Exercises 2 — relations

1.

Suppose $A = \{n \in \mathbb{N} : 1 \le n \le 10\}$ and a family of relations $R_i = \{(a, b) \in A \times A : \mod (b, a) = i\}$ for any $i \in \mathbb{N}$, with mod (b, a) the remainder when dividing positive integer b by positive integer a. So, for example, $R_3 = \{(a, b) \in A \times A : \mod (b, a) = 3\}.$

- 1. $\#R_4 =$
- 2. $\#R_5 =$
- 3. $\#R_0 =$
- 4. $\#R_{10} =$
- 5. $R_3(7) =$
- 6. $R_1(2) =$
- 7. $R_1(A) =$
- 8. $R_3(A) =$

With $A = \{n \in \mathbb{N}^+ : n \le 20\}$ and $R = \{(a, b) \in A^2 : a | b\}$ compute the following images of R: 1. R(6) =

- 2. R(7) =
- 3. R(2) =
- 4. $R(\{2,5\}) =$

3.

With $A = \{n \in \mathbb{N}^+ : n \le 10\}$ and $R = \{(a, (a + b)) : a \in A, b \in A, a \perp b\}$ compute the following images of R:

- 1. R(2) =
- 2. R(3) =
- 3. R(4) =
- 4. $R(\{5,7\}) =$

With $A = \{1, 2, 3, 4, 5, 6, 7\}$, < the usual arithmetic order on A, and the relations $B = \{(a, b) \in A^2 : a < b\}$, and $C = \{(a, b) \in A^2 : a \perp b\}$ (the complement is supposed to be built with respect to $A \times A$):

- 1. #(B) =
- 2. #(C) =
- 3. $\#(\overline{B}) =$
- 4. $\#(B^{-1}) =$

5.

With $A = \{2, 3, 4, 5, 6, 7\}$, $R = \{(a, b) \in A^2 : a \perp b\}$, and $S = \{(a, b) \in A^2 : a | b\}$. We are looking at the composition $S \circ R$ in this task.

1.	$\#(S \circ R) = \underline{\qquad}$					
2.	$S \circ R(2) =$					
3.	$S \circ R(3) =$					
4.	$S \circ R(6) =$					
5.	$S \circ R(7) =$					
6.	$S \circ R$ is (circle those that apply)					
	Tenexive on A	IRUE	FALSE			
	symmetric	TRUE	FALSE			
	transitive	TRUE	FALSE			
	antisymmetric	TRUE	FALSE			
7.	R is (circle those that apply)					
	reflexive on A	TRUE	FALSE			
	symmetric	TRUE	FALSE			
	transitive	TRUE	FALSE			
	antisymmetric	TRUE	FALSE			

With $A = \{1, 2, 3, 4, 5, 6, 7\}$, < the usual arithmetic order on A, and < \circ < its composition with itself:

- 1. <(1) =
- 2. $< \circ < (1) =$
- 3. $\{(a,b) \in A^2 : a(< \circ <)b\} =$

4.	Is $< \circ <$ transitive?	YES	NO
5.	Is $< \circ <$ reflexive on $A \times A$?	YES	NO

7.

With A = [1, 7] in the **real numbers** \mathbb{R} , < the usual arithmetic order on A, and < \circ < its composition with itself:

1. <(1) =

2.
$$< \circ < (1) =$$

Suppose $A = \{n \in \mathbb{N} : 1 \le n \le 10\}$ and a relation $R_3 = \{(a, b) \in A \times A : \mod(b, a) = 3\}$. Let $T = R_3 \circ R_3^{-1}$.

- 1. #T =
- 2. T(1) =
- 3. T(7) =
- 4. T(A) =
- 5. T is ... (circle those that apply)

reflexive	TRUE	FALSE
symmetric	TRUE	FALSE
transitive	TRUE	FALSE
antisymmetric	TRUE	FALSE

Some common symbols

- \mathbb{N} the natural numbers, starting at 0
- \mathbb{N}^+ the natural numbers, starting at 1
- \mathbb{R} the real numbers
- \mathbb{R}^+ the non-negative real numbers, i.e. including 0
- \mathbb{Z} the integers
- \mathbb{Q} the rational numbers
- \mathbb{P} the prime numbers
- $a \perp b$ a and b are coprime, i.e. they do not have a common divisor other than 1
- $a \mid b$ a divides b, i.e. $\exists k (k \in \mathbb{N} \land ka = b)$
- $\mathcal{P}(A)$ power set of A
- \overline{R} of a relation R: its *complement*
- R^{-1} of a relation R: its *inverse*
- $R \circ S, f \circ g$ of relations and functions: their *composition*
- R[X], f[X] *closure* of a set X under a relation R, a set of relations R, or a function f
- [a, b],]a, b[,]a, b], [a, b[closed, open, and half-open intervals from a to b
- $A \sim B$ two sets A and B are *equinumerous*
- A^* for a finite set A, the set of all finite sequences of elements of A, including the empty sequence, ε
- $\sum S$ sum of all elements of S
- $\prod S$ product of all elements of *S*
- $\bigcup S$ union of all elements in S
- $\bigcap S$ intersection of all elements in S
- $\bigcup_{a \in S} E(a)$, $\bigcap_{a \in S} E(a)$ generalized union / intersection of the sets computed for every a in S