EDAA40 **Discrete Structures in Computer Science** 7: Propositional logic

Jörn W. Janneck, Dept. of Computer Science, Lund University

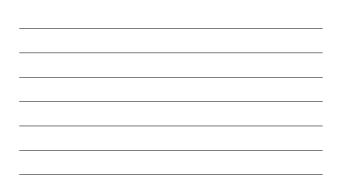
mechanizing belief management

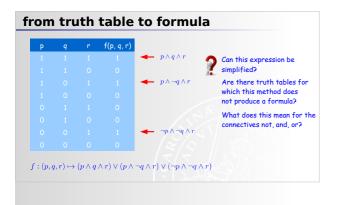
A major goal of any logic is to *mechanize reasoning*: we figure out *truth* through manipulating strings of symbols according to some rules. Ultimately, this can be done by a machine.

We need: 1. a way to represent the truth/falsehood of propositions 2. a system of symbols for constructing, combining, relating propositions 3. rules for manipulating and reasoning about them

We assume that all propositions are either true or false (*bivalence*). Truth and falsehood are represented by 1 and 0, respectively.

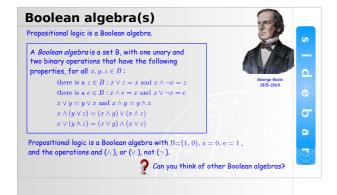
α	$\neg \alpha$	α	β	$\alpha \wedge \beta$	$\alpha \lor \beta$	$\alpha \rightarrow \beta$	$\alpha \leftrightarrow \beta$	· · · ·	-α7
\wedge				ive is also j <i>unction</i> .	called co	njunction,	the		



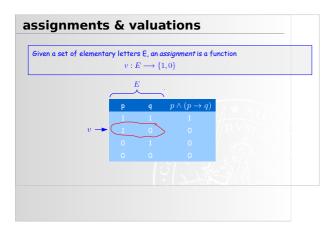


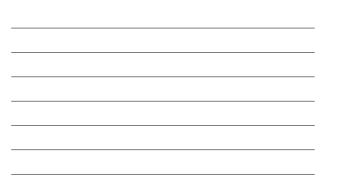
					$\alpha \overline{\wedge} \beta$	
					0	
					1	
					1	
					1	
					nand	
_		connective $\neg \alpha =$	<i>not</i> and <i>an</i> e to expre = $\alpha \overline{\land} \alpha$			

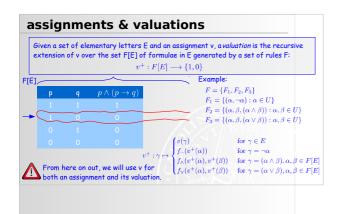




In logic, we are concerned with several layers of language, a of statements in them.	nd the truth
 Elementary propositions.	"All birds can fly."
These are treated as "atomic", all we care about is	"17 is a prime number.
that they are either true or false.	"4 > 11"
In logic, we represent them with <i>elementary letters</i> .	p, q, r,
2. Formulae. Expressions constructed recursively from elementary letters and <i>connectives.</i> We represent them with greek symbols.	$\begin{array}{c} (p \wedge q) \rightarrow (s \vee t) \\ \neg p \vee q \\ \alpha, \beta, \gamma, \dots \end{array}$
3. Relations between formulae.	$\alpha_1,, \alpha_n \vdash \beta$
This is what we use to reason about formulae.	$\alpha \dashv \!$



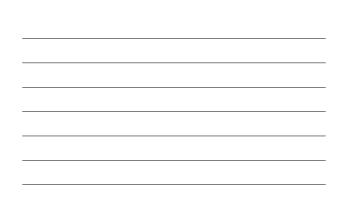


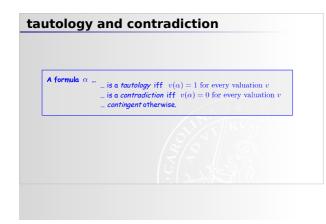


			formula β we say that A is no valuation v such the			$A\vdash\beta$
10010	gicany		If $\alpha \in A$ and $v(\beta) = 0$	11		$A\vDash\beta$
Example		$p. p ightarrow q \vdash q$	Name	LHS	RHS	
(modus ponens) $p, p o q \vdash q$		$p, p ightarrow q \leftarrow q$	Simplification, ^-	αΛβ	α	
				αΛβ	β	
			Conjunction, ∧ ⁺	α, β	αΛβ	
р	q	$p \rightarrow q$	Disjunction, ∨ ⁺	α	α∨β	
	-			β	α∨β	
			Modus ponens, MP, \rightarrow $-$	$\alpha, \alpha \rightarrow \beta$	β	
			Modus tollens, MT	$\neg \beta, \alpha \rightarrow \beta$	$\neg \alpha$	
			Disjunctive syllogism, DS	$\alpha \lor \beta, \neg \alpha$	β	
			Transitivity	$\alpha \rightarrow \beta, \beta \rightarrow \gamma$	$\alpha \rightarrow \gamma$	
			Material implication	β	$\alpha \rightarrow \beta$	
				$\neg \alpha$	$\alpha \rightarrow \beta$	
		1	Limiting cases	Y 3/11	$\beta \lor \neg \beta$	
				$\alpha \wedge \neg \alpha$	Y	SLAM, p. 196

e $lpha$ and eta , we say the ally imply each other.	at they a	е тайтоюдісану еди	$\alpha \dashv \beta$
Name	LHS	RHS	
Double negation	a	$\neg \neg \alpha$	
Commutation for A	αΔβ	βΛα	
Association for ∧	$\alpha \wedge (\beta \wedge \gamma)$	$(\alpha \wedge \beta) \wedge \gamma$	
Commutation for \lor	ανβ	β∨α	
Association for ∨	αν(βνγ)	(ανβ)νγ	
Distribution of \land over \lor	$\alpha \wedge (\beta \vee \gamma)$	$(\alpha \wedge \beta) \vee (\alpha \wedge \gamma)$	
Distribution of \lor over \land	$a \vee (\beta \wedge \gamma)$	$(\alpha \nabla \beta) \wedge (\alpha \nabla \gamma)$	
Absorption	a a	αΛ(αVβ) αV(αΛβ)	
Expansion	20	$(\alpha \land \beta) \lor (\alpha \land \neg \beta)$ $(\alpha \lor \beta) \land (\alpha \lor \neg \beta)$	
de Morgan	$\neg(\alpha \land \beta)$ $\neg(\alpha \lor \beta)$		
	αΛβ αVβ	$\neg(\neg \alpha \lor \neg \beta)$ $\neg(\neg \alpha \land \neg \beta)$	
Limiting cases	a∧⊐a a∨⊐a	$\beta \land \neg \beta$ $\beta \lor \neg \beta$	SLAM, p. 198

Name	LHS	RHS	
Contraposition	$\alpha \rightarrow \beta$	$\neg \beta \rightarrow \neg \alpha$	
	$\alpha \rightarrow \neg \beta$	$\beta \rightarrow \neg \alpha$	
	$\neg \alpha \rightarrow \beta$	$\neg \beta \rightarrow \alpha$	
Import/export	$\alpha \rightarrow (\beta \rightarrow \gamma)$	$(\alpha \land \beta) \rightarrow \gamma$	
	$\alpha \rightarrow (\beta \rightarrow \gamma)$	$\beta \rightarrow (\alpha \rightarrow \gamma)$	
Consequential mirabilis (miraculous consequence)	$\alpha \rightarrow \neg \alpha$	$\neg \alpha$	
	$\neg \alpha \rightarrow \alpha$	α	
Commutation for \leftrightarrow	α⇔β	β⇔α	
Association for \leftrightarrow	$\alpha \leftrightarrow (\beta \leftrightarrow \gamma)$	$(\alpha \leftrightarrow \beta) \leftrightarrow \gamma$	
\neg through \leftrightarrow	$\neg(\alpha \leftrightarrow \beta)$	$\alpha \leftrightarrow \neg \beta$	
Translations between connectives	α↔β	$(\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$	
	α↔β	$(\alpha \land \beta) \lor (\neg \alpha \land \neg \beta)$	
	$\alpha \rightarrow \beta$	$\neg(\alpha \land \neg \beta)$	
	$\alpha \rightarrow \beta$	$\neg \alpha \lor \beta$	
	α∨β	$\neg \alpha \rightarrow \beta$	
Translations of negations of connectives	$\neg(\alpha \rightarrow \beta)$	$\alpha \wedge \neg \beta$	
	$(\alpha \land \beta)$	$\alpha \rightarrow \neg \beta$	
	$\neg(\alpha \leftrightarrow \beta)$	$(\alpha \land \neg \beta) \lor (\beta \land \neg \alpha)$	SLAM, p. 199





constru			
CONSTRI	ICTING	тпе	
CONSCIE			

Given a formula, there are two commo 1. via its truth table	n ways of constructing its DNF:
2. through successive syntact	tic transformations
Basic algorithm for building a DNF (S 1. express all connectives through r 2. move negations inward (de Morg 3. move conjunctions inward (distri 4. remove repetitions in basic conju 5. remove basic conjunctions with c	negation, conjunction, disjunction an), eliminate double negation bution) unctions
Example: $\neg((p \lor \neg q) \to (p \land \neg q))$	10/14 * 40