

EDAA40EDAA40

Discrete Structures in Computer ScienceDiscrete Structures in Computer Science

5: Induction and recursion5: Induction and recursion

Jörn W. Janneck, Dept. of Computer Science, Lund University

2

introduction

3

introduction

Wilhelm Ackermann
1896-1942

4

induction and recursion

Induction and recursion:
defining sets, and especially functions (recursion)
proving properties of things (induction)

5

a simple inductive proof

Hypothesis:

Basis:

Induction step:

Assuming that

show that

induction hypothesis

induction goal

def sum()

IH

6

a simple induction principle

Hypothesis:

Basis:

Induction step: Assuming that show that

induction hypothesis induction goal

Show that (or or some other, depending on circumstances)

for all n

Things that often go wrong:
- mixing basis and induction step: do not try to do everything at once
- confusing induction hypothesis and induction goal
- not using the induction hypothesis: it ain't cheating!
- getting lost: proving the goal can be messy, keep eyes on prize

7

defining large (infinite) sets

recursive definition (we will discuss this later)

enumeration w/ suspension points/ellipsis

(informal stand-in for a recursive definition)

Remember these from the first lecture?

(we will discuss this now)

Many of these infinite sets are functions !

8

simple recursive definitions

Technically, this describes the following set:

We could define this set also in this manner:
Do you see a more
general principle?

We could use more (even all) previous values here!

9

cumulative recursive definitions

Technically, this describes the following set:

We could define this set also in this manner:

Cumulative recursive definitions reach back
further than the last defined value, possibly
to all previously defined values!

10

cumulative (complete) induction
Cumulative, also complete or strong, induction uses an induction hypothesis that
assumed the truth of the hypothesis for all smaller values, instead of just
the previous one.

Hypothesis:

Basis:

Induction step:

Assuming that

show that

induction hypothesis

induction goal

def g()

IH

11

cumulative induction principle

Hypothesis:

Basis:

Induction step:

Assuming that show that

induction goalinduction hypothesis

Note that the basis is the vacuous form of the induction step, for k=0.
As a result, the basis is subsumed by the induction step.
In practice, it is often treated separately.

12

closure under relation
Given a relation and a set , the closure of X under R is defined
as the smallest such that

Construction:
When R is understood, we also write .

Example: What is the set of all palindromes?

Section 2.7.2 in SLAM.

13

closure under relations, rules, generators

Given a set , a family of relations on A
and a set , the closure of X under R is defined as
the smallest such that

Construction:

When R is understood, we also write .
The elements of R are also called
rules, constructors, generators.

Example:

14

examples of closures in CS

15

structural induction

Hypothesis:

Basis:

Induction step:

Every contains equal numbers of opening and closing parentheses.

Every contains equal numbers of opening and closing parentheses.

All rules preserve the property: if their “input” objects have it,
then so does their “output” object.

induction hypothesis

induction goal

16

structural induction principle

Hypothesis:

Basis:

Induction step:

Structural induction is a variant of cumulative induction, but instead of natural numbers
we induce over the structure of rule-generated objects in some structurally-recursive set .

All rules preserve the property: if their “input” objects have it,
then so does their “output” object.

induction hypothesis

induction goal

17

structural recursion on domains

Let's write a function that evaluates an expression in .

Assume a function that assigns every variable a value.
Note how the structure is
decomposed (or deconstructed)
in these clauses!

Write a function that returns for every expression s the set of variables that occur in it.

18

unique decomposability

What is the problem with this function definition?

Let's look at a variant of the previous example:

19

unique decomposability

Suppose we have generators with , and basis .

The general form of a recursive function is

It is only well-defined if all are uniquely decomposable.

20

unique decomposability

This means that for every x exactly one clause in the function definition must
apply, and it must apply uniquely. This leads to two conditions for all :

1.
2.

Compare to def.
on page 99 in SLAM.

Match the general form above against the function definitions on the previous two slides.
Make sure you identify the problem on the previous slide.

21

we still haven’t talked about...

Why is this case more difficult than factorial or Fibonacci?

22

well-founded sets

A poset is well-founded iff all non-empty subsets have a minimal element, i.e.

Intuitively, this means there are no infinite descending chains:

minimal element != minimum element:
- minimal means that there is no smaller element
- minimum means all other elements are greater

23

well-founded induction
Cumulative (complete, strong) induction assumed that a property needed to
be shown over the natural numbers.
Well-founded induction generalizes the idea to all well-founded sets.

Given a well-founded set and a property , if

then

As with cumulative induction, the base case is subsumed by the induction step.
In practice, it is still often handled separately.

Emmy Noether
1882-1935

induction hypothesis induction goal

24

well-founded induction

well-founded order: (divides-relation, strict version)

Hypothesis: Every can be factored into primes.

(Base:) Trivially true for every minimal element in .

Induction step: If n is not minimal, then there is a k such that , and thus
 there is some m such that . k and m can be prime-
 factored, therefore so can n.

Descending chains?
Minimal elements?

How do we know that m can be
factored into primes?

What does this proof look like
without an explicit base case?

25

well-founded recursion

Given a well-founded set and a recursive function definition for a function ,
f is well-defined if it computes the value for every only depending on values of f for .

So how do we use this in practice? How can we tell that the Ackermann
function is well-defined?

We need a well-founding of such that
Which could that be?
How does the erroneous Ackermann
definition fail to be well-defined?

