
EDAA40 Exercises 6 Trees and graphs

Exercises 6 –– Trees and graphs

 1.
Recall that a directed graph is defined as a finite set of vertices and a relation

between them.

This question is about the properties of that relation. In the table below, make one mark in each row
for the property in the left column, depending on whether all, some, or no relations defining a graph
have that property. Put the mark in the corresponding ALL box, if all relations defining a graph
have the corresponding property, the NONE box, if no relation has it, and the SOME box if at least
one relation does, and at least one does not.

ALL SOME NONE

reflexive over X

transitive X

symmetric X

antisymmetric X

asymmetric X

Graphs in our definition make no special assumptions about the relations that define them, so any
(finite) relation could be a graph.

2019 vt2 1

EDAA40 Exercises 6 Trees and graphs

 2.
Recall that a rooted tree is a graph such that, if the set of nodes is not empty, then there is

a node (the root) such that for every with there is exactly one path from to .
 is a relation on the set of nodes. To make things simpler, for this question we only

consider non-empty trees, that is .

This question is about the properties of the relations defining trees. In the table below, make one
mark in each row for the corresponding property in the left column, depending on whether all,
some, or no relations defining a tree have that property. Put the mark in the corresponding ALL box,
if all relations defining a tree have the corresponding property, the NONE box, if no relation has
it, and the SOME box if at least one relation does, and at least one does not.

ALL SOME NONE

reflexive over X

transitive X

symmetric X

antisymmetric X

asymmetric X

The situation is different for trees, which are much more specialized and constrained structures than
graphs. Since we only consider non-empty trees, none of them can be reflexive. (If we allowed the
empty tree, then its link-relation R would also be empty, which is reflexive over the empty set.)

But there are trees whose link relation is transitive, viz. all those of link height 0 or 1. (Make sure
you understand why that is.) And there is a tree whose link relation is symmetric, namely the tree
consisting of only a root, whose link relation is therefore empty, which is symmetric.

2019 vt2 2

EDAA40 Exercises 6 Trees and graphs

 3.
Suppose we have a rooted tree with nodes , links .

We are also given a function that assigns each link a natural number, let's call it the
“weight” of that link.

1. Define a function that maps each node in the tree to its “path weight”, that is
the sum of the weights of the links on the path from the root to that node.

Example:

The numbers next to the links are those assigned to them by the (given) function
. The underlined numbers next to the nodes are those that your function
 is supposed to compute in the case of this example.

Since we are working with a tree, the image of every node under the inverse link relation is
either empty (if the node is the root) or a singleton set (its parent). Once you have those
conditions, the recursive call “walks upward” in the tree, computing the path weight of the
parent, and adds the weight of the link from the parent to this node. Of course, the path
weight of the root is 0.

2019 vt2 3

1 5

53

2

7 1

2

4

3

1

6

0

5

9

2

3

5

EDAA40 Exercises 6 Trees and graphs

2. Define the set of leaf nodes of a tree, i.e. nodes that do not have any children:

A node without children is one whose image under the link relation is the empty set. Note
that this is the dual of the root, which is a node that has no parent, and whose image under
the inverse link relation is empty.

3. Define the set of leaf nodes in with the smallest path weight (you may, indeed
should, use from the previous subtask, and will probably find the function useful,
where for any set of numbers , is the minimum number in that set, if it has a
minimum):

Once you know the set of leaves, you can compute their smallest path weight as
, and then the set of all leaves with that path weight is, well, the set of

all leaves whose path weight is that number.

2019 vt2 4

EDAA40 Exercises 6 Trees and graphs

 4.
Suppose we have a directed graph . We want to define a function that

computes for each vertex the set of vertices that one can reach from it by following zero or more
directed edges.

We do this using a helper function that keeps track of the vertices we

have visited already, so that we do not get stuck in cycles. Then itself simply becomes

The second argument of is the set of vertices we have visited already, initially empty.

Your task is to define using recursion:

Hint 1: Note that the edge relation can be used to compute all the nodes that can be reached from
a given vertex in one hop: that set is simply the image of under , i.e. .

Hint 2: You might want to recall the notion of a “generalized union”, along with the associated
notation.

The first case handles the situation where we run into a node we have visited already, i.e. at the end
of a cycle. In that case, we return all the nodes we have seen so far.

In the second case we deal with a node we haven't encountered before. We return the union of two
things: , the set of all nodes we have seen so far (plus the current one), and

, the union of all those nodes we can reach from here along the edges going out

from the current node (not forgetting to add the current node to the set of “visited nodes” we pass
into r').

One might think that this second part would be sufficient, and that we would not need to explicitly
add at the beginning, because all the calls to r' eventually run into the first case and will

return the set S then. Except they don't: if a node has no outgoing edges, E(a) is the empty set, and
no calls to r' will be made. That is why we need to include . Alternatively, one could write r'

to explicitly distinguish the case where the current node has outgoing arcs from when it doesn't.

2019 vt2 5

EDAA40 Exercises 6 Trees and graphs

 5.
Suppose we have a directed graph . We want to define a function

that computes for each pair of vertices the smallest number of directed edges required to go from
one to the other. For any vertex , , and if there is no directed path from to , then

.

We compute the function using a helper function ,

which keeps track of the vertices we have visited already, so that we do not get stuck in cycles, and
also keeps track of the number of steps we have taken from the initial vertex. The second argument
is the set of all vertices than can be reached in the next step. With this, the becomes

The first argument to is the number of steps we have taken, the second is the set of vertices we
have seen already (and which are therefore at most that many steps away from the start node). The
third argument is the set of nodes we can reach from the previous set in one step – note that this is
the image of the edge relation ! Finally, the last parameter is the target vertex.

Your task is to define using recursion:

The function will need to deal with three cases:
(1) the target vertex was found after steps,
(2) the target vertex cannot be reached,
(3) otherwise.

Make sure you identify the conditions for the first two, as well as the return values for all three.

Hint: Note that using the edge relation can be to compute the next nodes that can be reached at its
image, you basically compute all those nodes at once. So if you have a set of nodes , the nodes
that can be reached from in one step is .

The key here is to detect when the node was found (), and when it cannot be reached (that is
), viz. when the nodes that can be reached from in one step (i.e. those in)

are all in while is not, which means we cannot reach any new nodes.

2019 vt2 6

EDAA40 Exercises 6 Trees and graphs

 6.
Suppose we have a rooted tree with nodes , links , and root as well as a

labeling function assigning each node in the tree a natural number.

We want to define a function that computes for each node the lowest number a
node in the subtree rooted at is labeled with (that subtree includes itself). If the subtree consists
only of , its label is the lowest number.

As before, for any non-empty set of numbers, is the lowest number in that set.

1. Define using well-founded recursion. (Hint: You may use cases if you like, but it is
possible to define this function without an explicit “base case.”)

Note that the takes care of the “termination”: if there is no child, is means there is no
, and the second set in the union above will simply be empty.

2. Define a strict partial order on such that the poset is well-founded and your

definition of performs well-founded recursion on that poset. For all ...

 is the transitive closure of . Specifying only the link relation itself would not result in a
poset, since it is not a partial order (as it is not necessarily transitive, see task 2).

There are other ways of answering that question, for example using the closure of {n} under

R, i.e. R[{n}]:

No proof is required. It is sufficient that the strict partial order is well-founded and your
definition of conforms to it.

As always, make sure the partial order you define actually is one, i.e. that it has all the
properties required from a strict partial order, including, for example, transitivity.

2019 vt2 7

EDAA40 Exercises 6 Trees and graphs

 7.
Suppose we have a directed graph , as well as a weight function assigning

every edge in the graph a positive natural number, its edge weight. The path weight of a directed
path in the graph is the sum of all edge weights of the edges in that path.

Using recursion, define a function such that for any vertex and any

positive integer , the set is the set of all vertices that can be reached from by a path with

path weight less than or equal to .

2019 vt2 8

EDAA40 Exercises 6 Trees and graphs

 8.
Suppose we have a directed graph , as well as a weight function assigning

every edge in the graph a positive natural number, its edge weight. The path weight of a directed
path in the graph is the sum of all edge weights of the edges in that path.

We define the distance of two vertices in such a graph as the smallest path weight of any directed
path connecting them. If there is no such path between two vertices, we say their distance is infinite,

. The distance of a vertex to itself is always zero, i.e. for all .

We want to define a function that computes for each pair of vertices their

distance.

We do this using a helper function that keeps track of the

vertices we have visited already, so that we do not get stuck in cycles. Then itself simply becomes

The third argument of is the set of vertices we have visited already, initially empty.

Your task is to define using recursion:

For our purposes here, you may use as a number greater than any natural number, so that you can
compare with it, add to it and so on. This includes the use of functions such as , so that for
example and also .

Note that you can express the set of vertices you can reach from a vertex in one step (i.e. via one
edge) as , i.e. as the image of under the edge relation .

2019 vt2 9

EDAA40 Exercises 6 Trees and graphs

 9.
Suppose you have a graph with vertices and edges .

As before, a path in this graph is a non-empty finite sequence , such that for an
y we have . The number , corresponding to the number of edges

connecting the vertices in the path (and one less than the number of vertices in the sequence
representing it), is called its length.

A cycle is a path of at least length 1 where the first and the last vertex are the same, so . A
simple cycle is a cycle where every vertex occurs at most once, except for the first and last, which
occurs exactly twice.

This task is about defining a function that for any vertex computes the set

of all simple cycles starting (and therefore also ending) at .

We shall do so using a helper function , such that is the

set of all simple cycles that (a) start (and end) at , (b) then follow the path , and (c) then continue
with vertex . In other words, is the set of all simple cycles that begin with .

Using this, we can define as follows (remember that represents the empty sequence):

Convince yourself that this results in all simple cycles starting at if behaves as described
above.

2019 vt2 10

EDAA40 Exercises 6 Trees and graphs

1. Define recursively. You may find it useful to look at the set of all vertices occurring in a
path . You can use the notation for this purpose, i.e. if is the path ,

then is the set .

The cases can also be collapsed into an elegant one-liner, like this:

2. In order to ensure that terminates, we require a well-founded strict order of its
arguments, such that for any that is called on, it will only ever call itself on

. Define such an order:

Note that the order must rely on the set of symbols in the partial path . It is true, of course, that
is always also a prefix of , but using the prefix property to establish the order does not work
because there are infinite chains in it (in other words: sequences can get longer forever, but there are
only a finite number of vertices, so if we add a new one at every step, we will eventually terminate).

Hint: A correct answer to this question must have three properties.
1. It must be a strict order.
2. It must be well-founded, i.e. there cannot be an infinite descending chain in that

order.
3. Your definition of must conform to it, i.e. any recursive call in it must be

called on a smaller (according to the order) triple of arguments.

2019 vt2 11

EDAA40 Exercises 6 Trees and graphs

 10.
Suppose we have a graph , as usual with vertices and edges , as well as a

function assigning each edge a natural number as a weight.

1. Define the set consisting of all edges in with weight not more than :

2. Define the function , such that is the set of all vertices in

that can be reached from in exactly steps, and .

3. Define the relation such that for any two vertices , it is the case that
 iff there is a path from to in the graph .

4. Define the relation on the vertices in such that for any two vertices
 it is the case that iff there is a path from to and another path

from to that has the same length as .

2019 vt2 12

	1.
	Graphs in our definition make no special assumptions about the relations that define them, so any (finite) relation could be a graph.
	2.
	But there are trees whose link relation is transitive, viz. all those of link height 0 or 1. (Make sure you understand why that is.) And there is a tree whose link relation is symmetric, namely the tree consisting of only a root, whose link relation is therefore empty, which is symmetric.
	3.
	3. Define the set of leaf nodes in with the smallest path weight (you may, indeed should, use from the previous subtask, and will probably find the function useful, where for any set of numbers , is the minimum number in that set, if it has a minimum): Once you know the set of leaves, you can compute their smallest path weight as , and then the set of all leaves with that path weight is, well, the set of all leaves whose path weight is that number.
	5.
	7.
	8.
	For our purposes here, you may use as a number greater than any natural number, so that you can compare with it, add to it and so on. This includes the use of functions such as , so that for example and also . Note that you can express the set of vertices you can reach from a vertex in one step (i.e. via one edge) as , i.e. as the image of under the edge relation .
	9.

