

relations	
Mathematical relations are about connections between objects.	
relations between numbers	
a divides b, a is greater than b, a and b are prime to each other	
relations between sets	
subset of, same size as, smaller than	
relations between people	
customer/client, parent/child, spouse, employer/employee	
We will focus on relations between two things. Often, they have	
distinct roles in a relation (superset/subset, parent/child,), i.e. we	
cannot model them simply as unordered pairs {a, b}.	
In order to properly model relations, we first need to introduce ordered pairs.	
	3

ordered pairs, tuples ordered pair (a,b)(a,b)=(x,y) iff a=x and b=ycorollary: $(a,b) \neq (b,a) \text{ if } a \neq b$ $(a_1, ..., a_n)$ n-tuple $(a_1,...,a_n)=(b_1,...,b_n)$ iff $a_i=b_i$ for i=1,...,n

cartesian product

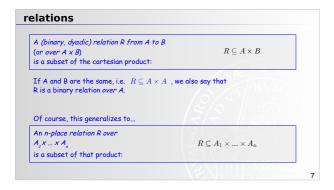
The (cartesian) product of a pair of sets, or more generally a finite family of sets, is the set of all ordered pairs or n-tuples.

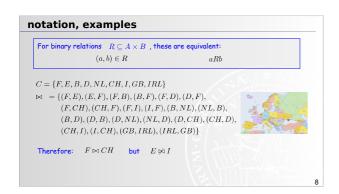
 $A_1 \times ... \times A_n = \{(a_1,...,a_n) : a_1 \in A_1,...,a_n \in A_n\}$

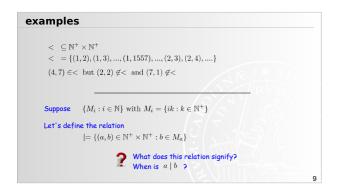
When the sets are the same, we also write $A \times A = A^2 \\ \underbrace{A \times \ldots \times A}_{n \text{ times}} = A^n$

$$\underbrace{A \times A - A}_{n \text{ times}} = A^n$$

If A and B are different, then $A\times B\neq B\times A$


Occasionally, to avoid fussiness, the following are treated as equal: $A\times (B\times C)=(A\times B)\times C=A\times B\times C$


cartesian product


Examples:

$$\begin{split} \{a,b\} \times \{1,2,3\} &= \{(a,1),(a,2),(a,3),(b,1),(b,2),(b,3)\} \\ \mathbb{N}^+ \times \mathbb{N}^+ &= \{(1,1),(1,2),(1,3),...,(2,1),(2,2),(2,3),...\} \end{split}$$

Note: $\#(A \times B) = \#(A)\#(B)$

terminology: source, target, domain, range

For binary relations $R\subseteq A\times B$: A is a source,

B is a target.

Note that for any R, source and target are not uniquely determined $R \subseteq A \times B$

For any $A'\supseteq A$ and $B'\supseteq B$, we have $A\times B\subseteq A'\times B'$.

 $R \subseteq A \times B \subseteq A' \times B'$

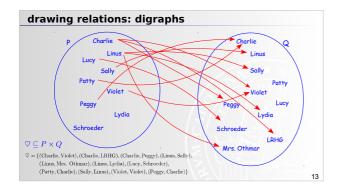
 $\label{eq:bounds} \begin{array}{ll} \text{By contrast, these are uniquely determined:} \\ \text{the domain of R:} & \dim(R) = \{a: (a,b) \in R \text{ for some } b\} \\ \text{the range of R:} & \mathrm{range}(R) = \{b: (a,b) \in R \text{ for some } a\} \end{array}$

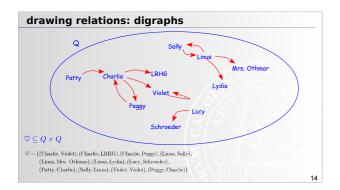
For any relation $R\subseteq A\times B$ it is always the case that $\mathrm{dom}(R)\subseteq A$ and $\mathrm{range}(R)\subseteq B$

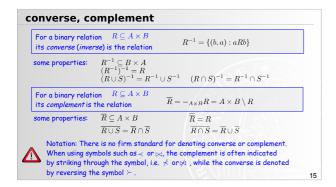
example

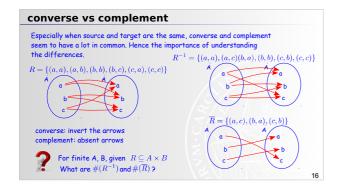
 $R_{\rm Charlie} = \{ \rm Violet, LRHG, Peggy \}, \\ R_{\rm Linus} = \{ \rm Sally, Mrs.\ Othmar, Lydia \}, \\ R_{\rm Lucy} = \{ \rm Schroeder \},$
$$\begin{split} R_{\text{Patty}} &= \{\text{Charlie}\}, R_{\text{Sally}} = \{\text{Linus}\}, R_{\text{Violet}} = \{\text{Violet}\}, R_{\text{Peggy}} = \{\text{Charly}\}\\ P &= \{\text{Charlie}, \text{Linus}, \text{Lucy}, \text{Patty}, \text{Sally}, \text{Violet}, \text{Peggy}, \text{Lydia}, \text{Schroeder}\}\\ Q &= \{\text{Charlie}, \text{Linus}, \text{Lucy}, \text{Patty}, \text{Sally}, \text{Violet}, \text{Peggy}, \text{Lydia}, \text{Schroeder}, \text{LRHG}, \text{Mrs. Othmar}\} \end{split}$$

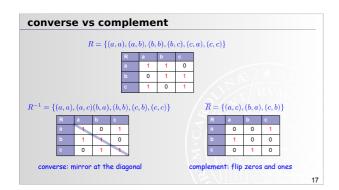
We can represent the same information as a relation from P to Q:

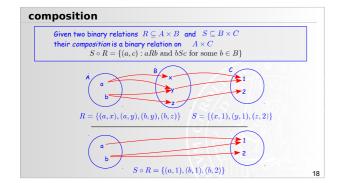

 $\heartsuit \subseteq P \times Q$

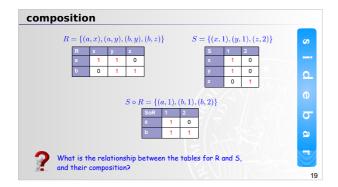

 $\heartsuit = \{(Charlie, Violet), (Charlie, LRHG), (Charlie, Peggy),$ (Linus, Sally), (Linus, Mrs. Othmar), (Linus, Lydia), (Lucy, Schroeder), (Patty, Charlie), (Sally, Linus), (Violet, Violet), (Peggy, Charlie)}

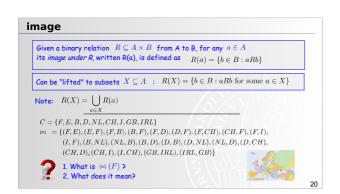


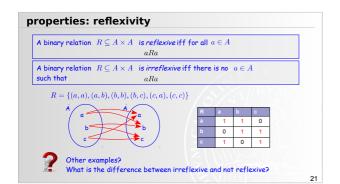

So that Sally \subseteq Linus but Sally \subseteq Schroeder.

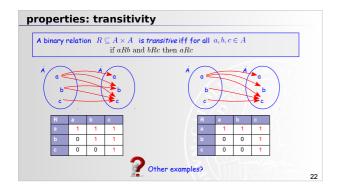

relations as tables												
ø	Charlie	Linus	Lucy	Patty	Sally	Violet	Редду	Lydia	Schroeder	LRHG	Ars Othmar	← Q
Charlie	0	0	0	0	0	1	1	0	0	1	0	
Linus	0	0	0	0	1	0	0	1	0	0	1	* 51
Lucy	0	0	0	0	0	0	0	0	-1	0	0	
Patty	1	0	0	0	0	0	0	0	0	0	0	RVM_{O}
Sally	0	-1	0	0	0	0	0	0	0	0	0	with The
Violet	0	0	0	0	0	-1	0	0	0	0	0	1668 B
Peggy	1	0	0	0	0	0	0	0	0	0	0	
Lydia	0	0	0	0	0	0	0	0	0	0	0	\$7(7)
Schroeder	0	0	0	0	0	0	0	0	0	0	0	((//))
P	($\supset \subseteq F$	$^{\prime} \times Q$		♥ = {(Charlie, Violet), (Charlie, IRHG), (Charlie, Peggy), (Linus, Sally), (Linus, Mrs. Othmar), (Linus, Lydia), (Lucy, Schroeder), (Patty, Charlie), (Sally, Linus), (Violet, Violet), (Peggy, Charlie)}							

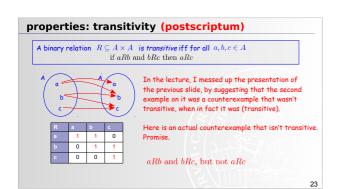


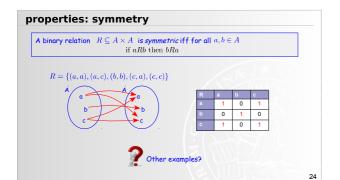


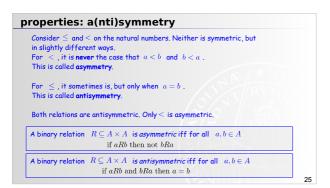


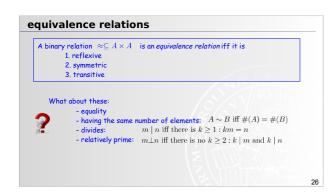


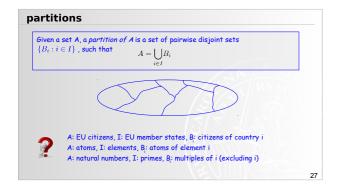


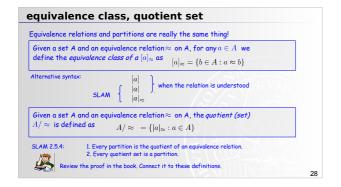


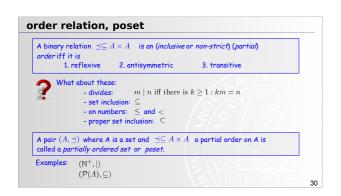


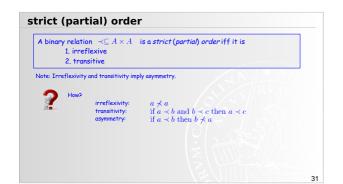


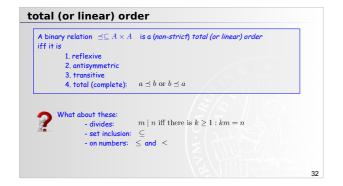












###