
EDAA40 Exercises 6 Trees and graphs

Exercises 6 –– Trees and graphs

 1.
Recall that a directed graph  is defined as a finite set  of vertices and a relation 

between them.

This question is about the properties of that relation. In the table below, make one mark in each row 
for the property in the left column, depending on whether all, some, or no relations defining a graph
have that property. Put the mark in the corresponding ALL box, if all relations defining a graph 
have the corresponding property, the NONE box, if no relation has it, and the SOME box if at least 
one relation does, and at least one does not.

ALL SOME NONE

reflexive over X

transitive X

symmetric X

antisymmetric X

asymmetric X
 

Graphs in our definition make no special assumptions about the relations that define them, so any 
(finite) relation could be a graph.
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 2.
Recall that a rooted tree is a graph  such that, if the set  of nodes is not empty, then there is 

a node  (the root) such that for every  with  there is exactly one path from  to .
 is a relation on the set of nodes. To make things simpler, for this question we only 

consider non-empty trees, that is .

This question is about the properties of the relations defining trees. In the table below, make one 
mark in each row for the corresponding property in the left column, depending on whether all, 
some, or no relations defining a tree have that property. Put the mark in the corresponding ALL box,
if all relations defining a tree have the corresponding property, the NONE box, if no relation has 
it, and the SOME box if at least one relation does, and at least one does not.

ALL SOME NONE

reflexive over X

transitive X

symmetric X

antisymmetric X

asymmetric X

The situation is different for trees, which are much more specialized and constrained structures than
graphs. Since we only consider non-empty trees, none of them can be reflexive. (If we allowed the 
empty tree, then its link-relation R would also be empty, which is reflexive over the empty set.)

But there are trees whose link relation is transitive, viz. all those of link height 0 or 1. (Make sure 
you understand why that is.) And there is a tree whose link relation is symmetric, namely the tree 
consisting of only a root, whose link relation is therefore empty, which is symmetric.
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 3.
Suppose we have a rooted tree  with nodes , links .

We are also given a function  that assigns each link a natural number, let's call it the 
“weight” of that link.

1. Define a function  that maps each node in the tree to its “path weight”, that is 
the sum of the weights of the links on the path from the root to that node.

Example:

The numbers next to the links are those assigned to them by the (given) function
. The underlined numbers next to the nodes are those that your function
 is supposed to compute in the case of this example.

 

Since we are working with a tree, the image of every node under the inverse link relation is 
either empty (if the node is the root) or a singleton set (its parent). Once you have those 
conditions, the recursive call “walks upward” in the tree, computing the path weight of the 
parent, and adds the weight of the link from the parent to this node. Of course, the path 
weight of the root is 0.

2019 vt2 3

1 5

53

2

7 1

2

4

3

1

6

0

5

9

2

3

5



EDAA40 Exercises 6 Trees and graphs

2. Define the set  of leaf nodes of a tree, i.e. nodes that do not have any children:

 

A node without children is one whose image under the link relation is the empty set. Note 
that this is the dual of the root, which is a node that has no parent, and whose image under 
the inverse link relation is empty.

3. Define the set  of leaf nodes in  with the smallest path weight (you may, indeed 
should, use  from the previous subtask, and will probably find the  function useful, 
where for any set of numbers ,  is the minimum number in that set, if it has a 
minimum):

 

Once you know the set of leaves, you can compute their smallest path weight as
, and then the set of all leaves with that path weight is, well, the set of 

all leaves whose path weight is that number.
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 4.
Suppose we have a directed graph . We want to define a function  that 

computes for each vertex the set of vertices that one can reach from it by following zero or more 
directed edges.

We do this using a helper function  that keeps track of the vertices we 

have visited already, so that we do not get stuck in cycles. Then  itself simply becomes

The second argument of  is the set of vertices we have visited already, initially empty.

Your task is to define  using recursion:

 

Hint 1: Note that the edge relation  can be used to compute all the nodes that can be reached from 
a given vertex  in one hop: that set is simply the image of  under , i.e. .

Hint 2: You might want to recall the notion of a “generalized union”, along with the associated 
notation.

The first case handles the situation where we run into a node we have visited already, i.e. at the end 
of a cycle. In that case, we return all the nodes we have seen so far.

In the second case we deal with a node we haven't encountered before. We return the union of two 
things: , the set of all nodes we have seen so far (plus the current one), and

, the union of all those nodes we can reach from here along the edges going out

from the current node (not forgetting to add the current node to the set of “visited nodes” we pass 
into r').

One might think that this second part would be sufficient, and that we would not need to explicitly 
add  at the beginning, because all the calls to r' eventually run into the first case and will 

return the set S then. Except they don't: if a node has no outgoing edges, E(a) is the empty set, and 
no calls to r' will be made. That is why we need to include . Alternatively, one could write r'

to explicitly distinguish the case where the current node has outgoing arcs from when it doesn't.
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 5.
Suppose we have a directed graph . We want to define a function  

that computes for each pair of vertices the smallest number of directed edges required to go from 
one to the other. For any vertex , , and if there is no directed path from  to , then

.

We compute the function  using a helper function , 

which keeps track of the vertices we have visited already, so that we do not get stuck in cycles, and 
also keeps track of the number of steps we have taken from the initial vertex. The second argument 
is the set of all vertices than can be reached in the next step. With this, the  becomes

The first argument to  is the number of steps we have taken, the second is the set of vertices we 
have seen already (and which are therefore at most that many steps away from the start node). The 
third argument is the set of nodes we can reach from the previous set in one step – note that this is 
the image of the edge relation ! Finally, the last parameter is the target vertex.

Your task is to define  using recursion:

The function will need to deal with three cases:
(1) the target vertex  was found after  steps,
(2) the target vertex cannot be reached,
(3) otherwise.

Make sure you identify the conditions for the first two, as well as the return values for all three.

Hint: Note that using the edge relation  can be to compute the next nodes that can be reached at its
image, you basically compute all those nodes at once. So if you have a set of nodes , the nodes 
that can be reached from  in one step is .

The key here is to detect when the node was found ( ), and when it cannot be reached (that is
), viz. when the nodes that can be reached from  in one step (i.e. those in ) 

are all in  while  is not, which means we cannot reach any new nodes.
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 6.
Suppose we have a rooted tree  with nodes , links , and root  as well as a 

labeling function  assigning each node in the tree a natural number.

We want to define a function  that computes for each node  the lowest number a 
node in the subtree rooted at  is labeled with (that subtree includes  itself). If the subtree consists 
only of , its label  is the lowest number.

As before, for any non-empty set  of numbers,  is the lowest number in that set.

1. Define  using well-founded recursion. (Hint: You may use cases if you like, but it is 
possible to define this function without an explicit “base case.”)

 

Note that the  takes care of the “termination”: if there is no child, is means there is no
, and the second set in the union above will simply be empty.

2. Define a strict partial order  on  such that the poset  is well-founded and your 

definition of  performs well-founded recursion on that poset. For all ...

 is the transitive closure of . Specifying only the link relation itself would not result in a
poset, since it is not a partial order (as it is not necessarily transitive, see task 2).

There are other ways of answering that question, for example using the closure of {n} under 

R, i.e. R[{n}]:  

No proof is required. It is sufficient that the strict partial order is well-founded and your 
definition of  conforms to it.

As always, make sure the partial order you define actually is one, i.e. that it has all the 
properties required from a strict partial order, including, for example, transitivity.
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 7.
Suppose we have a directed graph , as well as a weight function  assigning 

every edge in the graph a positive natural number, its edge weight. The path weight of a directed 
path in the graph is the sum of all edge weights of the edges in that path.

Using recursion, define a function  such that for any vertex  and any 

positive integer , the set  is the set of all vertices that can be reached from  by a path with 

path weight less than or equal to .

  

2019 vt2 8



EDAA40 Exercises 6 Trees and graphs

 8.
Suppose we have a directed graph , as well as a weight function  assigning 

every edge in the graph a positive natural number, its edge weight. The path weight of a directed 
path in the graph is the sum of all edge weights of the edges in that path.

We define the distance of two vertices in such a graph as the smallest path weight of any directed 
path connecting them. If there is no such path between two vertices, we say their distance is infinite,

. The distance of a vertex to itself is always zero, i.e.  for all .

We want to define a function  that computes for each pair of vertices their 

distance.

We do this using a helper function  that keeps track of the 

vertices we have visited already, so that we do not get stuck in cycles. Then  itself simply becomes

The third argument of  is the set of vertices we have visited already, initially empty.

Your task is to define  using recursion:

For our purposes here, you may use  as a number greater than any natural number, so that you can
compare with it, add to it and so on. This includes the use of functions such as , so that for 
example  and also .

Note that you can express the set of vertices you can reach from a vertex  in one step (i.e. via one 
edge) as , i.e. as the image of  under the edge relation . 
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 9.
Suppose you have a graph  with vertices  and edges .

As before, a path in this graph is a non-empty finite sequence , such that for an
y  we have . The number , corresponding to the number of edges 

connecting the vertices in the path (and one less than the number of vertices in the sequence 
representing it), is called its length.

A cycle is a path of at least length 1 where the first and the last vertex are the same, so . A 
simple cycle is a cycle where every vertex occurs at most once, except for the first and last, which 
occurs exactly twice.

This task is about defining a function  that for any vertex  computes the set

of all simple cycles starting (and therefore also ending) at .

We shall do so using a helper function , such that  is the 

set of all simple cycles that (a) start (and end) at , (b) then follow the path , and (c) then continue 
with vertex . In other words,  is the set of all simple cycles that begin with .

Using this, we can define  as follows (remember that  represents the empty sequence):

      

Convince yourself that this results in all simple cycles starting at  if  behaves as described 
above.
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1. Define  recursively. You may find it useful to look at the set of all vertices occurring in a 
path . You can use the notation  for this purpose, i.e. if  is the path , 

then  is the set . 

       

The cases can also be collapsed into an elegant one-liner, like this:

   

2. In order to ensure that  terminates, we require a well-founded strict order  of its 
arguments, such that for any  that  is called on, it will only ever call itself on

. Define such an order:

 

Note that the order must rely on the set of symbols in the partial path . It is true, of course, that  
is always also a prefix of , but using the prefix property to establish the order does not work 
because there are infinite chains in it (in other words: sequences can get longer forever, but there are
only a finite number of vertices, so if we add a new one at every step, we will eventually terminate).

Hint: A correct answer to this question must have three properties. 
1. It must be a strict order.
2. It must be well-founded, i.e. there cannot be an infinite descending chain in that 

order.
3. Your definition of  must conform to it, i.e. any recursive call in it must be 

called on a smaller (according to the order) triple of arguments.
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 10.
Suppose we have a graph , as usual with vertices  and edges , as well as a 

function  assigning each edge a natural number as a weight.

1. Define the set  consisting of all edges in  with weight not more than :

 

2. Define the function , such that  is the set of all vertices in   

that can be reached from  in exactly  steps, and .

         

3. Define the relation  such that for any two vertices , it is the case that
 iff there is a path from  to  in the graph .

 

4. Define the relation  on the vertices in  such that for any two vertices
 it is the case that  iff there is a path  from  to  and another path  

from  to  that has the same length as .
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