 0 1

Other examples?
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properties: transitivity (postscriptum)

A binary relation                       is transitive iff for all 
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R a b c

a 1 1 0

b 0 1 1

c 0 0 1

In the lecture, I messed up the presentation of 
the previous slide, by suggesting that the second
example on it was a counterexample that wasn’t 
transitive, when in fact it was (transitive). 

Here is an actual counterexample that isn’t transitive.
Promise.
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properties: symmetry

A binary relation                       is symmetric iff for all 

a

b

A

c

a

b

A

c

R a b c

a 1 0 1

b 0 1 0

c 1 0 1

Other examples?
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properties: a(nti)symmetry

A binary relation                       is antisymmetric iff for all 

Consider      and     on the natural numbers. Neither is symmetric, but
in slightly different ways.
For       , it is never the case that             and            .
This is called asymmetry.

For       , it sometimes is, but only when            .
This is called antisymmetry.

Both relations are antisymmetric. Only     is asymmetric.

A binary relation                       is asymmetric iff for all 
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equivalence relations

A binary relation                       is an equivalence relation iff it is
1. reflexive
2. symmetric
3. transitive 

What about these:
- equality
- having the same number of elements:
- divides: 
- relatively prime: 
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partitions

Given a set A, a partition of A is a set of pairwise disjoint sets
                    , such that

A: EU citizens, I: EU member states, B
i
: citizens of country i

A: atoms, I: elements, B
i
: atoms of element i

A: natural numbers, I: primes, B
i
: multiples of i (excluding i)
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equivalence class, quotient set

Equivalence relations and partitions are really the same thing!

Given a set A and an equivalence relation     on A, for any            we
define the equivalence class of a         as

Alternative syntax:

SLAM
when the relation is understood

Given a set A and an equivalence relation     on A, the quotient (set)
          is defined as

SLAM 2.5.4: 1. Every partition is the quotient of an equivalence relation.
2. Every quotient set is a partition. 

Review the proof in the book. Connect it to these definitions.
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order relation, poset

A binary relation                       is an (inclusive or non-strict) (partial) 
order iff it is

1. reflexive 2. antisymmetric 3. transitive

What about these:
- divides: 
- set inclusion:
- on numbers:        and  
- proper set inclusion:   

A pair             where A is a set and                      a partial order on A is
called a partially ordered set  or  poset.

Examples:
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strict (partial) order

A binary relation                       is a strict (partial) order iff it is
1. irreflexive
2. transitive

Note: Irreflexivity and transitivity imply asymmetry.

How?
irreflexivity:
transitivity:
asymmetry:
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total (or linear) order

A binary relation                       is a (non-strict) total (or linear) order 
iff it is

1. reflexive
2. antisymmetric
3. transitive
4. total (complete): 

What about these:
- divides: 
- set inclusion:
- on numbers:        and  
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transitive closure

The transitive closure       of a binary relation                       is 
defined as follows:

What is the meaning of       ?
What are its properties? 

alternative syntax
(SLAM)
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