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Lab 4 – Instructions

This lab is about working with graphs, specifically using an algorithm to find a particular kind of 
path in a graph to solve a couple of puzzles.

Logistics
The logistics of this lab are as before: 

1. Download the skeleton project and unpack it.

2. cd into its top-level directory, edaa40lab4. Start the Leiningen REPL there.

3. Have a look at the file 

edaa40lab4/src/edaa40/lab4.clj

This is the file you are supposed to edit. As in previous labs, it contains commented-out incomplete 
code skeletons for you to provide implementations in. Also as before, it is a good idea to do this one
step at a time, top to bottom, while making sure one set of tests pass before you proceed to the next 
part.

The package can be loaded, as you would expect, using:

(use 'edaa40.lab4 :reload)

As you implement the various functions, do not worry about efficiency. There is an entire course 
devoted to that topic, for now let’s focus on producing something that works, even if it works very 
slowly.



 1. Square sum problem and Hamiltonian paths
Start by watching the following video (a clickable link is also on the course page):

https://www.youtube.com/watch?v=G1m7goLCJDY

In part A and B of this lab, we solve the square sum problem in two steps:

A) Create the graph representing the square sum relation

This part consists of implementing the function create-square-sum-relation. It’s a very 
short function (roughly a single line of code, depending on formatting, of course), just a little warm-
up.

B) Implementing the algorithm searching for a Hamiltonian path in such a graph.

The next part is about implementing the actual path search. The function we want to call is H, and it 
has two arguments: V, a set of vertices, and E, an edge relation over V (i.e. a set of two-element 
vectors, like all the other relations we have worked with so far).

As you see from the code, H uses a helper function, H’. That’s the one you are supposed to 
implement. H’ has four arguments:

1. E, the edge relation, in other words: the arrows of our graph,

2. a, the “current” vertex,

3. S, the set of vertices we haven’t visited yet, and

4. P, the partial path we have traveled so far.

That :pre and :post business after the argument list is a “condition map” containing pre- and 
postconditions for this function.1 (Preconditions and postconditions together are also called 
“assertions”.) Those are fancy names for boolean expressions that must be true at the beginning 
(preconditions) or the end (postconditions) of the execution of the function body, whenever it is 
called. Just uncomment them with the rest of the skeleton and leave them there, they can help you 
detect errors. As they also take some time to test, you can turn off testing when you want to run the 
code on larger graphs. You do that by typing 

(set! *assert* false)

into the REPL, and you can turn assertion testing back on with, you guessed it,
(set! *assert* true)

It might help you with implementing H’ to understand those assertions, and also how H’ is called 
initially from H. In particular, have a look at the documentation for the Clojure function some and 
how it is used in H to “try” the different vertices in V as starting points for the path. It will be useful 
in H’, too. Note that it returns nil when the function it evaluates returns nil for all values in the 
set. Otherwise, it returns the first non-  nil   (and non-false) value it gets from applying the 
predicate.

NOTE: H’ also does not require an awful lot of code. My version’s body consists, fluffily 
formatted, of four lines. If you find yourself writing loops and complex if/cond/case constructions, 
you might want to look for a simpler solution. It’s out there! :-)

1 Take a look at https://clojure.org/reference/special_forms for more information on this.

https://www.youtube.com/watch?v=G1m7goLCJDY
https://clojure.org/reference/special_forms


 2. Knight’s tours
In the game of chess, the knight is the horse-shaped piece, and it moves 
either one square up or down and two to the  right or left, or two squares
up or down, and one to the right or left.

Suppose you have an n by m grid of squares, e.g. with 8 by 8 it would be
a chess board. A knight’s tour is a sequence of knight’s moves, starting
from anywhere on the grid, that touches each square exactly once.
Depending on the dimensions of the grid, the number of different knight’s tours can vary widely, 
and for some grids there aren’t any.

C) Using H to find knight’s tours.

In the third part of this lab, we use the Hamiltonian path search to find 
Knight’s tours on n by m grids.2 In order to do this, all we need to do is 
create (1) a set of all squares/positions on an n by m board and (2) create 
a relation that represents when one of these squares can be reached by a 
knight’s move from another.

For example, we will represent a 5 by 5 board by a set of tuples that goes
something like this:

#{ [0 0] [0 1] [0 2] [0 3] [0 4] [1 0] [1 1] … [4 2] [4 3] [4 4]} 

That is our V, our set of vertices. [0 0] would be the square in the lower left corner, [1 0] the 
one to its right, [0 1] the one above the lower left corner square and so forth, up to [4 4], the 
square in the upper right corner.

The edge relation, the E parameter in the Hamiltonian path search, contains a pair of these pairs iff 
one is a knight’s move away from the other. So, for example, since 
[0 1] can reach [1 3] with a knight’s move, the set E would then contain the pair 
[[0 1] [1 3]], as well as the symmetric pair [[1 3] [0 1]].

You need to implement two functions. next-positions computes the set of squares on the 
board that can be reached by a knight’s move from a given position. It needs the board as a 
parameter so that it can determine whether a square that results from adding the relative coordinates
of a move (one of the vectors in Moves) to its position parameter is, in fact, on the board.

Using this function, you can then implement create-knights-move-relation, which does
just that: it computes, for a given board, i.e. for a set of positions, the relation that represents 
whether they can be reached from each other by a knight’s move.

 

2 As it turns out, while general Hamiltonian path search does solve the problem of finding Knight’s tours, it does so 
very, very poorly in the sense that it scales terribly – in fact, there are much better algorithms for finding Knight’s 
tours with much better scaling behavior. If you want to know more about this, take a look at the Wikipedia page on 
the topic and the references it contains: https://en.wikipedia.org/wiki/Knight%27s_tour

https://en.wikipedia.org/wiki/Knight's_tour
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