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Proposition Every multiple of 4 equals 1+ (−1)n(2n−1) for some n ∈N.

Proof. In conditional form, the proposition is as follows:
If k is a multiple of 4, then there is an n ∈N for which 1+ (−1)n(2n−1)= k.
What follows is a proof of this conditional statement.
Suppose k is a multiple of 4.
This means k = 4a for some integer a.
We must produce an n ∈N for which 1+ (−1)n(2n−1)= k.
This is done by cases, depending on whether a is zero, positive or negative.
Case 1. Suppose a = 0. Let n = 1. Then 1+ (−1)n(2n−1)= 1+ (−1)1(2−1)= 0
= 4 ·0 = 4a = k.
Case 2. Suppose a > 0. Let n = 2a, which is in N because a is positive. Also
n is even, so (−1)n = 1. Thus 1+(−1)n(2n−1)= 1+(2n−1)= 2n = 2(2a)= 4a = k.
Case 3. Suppose a < 0. Let n = 1−2a, which is an element of N because
a is negative, making 1−2a positive. Also n is odd, so (−1)n =−1. Thus
1+ (−1)n(2n−1)= 1− (2n−1)= 1− (2(1−2a)−1) = 4a = k.

The above cases show that no matter whether a multiple k = 4a of 4 is
zero, positive or negative, k = 1+ (−1)n(2n−1) for some n ∈N. ■

4.5 Treating Similar Cases
Occasionally two or more cases in a proof will be so similar that writing
them separately seems tedious or unnecessary. Here is an example.

Proposition If two integers have opposite parity, then their sum is odd.

Proof. Suppose m and n are two integers with opposite parity.
We need to show that m+n is odd. This is done in two cases, as follows.
Case 1. Suppose m is even and n is odd. Thus m = 2a and n = 2b+1 for
some integers a and b. Therefore m+n = 2a+2b+1= 2(a+b)+1, which is
odd (by Definition 4.2).
Case 2. Suppose m is odd and n is even. Thus m = 2a+1 and n = 2b for
some integers a and b. Therefore m+n = 2a+1+2b = 2(a+b)+1, which is
odd (by Definition 4.2).

In either case, m+n is odd. ■

The two cases in this proof are entirely alike except for the order in
which the even and odd terms occur. It is entirely appropriate to just do
one case and indicate that the other case is nearly identical. The phrase
“Without loss of generality...” is a common way of signaling that the proof is
treating just one of several nearly identical cases. Here is a second version
of the above example.
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Proposition Suppose x, y ∈Z. If 5 - xy, then 5 - x and 5 - y.

Proof. (Contrapositive) Suppose it is not true that 5 - x and 5 - y.
By DeMorgan’s law, it is not true that 5 - x or it is not true that 5 - y.
Therefore 5 | x or 5 | y. We consider these possibilities separately.
Case 1. Suppose 5 | x. Then x = 5a for some a ∈Z.
From this we get xy= 5(ay), and that means 5 | xy.
Case 2. Suppose 5 | y. Then y= 5a for some a ∈Z.
From this we get xy= 5(ax), and that means 5 | xy.
The above cases show that 5 | xy, so it is not true that 5 - xy. ■

5.2 Congruence of Integers
This is a good time to introduce a new definition. It is not necessarily
related to contrapositive proof, but introducing it now ensures that we
have a sufficient variety of exercises to practice all our proof techniques on.
This new definition occurs in many branches of mathematics, and it will
surely play a role in some of your later courses. But our primary reason
for introducing it is that it will give us more practice in writing proofs.
Definition 5.1 Given integers a and b and an n ∈N, we say that a and b
are congruent modulo n if n | (a−b). We express this as a ≡ b (mod n).
If a and b are not congruent modulo n, we write this as a 6≡ b (mod n).
Example 5.1 Here are some examples:
1. 9≡ 1 (mod 4) because 4 | (9−1).
2. 6≡ 10 (mod 4) because 4 | (6−10).
3. 14 6≡ 8 (mod 4) because 4 - (14−8).
4. 20≡ 4 (mod 8) because 8 | (20−4).
5. 17≡−4 (mod 3) because 3 | (17− (−4)).

In practical terms, a ≡ b (mod n) means that a and b have the same
remainder when divided by n. For example, we saw above that 6 ≡ 10
(mod 4) and indeed 6 and 10 both have remainder 2 when divided by 4.
Also we saw 14 6≡ 8 (mod 4), and sure enough 14 has remainder 2 when
divided by 4, while 8 has remainder 0.

To see that this is true in general, note that if a and b both have the
same remainder r when divided by n, then it follows that a = kn+ r and
b = `n+ r for some k,` ∈ Z. Then a− b = (kn+ r)− (`n+ r) = n(k−`). But
a− b = n(k−`) means n | (a− b), so a ≡ b (mod n). Conversely, one of the
exercises for this chapter asks you to show that if a ≡ b (mod n), then a
and b have the same remainder when divided by n.
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The idea of proof by contradiction is quite ancient, and goes back at
least as far as the Pythagoreans, who used it to prove that certain numbers
are irrational. Our next example follows their logic to prove that

p
2 is

irrational. Recall that a number is rational if it equals a fraction of two
integers, and it is irrational if it cannot be expressed as a fraction of two
integers. Here is the exact definition.

Definition 6.1 A real number x is rational if x = a
b for some a,b ∈ Z.

Also, x is irrational if it is not rational, that is if x 6= a
b for every a,b ∈Z.

We are now ready to use contradiction to prove that
p

2 is irrational.
According to the outline, the first line of the proof should be “Suppose that
it is not true that

p
2 is irrational.” But it is helpful (though not mandatory)

to tip our reader off to the fact that we are using proof by contradiction.
One standard way of doing this is to make the first line “Suppose for the
sake of contradiction that it is not true that

p
2 is irrational."

Proposition The number
p

2 is irrational.

Proof. Suppose for the sake of contradiction that it is not true that
p

2 is
irrational. Then

p
2 is rational, so there are integers a and b for which

p
2= a

b
. (6.1)

Let this fraction be fully reduced; in particular, this means that a and b are
not both even. (If they were both even, the fraction could be further reduced
by factoring 2’s from the numerator and denominator and canceling.)
Squaring both sides of Equation 6.1 gives 2= a2

b2 , and therefore

a2 = 2b2. (6.2)

From this it follows that a2 is even. But we proved earlier (Exercise 1
on page 110) that a2 being even implies a is even. Thus, as we know
that a and b are not both even, it follows that b is odd. Now, since a is
even there is an integer c for which a = 2c. Plugging this value for a into
Equation (6.2), we get (2c)2 = 2b2, so 4c2 = 2b2, and hence b2 = 2c2. This
means b2 is even, so b is even also. But previously we deduced that b is
odd. Thus we have the contradiction b is even and b is odd. ■

To appreciate the power of proof by contradiction, imagine trying to
prove that

p
2 is irrational without it. Where would we begin? What would

be our initial assumption? There are no clear answers to these questions.
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Proof by contradiction gives us a starting point: Assume
p

2 is rational,
and work from there.

In the above proof we got the contradiction (b is even) ∧∼(b is even)
which has the form C∧ ∼ C. In general, your contradiction need not
necessarily be of this form. Any statement that is clearly false is sufficient.
For example 2 6= 2 would be a fine contradiction, as would be 4 | 2, provided
that you could deduce them.

Here is another ancient example, dating back at least as far as Euclid:

Proposition There are infinitely many prime numbers.

Proof. For the sake of contradiction, suppose there are only finitely many
prime numbers. Then we can list all the prime numbers as p1, p2, p3, . . . pn,
where p1 = 2, p2 = 3, p3 = 5, p4 = 7 and so on. Thus pn is the nth and largest
prime number. Now consider the number a = (p1 p2 p3 · · · pn)+1, that is, a is
the product of all prime numbers, plus 1. Now a, like any natural number
greater than 1, has at least one prime divisor, and that means pk | a for at
least one of our n prime numbers pk. Thus there is an integer c for which
a = cpk, which is to say

(p1 p2 p3 · · · pk−1 pk pk+1 · · · pn)+1= cpk.

Dividing both sides of this by pk gives us

(p1 p2 p3 · · · pk−1 pk+1 · · · pn)+ 1
pk

= c,

so
1
pk

= c− (p1 p2 p3 · · · pk−1 pk+1 · · · pn).

The expression on the right is an integer, while the expression on the left
is not an integer. This is a contradiction. ■

Proof by contradiction often works well in proving statements of the
form ∀x,P(x). The reason is that the proof set-up involves assuming
∼∀x,P(x), which as we know from Section 2.10 is equivalent to ∃x,∼ P(x).
This gives us a specific x for which ∼ P(x) is true, and often that is enough
to produce a contradiction. Here is an example:

Proposition For every real number x ∈ [0,π/2], we have sin x+cos x ≥ 1.

Proof. Suppose for the sake of contradiction that this is not true.
Then there exists an x ∈ [0,π/2] for which sin x+cos x < 1.


