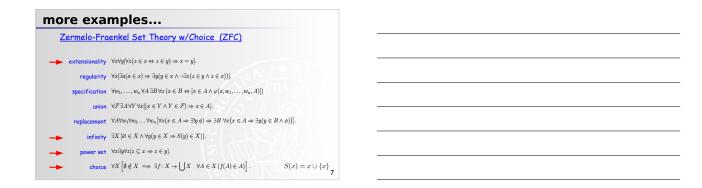


logic with quantifiers (informally)

quantifying over	r a set	
	ited in speaking about elements of some set. ecified when the variable is introduced:	
$\forall x \in A \ (\alpha)$ represents "for all x in A, α "		
$\exists x \in A \ (\alpha)$ represents "there exists an x in A, such that $\ \alpha$ "		
This is just syntactic sugar:		
$\forall x \in A \ (\alpha) \eqqcolon \forall x (x \in A \to \alpha)$		
$\exists x \in A \ (\alpha) \dashv \exists x (x \in A \land \alpha)$		
True or false?	a a a a a a a a a a a a a a a a a a a	
$\forall r \in \mathbb{R} \ (\exists n \in \mathbb{N} \ (n = r))$	$k n\leftrightarrow \; \exists a\in \mathbb{Z} \; (ak=n)$	
$ \exists n \in \mathbb{N} \ (\forall r \in \mathbb{R} \ (n = r)) \\ \forall n \in \mathbb{N} \ (\exists r \in \mathbb{R} \ (n = r)) $	$n \in \mathbb{P} \leftrightarrow, n \in \mathbb{N}_2 \land \forall k \in \mathbb{N}_2 \ (k n \to k = n)$	
	$\mathbb{N}_2 = \{n \in \mathbb{N} : n > 1\}$	4

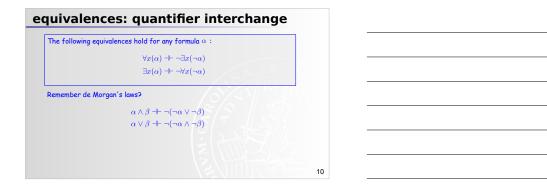
more syntactic sugar		
Often, one quantifier is used to introduce several variables: $\forall x, y, z \in A \ (\alpha)$ represents "forall x, y, z in A, α "		
$\exists x,y,z\in A\;(lpha)$ represents "there ex	ist x, y, z in A, such that α''	
$ \begin{array}{l} \text{This, too, is just syntactic sugar:} \\ \forall x, y, z \in A \; (\alpha) \dashv \forall x \in A \; (\forall y \in A \; (\\ \exists x, y, z \in A \; (\alpha) \dashv \exists x \in A \; (\exists y \in A \; (\\ \end{array}) \end{array} $		
True or false? $ \begin{array}{l} \forall n \in \mathbb{N} \ (\exists a, b \in \mathbb{N} \ (a < n < b)) \\ \forall a, b \in \mathbb{N} \ (\exists n \in \mathbb{N} \ (a < n < b)) \\ \forall a, b \in \mathbb{N} \ (a < b \rightarrow \exists n \in \mathbb{N} \ (a < n < b)) \\ \forall a, b \in \mathbb{N} \ (a < b \rightarrow \exists n \in \mathbb{N} \ (a < n < b)) \end{array} $ How can we "fix" this?	$\begin{split} R &\subseteq A \times A \text{ transitive} \leftrightarrow \dots \\ & \forall a, b, c \in A \; (aRb \wedge bRc \to aRc) \\ & \forall a, b \in A \; (aRb \to R(b) \subseteq R(a)) \\ & \forall (a, b) \in R \; (R(b) \subseteq R(a)) \end{split}$	

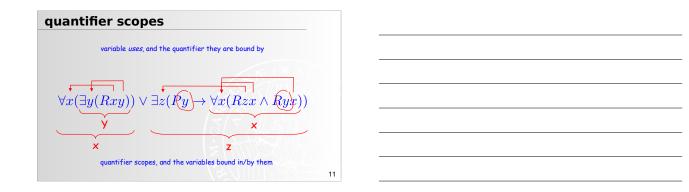
the language of quantificational logic We have $A(aBb \rightarrow B(b) \subset B(a))$



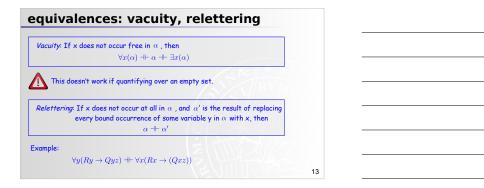
Suppose we quantify all variables over a finite set D, and we have constant symbols $a_1,,a_n$ for each of its elements.	
A <i>finite transform</i> of a universally/existentially quantified formula removes the quantifier, and instantiates the body for each element of D in a chained	
conjunction/disjunction.	
Example: $\forall x(Px) \text{ becomes } Pa_1 \land \land Pa_n$	
$\exists x(Px) ext{ becomes } Pa_1 \lor \lor Pa_n$	
Do this for the following formula, until all quantifiers are gone. $\exists x(Qx \to \forall y(Pxy))$ Assume a domain with two values, with constant names a and b.	
$\exists x (Qx \to (Pxa \land Pxb)) \qquad (Qa \to (Paa \land Pab)) \lor (Qb \to (Pba \land Pbb))$	

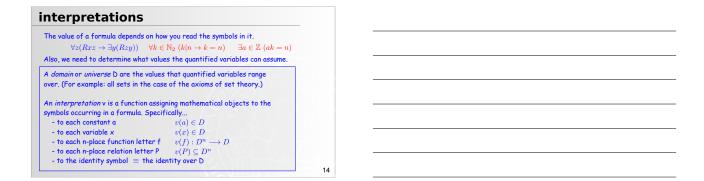
equivalences: distribution





free and bound variable occurrences





evaluating terms and formulae

