EDAA40

Discrete Structures in Computer Science

Jörn W. Janneck, Dept. of Computer Science, Lund University

relations

Mathematical *relations* are about connections between objects.

relations between numbers a divides b, a is greater than b, a and b are prime to each other relations between sets subset of, same size as, smaller than relations between people customer/client, parent/child, spouse, employer/employee

We will focus on relations between two things. Often, they have distinct *roles* in a relation (superset/subset, parent/child, ...), i.e. we cannot model them simply as unordered pairs {a, b}.

In order to properly model relations, we first need to introduce ordered pairs.

ordered pairs, tuples

ordered pair
$$(a, b)$$

 $(a, b) = (x, y)$ iff $a = x$ and $b = y$

orollary:
$$(a,b) \neq (b,a) ext{ if } a \neq b$$

С

n-tuple
$$(a_1, ..., a_n)$$

 $(a_1, ..., a_n) = (b_1, ..., b_n)$ iff $a_i = b_i$ for $i = 1, ..., n$

cartesian product

The (*cartesian*) *product* of a pair of sets, or more generally a finite family of sets, is the set of all ordered pairs or n-tuples.

$$A_1 \times ... \times A_n = \{(a_1, ..., a_n) : a_1 \in A_1, ..., a_n \in A_n\}$$

When the sets are the same, we also write

$$A \times A = A^{2}$$

$$\underbrace{A \times \dots \times A}_{n \text{ times}} = A^{n}$$

If A and B are different, then $A \times B \neq B \times A$

Occasionally, to avoid fussiness, the following are treated as equal: $A \times (B \times C) = (A \times B) \times C = A \times B \times C$

cartesian product

Examples:

$$\{a,b\} \times \{1,2,3\} = \{(a,1), (a,2), (a,3), (b,1), (b,2), (b,3)\}$$

$$\mathbb{N}^+ \times \mathbb{N}^+ = \{(1,1), (1,2), (1,3), \dots, (2,1), (2,2), (2,3), \dots\}$$

Note: $\#(A \times B) = \#(A) \#(B)$

relations

A (binary, dyadic) relation R from A to B (or over A x B) is a subset of the cartesian product:

If A and B are the same, i.e. $R \subseteq A \times A$, we also say that R is a binary relation over A.

Of course, this generalizes to ...

An *n*-place relation R over $A_1 \times \dots \times A_n$ is a subset of that product:

$$R \subseteq A_1 \times \ldots \times A_n$$

$$R \subseteq A \times B$$

notation, examples

For binary relations $R \subseteq A \times B$, these are equivalent: $(a,b) \in R$ aRb

 $C = \{F, E, B, D, NL, CH, I, GB, IRL\}$ $\bowtie = \{(F, E), (E, F), (F, B), (B, F), (F, D), (D, F), (F, CH), (CH, F), (F, I), (I, F), (B, NL), (NL, B), (B, D), (D, B), (D, NL), (NL, D), (D, CH), (CH, D), (CH, I), (I, CH), (GB, IRL), (IRL, GB)\}$

Therefore: $F \bowtie CH$ but $E \bowtie I$

examples

 $< \subset \mathbb{N}^+ \times \mathbb{N}^+$ $< = \{(1,2), (1,3), ..., (1,1557), ..., (2,3), (2,4),\}$ $(4,7) \in \mathsf{-}$ but $(2,2) \notin \mathsf{-}$ and $(7,1) \notin \mathsf{-}$

$\{M_i : i \in \mathbb{N}\}$ with $M_i = \{ik : k \in \mathbb{N}^+\}$ Suppose

Let's define the relation

$$= \{(a,b) \in \mathbb{N}^+ \times \mathbb{N}^+ : b \in M_a\}$$

What does this relation signify? When is $a \mid b$?

terminology: source, target, domain, range

For binary relations $R \subseteq A \times B$:

A is a source.

B is a target.

Note that for any R, source and target are not uniquely determined: $R \subseteq A \times B$

For any $A' \supseteq A$ and $B' \supseteq B$, we have $A \times B \subseteq A' \times B'$.

 $R \subseteq A \times B \subseteq A' \times B'$

By contrast, these are uniquely determined: the domain of R: $dom(R) = \{a : (a, b) \in R \text{ for some } b\}$ the range of R: $range(R) = \{b : (a, b) \in R \text{ for some } a\}$

 $\begin{array}{lll} \mbox{For any relation} & R \subseteq A \times B & \mbox{it is always the case that} \\ & \mbox{dom}(R) \subseteq A & \mbox{and} & \mbox{range}(R) \subseteq B \end{array}$

example

$$\begin{split} R_{\text{Charlie}} &= \{\text{Violet}, \text{LRHG}, \text{Peggy}\}, R_{\text{Linus}} = \{\text{Sally}, \text{Mrs. Othmar}, \text{Lydia}\}, R_{\text{Lucy}} = \{\text{Schroeder}\}, \\ R_{\text{Patty}} &= \{\text{Charlie}\}, R_{\text{Sally}} = \{\text{Linus}\}, R_{\text{Violet}} = \{\text{Violet}\}, R_{\text{Peggy}} = \{\text{Charly}\} \\ P &= \{\text{Charlie}, \text{Linus}, \text{Lucy}, \text{Patty}, \text{Sally}, \text{Violet}, \text{Peggy}, \text{Lydia}, \text{Schroeder}\} \\ Q &= \{\text{Charlie}, \text{Linus}, \text{Lucy}, \text{Patty}, \text{Sally}, \text{Violet}, \text{Peggy}, \text{Lydia}, \text{Schroeder}, \text{LRHG}, \text{Mrs. Othmar}\} \end{split}$$

We can represent the same information as a relation from P to Q:

 $\heartsuit\subseteq P\times Q$

$$\label{eq:solution} \begin{split} \heartsuit &= \{(\text{Charlie, Violet}), (\text{Charlie, LRHG}), (\text{Charlie, Peggy}), \\ &\quad (\text{Linus, Sally}), (\text{Linus, Mrs. Othmar}), (\text{Linus, Lydia}), \\ &\quad (\text{Lucy, Schroeder}), (\text{Patty, Charlie}), (\text{Sally, Linus}), \\ &\quad (\text{Violet, Violet}), (\text{Peggy, Charlie})\} \end{split}$$

So that Sally \heartsuit Linus but Sally \heartsuit Schroeder.

relations as tables

 $\heartsuit \subseteq P \times Q$

Т

Ρ

\heartsuit	Charlie	Linus	Lucy	Patty	Sally	Violet	Редду	Lydia	Schroeder	LRHG	Mrs Othmar	← Q
Charlie	0	0	0	0	0	1	1	0	0	1	0	
Linus	0	0	0	0	1	0	0	1	0	0	1	
Lucy	0	0	0	0	0	0	0	0	1	0	0	
Patty	1	0	0	0	0	0	0	0	0	0	0	
Sally	0	1	0	0	0	0	0	0	0	0	0	
Violet	0	0	0	0	0	1	0	0	0	0	0	
Peggy	1	0	0	0	0	0	0	0	0	0	0	
Lydia	0	0	0	0	0	0	0	0	0	0	0	
Schroeder	0	0	0	0	0	0	0	0	0	0	0	

$$\label{eq:charlie} \begin{split} \heartsuit &= \{(\text{Charlie}, \text{Violet}), (\text{Charlie}, \text{LRHG}), (\text{Charlie}, \text{Peggy}), (\text{Linus}, \text{Sally}), \\ &\quad (\text{Linus}, \text{Mrs. Othmar}), (\text{Linus}, \text{Lydia}), (\text{Lucy}, \text{Schroeder}), \\ &\quad (\text{Patty}, \text{Charlie}), (\text{Sally}, \text{Linus}), (\text{Violet}, \text{Violet}), (\text{Peggy}, \text{Charlie})\} \end{split}$$

drawing relations: digraphs

drawing relations: digraphs

♡ = {(Charlie, Violet), (Charlie, LRHG), (Charlie, Peggy), (Linus, Sally), (Linus, Mrs. Othmar), (Linus, Lydia), (Lucy, Schroeder), (Patty, Charlie), (Sally, Linus), (Violet, Violet), (Peggy, Charlie)}

converse, complement

For a binary relation $R \subseteq A \times B$ its converse (inverse) is the relation

$$R^{-1} = \{(b, a) : aRb\}$$

some properties:

$$R^{-1} \subseteq B \times A$$

$$(R^{-1})^{-1} = R$$

$$(R \cup S)^{-1} = R^{-1} \cup S^{-1} \qquad (R \cap S)^{-1} = R^{-1} \cap S^{-1}$$

For a binary relat its <i>complement</i> is	ion $R \subseteq A imes B$ the relation	$\overline{R} ={A \times B} R = A \times B \setminus R$	
some properties:	$\overline{R} \subseteq A \times B$	$\overline{\overline{R}} = R$	
	$\overline{R\cup S}=\overline{R}\cap\overline{S}$	$\overline{R\cap S}=\overline{R}\cup\overline{S}$	

Notation: There is no firm standard for denoting converse or complement. When using symbols such as \prec or \bowtie , the complement is often indicated by striking through the symbol, i.e. $\not\prec$ or $\not\bowtie$, while the converse is denoted by reversing the symbol \succ .

converse vs complement

Especially when source and target are the same, converse and complement seem to have a lot in common. Hence the importance of understanding the differences. $R^{-1} = \{(a, a), (a, c)(b, a), (b, b), (c, b), (c, c)\}$

converse: invert the arrows complement: absent arrows

For finite A, B, given $R \subseteq A \times B$ What are $\#(R^{-1})$ and $\#(\overline{R})$?

converse vs complement

R	а	b	С
а	1	1	0
b	0	1	1
С	1	0	1

$$R^{-1} = \{(a, a), (a, c)(b, a), (b, b), (c, b), (c, c)\}$$

converse: mirror at the diagonal

$$\overline{R} = \{(a,c), (b,a), (c,b)\}$$

R	а	b	С
а	0	0	1
b	1	0	0
С	0	1	0

complement: flip zeros and ones

composition

Given two binary relations $R \subseteq A \times B$ and $S \subseteq B \times C$ their composition is a binary relation on $A \times C$ $S \circ R = \{(a, c) : aRb \text{ and } bSc \text{ for some } b \in B\}$

composition

R	x	У	Z
а	1	1	0
b	0	1	1

 $S = \{(x,1), (y,1), (z,2)\}$

S	1	2
x	1	0
У	1	0
z	0	1

$S \circ F$	$R = \{(a) \in A \}$	(a, 1), ((b,1),	(b,2)
	SoR	1	2	
	а	1	0	
	b	1	1	

What is the relationship between the tables for R and S, and their composition?

6

0)

image

Given a binary relation $R \subseteq A \times B$ from A to B, for any $a \in A$ its image under R, written R(a), is defined as $R(a) = \{b \in B : aRb\}$

Can be "lifted" to subsets $X \subseteq A$: $R(X) = \{b \in B : aRb \text{ for some } a \in X\}$

Note:
$$R(X) = \bigcup_{a \in X} R(a)$$

 $C = \{F, E, B, D, NL, CH, I, GB, IRL\}$ $\bowtie = \{(F, E), (E, F), (F, B), (B, F), (F, D), (D, F), (F, CH), (CH, F), (F, I), (F, I)$

(I, F), (B, NL), (NL, B), (B, D), (D, B), (D, NL), (NL, D), (D, CH),

(CH, D), (CH, I), (I, CH), (GB, IRL), (IRL, GB)

1. What is $\bowtie(F)$? 2. What does it mean?

properties: reflexivity

A binary relation $R \subseteq A \times A$ is reflexive iff for all $a \in A$ aRa

 $\begin{array}{lll} \mbox{A binary relation} & R \subseteq A \times A & \mbox{is irreflexive iff there is no} & a \in A \\ \mbox{such that} & & aRa \end{array}$

 $R = \{(a, a), (a, b), (b, b), (b, c), (c, a), (c, c)\}$

	R	а	b	С
~	а	1	1	0
	b	0	1	1
	С	1	0	1

Other examples? What is the difference between irreflexive and not reflexive?

properties: transitivity

A binary relation $R \subseteq A \times A$ is *transitive* iff for all $a, b, c \in A$ if aRb and bRc then aRc

~	R	а	b	С
Ċ	а	1	1	1
6	b	0	0	1
5	С	0	0	1

properties: transitivity (postscriptum)

A binary relation $R \subseteq A \times A$ is *transitive* iff for all $a, b, c \in A$ if aRb and bRc then aRc

In the lecture, I messed up the presentation of the previous slide, by suggesting that the second example on it was a counterexample that wasn't transitive, when in fact it was (transitive).

R	а	b	С
а	1	1	0
b	0	1	1
С	0	0	1

Here is an actual counterexample that isn't transitive. Promise.

aRb and bRc, but not aRc

properties: symmetry

A binary relation $R \subseteq A \times A$ is symmetric iff for all $a, b \in A$ if aRb then bRa

 $R = \{(a, a), (a, c), (b, b), (c, a), (c, c)\}$

R	а	b	С
а	1	0	1
b	0	1	0
С	1	0	1

properties: a(nti)symmetry

Consider \leq and < on the natural numbers. Neither is symmetric, but in slightly different ways. For <, it is never the case that a < b and b < a. This is called asymmetry.

For \leq , it sometimes is, but only when a = b. This is called **antisymmetry**.

Both relations are antisymmetric. Only < is asymmetric.

A binary relation $R \subseteq A \times A$ is asymmetric iff for all $a, b \in A$ if aRb then not bRa

A binary relation $R \subseteq A \times A$ is antisymmetric iff for all $a, b \in A$ if aRb and bRa then a = b

equivalence relations

A binary relation $\approx \subseteq A \times A$ is an equivalence relation iff it is 1. reflexive 2. symmetric 3. transitive

What about these:

- equality
- having the same number of elements: $A \sim B$ iff #(A) = #(B)
- divides: $m \mid n \text{ iff there is } k \ge 1 : km = n$
- relatively prime: $m \perp n$ iff there is no $k \geq 2: k \mid m$ and $k \mid n$

partitions

Given a set A, a partition of A is a set of pairwise disjoint sets $\{B_i: i \in I\}$, such that $A = \bigcup_{i \in I} B_i$

A: EU citizens, I: EU member states, B_i: citizens of country i
A: atoms, I: elements, B_i: atoms of element i
A: natural numbers, I: primes, B_i: multiples of i (excluding i)

equivalence class, quotient set

Equivalence relations and partitions are really the same thing!

Given a set A and an equivalence relation \approx on A, for any $a \in A$ we define the equivalence class of a $[a]_{\approx}$ as $[a]_{\approx} = \{b \in A : a \approx b\}$

Alternative syntax:

Given a set A and an equivalence relation \approx on A, the quotient (set) A/\approx is defined as $A/\approx = \{|a|_{\approx} : a \in A\}$

SLAM 2.5.4:

Every partition is the quotient of an equivalence relation.
 Every quotient set is a partition.

Review the proof in the book. Connect it to these definitions.

order relation, poset

A bind order	ary relation ∠⊆. riff it is	A imes A is an (<i>inclusive</i>)	or <i>non-strict</i>) (<i>partial</i>)	
	1. reflexive	2. antisymmetric	3. transitive	
	What about thes	e:	Ke/*	SI

- divides: $m \mid n \text{ iff there is } k \ge 1 : km = n$
- set inclusion: \subseteq
- on numbers: \leq and <
- proper set inclusion: \subset

A pair (A, \preceq) where A is a set and $\preceq \subseteq A \times A$ a partial order on A is called a *partially ordered set* or *poset*.

Examples:

$$(\mathbb{N}^+, |)$$
$$(\mathcal{P}(A), \subseteq)$$

strict (partial) order

A binary relation $\prec \subseteq A \times A$ is a strict (partial) order iff it is 1. irreflexive 2. transitive

Note: Irreflexivity and transitivity imply asymmetry.

How?

irreflexivity: transitivity: asymmetry: $\begin{array}{l} a \not\prec a \\ \text{if } a \prec b \text{ and } b \prec c \text{ then } a \prec c \\ \text{if } a \prec b \text{ then } b \not\prec a \end{array}$

total (or linear) order

What about these:

- divides:

- $m \mid n \text{ iff there is } k \geq 1 : km = n$
- set inclusion: \subseteq
- on numbers: \leq and <

transitive closure

The transitive closure R^+ of a binary relation $R \subseteq A \times A$ is
defined as follows: $R^+ = \bigcup_{i \in \mathbb{N}} R_i$ with R^*
alternative syntax
(SLAM) $R_0 = R$ $R_{n+1} = R_n \cup \{(a,c) : \text{if } aR_nb \text{ and } bR_nc \text{ for some } b \in A\}$

 $\bowtie = \{(F, E), (E, F), (F, B), (B, F), (F, D), (D, F), (F, CH), (CH, F), (F, I), (I, F), (B, NL), (NL, B), (B, D), (D, B), (D, NL), (NL, D), (D, CH), (CH, D), (CH, I), (I, CH), (GB, IRL), (IRL, GB)\}$

What is the meaning of \bowtie^+ ? What are its properties?

