
EDAA40 VT2 2019

Lab 1 – Instructions

As discussed during the last lecture, this lab is a little different from the others in that it has two
parts: the first one is about working through a little bit of online material to learn the basics of
Clojure, the language we will be using for our programming labs.

The second is about using that knowledge to work on a small programming assignment, which is
about completing a small toolbox for finite relations and functions in Clojure.

Note that with all programming assignments in this course, efficiency is of no concern to us. The
goal is to produce a solution that expresses the algorithm in a reasonable manner and computes the
correct result.

The first step, however, is to install Clojure.

You will find some of the following material also on the course page for Clojure:
http://cs.lth.se/edaa40/clojure/

 0. Installing Clojure
We will use Leiningen, a distribution of Clojure, throughout the course. You can find it here:

https://leiningen.org/

 1. Introduction to Clojure
Clojure is a Lisp-like language built on top of the Java Virtual Machine. In this course, we will use
it for the programming assignments because of its relative simplicity and good support for the kinds
of data structures we are interested in here.

If you have never used Clojure, I recommend working through the very nice tutorial by Kyle
Kingsbury, which you find here:

https://aphyr.com/tags/Clojure-from-the-ground-up

If you want to prepare using this tutorial, you should work through the following parts:

1. Welcome . All of this.
https://aphyr.com/posts/301-clojure-from-the-ground-up-welcome

2. Basic types . All of this, too.
https://aphyr.com/posts/302-clojure-from-the-ground-up-basic-types

3. Functions . Except "How does type work", we won't need this in this course.
https://aphyr.com/posts/303-clojure-from-the-ground-up-functions

Go to the course page for links to other material, including an extremely useful cheat sheet for
Clojure.

https://aphyr.com/tags/Clojure-from-the-ground-up
https://aphyr.com/posts/303-clojure-from-the-ground-up-functions
https://aphyr.com/posts/302-clojure-from-the-ground-up-basic-types
https://aphyr.com/posts/301-clojure-from-the-ground-up-welcome

 2. A small toolbox for relations and functions
This lab is about a small toolbox for (finite) relations and functions in Clojure. We will represent a
relation, and therefore also a function, as a (Clojure) set of vectors of length 2. So for example, the
relation is represented as the Clojure structure

#{ [1 1] [2 4] [3 9] }

Using this representation, the task will be to implement a few Clojure functions working with
relations and functions. These are the steps:

1. Download the skeleton project and unpack it.

2. cd into its top-level directory, edaa40lab1. Start the Leiningen REPL there.

3. Have a look at the file

edaa40lab1/src/edaa40/lab1.clj

It contains the source code of the toolbox, with some functions commented out. I have removed
their bodies and replaced them with a comment listing some functions you might find useful
implementing it (either Clojure functions, or from this toolbox), and sometimes a hint intended to
guide you in the right direction.

Your task is to implement all the functions that have been commented out. Do not change the
name or the parameter list, just add the function body. Every commented-out function is preceded
by a declare statement. Its purpose is to keep the compiler calm and allow you to load the package
in spite of the fact that some functions initially remain undefined. If you try to call one of the
declared-but-not-defined functions, you will get an error. After you have uncommented and
implemented the function, you can remove the declare or just leave it there.

Right after each of the commented-out function skeletons are one or more test? statements. Their
purpose is to help you check whether you are on the right track. Once you have an implementation,
uncomment these tests, reload the package from the REPL (see below), and if the test passes (you
will see something printed out on the REPL console) you might just have done it right. (As you can
see, the tests are hardly exhaustive.)

From the Leiningen REPL you can load (and reload) the package using

(use 'edaa40.lab1 :reload)

while you work on the code and try it out.

Tip 1: It makes sense to look at the other code in the file. Some functions are pretty similar to the
ones your are asked to implement.

Tip 2: Many commented-out functions include a comment like “;; uses ...”, listing a few functions
you may find useful implementing the function you are asked to implement. Note these are
suggestions; it’s definitely possible to realize the function without them. But if you get stuck,
looking at the documentation for the suggested functions might help you find a solution.

Tip 3: It is a really good idea to implement one function at a time, uncomment its tests, and the
reload the package to see how you are doing.

4. Once you are done, all functions are implemented, all the tests during loading pass, exit the REPL
(using exit or CTRL-D). Without leaving the edaa40lab1 directory, type

lein test

This runs a few tests on your code. If you want to peek under the hood and see how the tests are
done, check out the test harness in

edaa40lab1/test/edaa40/test/lab1.clj

If all goes well, have your work looked at by the person supervising the lab. Congratulations!

 3. (optional) Using the toolbox
Try to use the toolbox to work on some of the problems from the exercises, at least those that are
concerned with finite sets and relations.

	0. Installing Clojure
	1. Introduction to Clojure
	2. A small toolbox for relations and functions
	3. (optional) Using the toolbox

