
EDAA40 Exercises 4 infinity

Exercises 4 –– infinity

 1.
Recall that a set is infinite iff it is equinumerous to a proper subset of itself. Show that the set of all 
non-negative rational numbers (i.e. including 0)  is infinite in two steps:

1. Define a proper subset of  – to make this a little more interesting, this subset 

should be wholly contained between two rational numbers , i.e. for all , it 
should be true that .

2. Now construct a bijection 

Note: You do not need to prove that your f is bijective. For this task it is sufficient if the function 
you specify has that property.
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 2.
In lecture 4, slide 18, it is said that . Show this. 

Hint: You need to define something in order to prove this, and then show that the thing you defined 
has a certain property. Go step by step:

1. Start by writing down what you need to define and what property it must have.

2. Then define it.

3. Then show that it has the property.
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 3.
Show that  in the real numbers, i.e. that the open interval from 0 to 1 is 

equinumerous to the closed one from 0 to 1.

This becomes fairly straightforward if you use CSB. If that is not challenging enough, try proving 
this without using CSB, i.e. by constructing an actual bijection between the two intervals.
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 4.
On slide 21 of lecture 4, it is claimed that for any set , we have , i.e. the power set 

is always strictly larger than the set. (This then implies the existence of infinitely many transfinite 
cardinal numbers.)

Show that  as follows. (This is slightly challenging, so do not feel bad if you get 

stuck. Instead, post a question in Piazza.)

The path here is via a slight generalization of Cantor’s diagonal proof. Basically, you need to show 

that for any set , there is no surjective function . 

In the diagonal proof in the lecture, Cantor assumed that we have such a surjective function from  
to , and then constructs an element of the codomain of that function that it cannot possibly 

map to – which contradicts the assumption that it was surjective and thus implies that there cannot 
be a surjective function from  to .

In the diagonal proof as shown in the lecture, the domain of the function was , and the codomain 

infinite sequences of 0s and 1s, each of which is really a function , which is why 

the codomain of f is , or equivalently .

At the bottom of slide 15, there is a comment that the set  of infinite sequences of 0s and 1s 

can also be thought of as the powerset  of the natural numbers. This is because you could 

represent an infinite sequence of 0s and 1s  simply as the set of all natural 

numbers for which  is 1, i.e. . Conversely, for any set  you could 

construct a sequence function  such that 

 .

In other words, there is a 1:1 correspondence between the two. But this means that you could think 
of Cantor’s diagonal proof already as a special case of what we want to show above, namely

.
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Armed with this insight, you now need to generalize this just a tiny bit. Suppose there is a function 

You need to use it to build a set  (or simply ) such that . If such a

 exists for any , it means there cannot be a surjective  and thus there cannot be a bijection. In 
the proof in the lecture, we arrived at this  by first constructing the diagonal sequence  from , 
and then inverting it. We shall do the same now here for any set .

1. First, define a set  (or ) that corresponds to the interpretation of the 

diagonal sequence D from the lecture as a set.

  

2. Now define , corresponding to the inverse of the diagonal sequence from the proof as 
shown in the lecture:

3. All that is left is to show is that given any function , the corresponding .

You can show this by demonstrating that for any , . Remember that two 

sets are different iff there is at least one element that is in one of them, but not the other:

 because…

2019 vt2 5


