
EDAA40 VT2 2019

Lab 5 – Instructions

This lab is about the use of tree structures in the context of coding and data compression. 
Specifically, we will look at a simple form of entropy coding called Huffman coding, which uses 
trees to represent the code. In this lab, we will construct these trees and use them to encode and 
decode data.

Logistics
The logistics of this lab are as before: 

1. Download the skeleton project and unpack it.

2. cd into its top-level directory, edaa40lab5. Start the Leiningen REPL there.

3. Have a look at the file 

edaa40lab5/src/edaa40/lab5.clj

This is the file you are supposed to edit. As in previous labs, it contains commented-out incomplete 
code skeletons for you to provide implementations in. Also as before, it is a good idea to do this one
step at a time, top to bottom, while making sure one set of tests pass before you proceed to the next 
part.

The package can be loaded, as you would expect, using:

(use 'edaa40.lab5 :reload)

1



Background
Suppose you wanted to encode a sequence of “symbols” – if that sequence is a text, the symbols 
might be the characters, if it is a binary file, they might be bytes and so on. The goal is to reduce the
overall length of the encoded sequence, i.e. to compress it. The fundamental idea behind entropy 
codes such as Huffman codes is to represent different symbols by a varying number of bits 
depending on how frequently they occur in the sequence: very frequently occurring symbols are 
represented by shorter bit sequences, rare symbols are represented by longer sequences.

The discrete structure we care about in this lab is a Huffman tree, and it is used to represent the 
coding of symbols. This lab is about building a Huffman tree for a given sequence of symbols, and 
then using it to encode it into a sequence of bits, and to decode the original sequence of symbols 
from a tree and a sequence of bits.

This video gives some background, and also explains the basic technique for building the tree:

https://www.youtube.com/watch?v=0VEFJdjyXD0 

Here are some additional resources:

https://www.siggraph.org/education/materials/HyperGraph/video/mpeg/mpegfaq/
huffman_tutorial.html

https://en.wikipedia.org/wiki/Huffman_coding

2

https://www.youtube.com/watch?v=0VEFJdjyXD0
https://en.wikipedia.org/wiki/Huffman_coding
https://www.siggraph.org/education/materials/HyperGraph/video/mpeg/mpegfaq/huffman_tutorial.html
https://www.siggraph.org/education/materials/HyperGraph/video/mpeg/mpegfaq/huffman_tutorial.html


Data structures

This is a quick description of the data structures used in this lab. You will find examples at the 
beginning of the program code, used for testing.

Huffman tree.

A Huffman tree is the central data structure of this lab. It includes, in its leaves, the symbols to be 
encoded, and also the frequencies, i.e. how often they occur in the original sequence. We only need 
the frequencies for building the tree – they are not used in encoding or decoding, so if you use the 
code for storing or loading files (not really part of this lab, but provided for you if you want to play 
with the code), you will find that the frequencies are not stored, and decoding still works perfectly 
fine.

The simplest tree is a leaf, which is represented by a Clojure map of the form

{:kind :leaf, :frequency frequency, :value symbol}

Here, symbol is the symbol represented by that leaf, and frequency is a number representing how 
often it occurs in the original sequence.

Any tree that is not a leaf is a branch, and it is also represented by a map, which in this case looks 
like this:

{:kind :branch, :frequency frequency, :left child0, :right child1}

In this case, frequency is the frequency of all the symbols in the left and right subtrees (the children)
combined, in other words the sum of the frequency fields in the two children, which in turn are 
represented by child0 and child1, respectively.

Huffman code.

A complete Huffman code represents an entire sequence of symbols, it consists of three parts, 
arranged in a map as follows:

{:tree tree, :length length, :bits bits}

In this case, tree is a Huffman tree as described above, length is an integer denoting the length of 
the original sequence (i.e. the number of symbols in it), and bits is a sequence of 0s and 1s that 
represent that sequence encoded according to the tree.

3



 1. Building the tree
The first three functions you are supposed to implement deal with the construction of the Huffman 
tree from a sequence of symbols.

(insert-into-queue T Q)

This is a simple recursive insertion of a tree T into a sorted sequence (or queue) of trees Q. The 

elements of Q are sorted by their :frequency field, and T is supposed to be inserted into Q so 

that the result is again sorted by :frequency.

(create-tree Q)

Q is a non-empty, :frequency-sorted sequence of trees. If it contains only one element, that’s the

tree it is supposed to create. If it contains more than one element, create-tree takes the first 

two, forms a new branch with the first as the left and the second as the right child, and inserts the 
result into the remaining queue. Then it creates a tree from the resulting (now shorter) queue.

 (huffman-tree S)

This creates a Huffman tree from a sequence of symbols S. It computes the frequencies of the 
symbols in the sequence, creates an initial queue that contains a leaf node for each symbol, sorts it, 

and then uses create-tree to produce the Huffman tree.

 2. Encoding 
The next couple of functions deal with encoding, i.e. turning a sequence of symbols into a string of 
bits according to a Huffman tree.

(huffman-codes T)

This functio returns a map from symbols to bit sequences, i.e. sequences of 0s and 1s. Each symbol 
in the tree T is mapped to the sequence of bits that encode it. Whichever way one chooses to do this,
you might want to define one or two helper functions in order to implement this one.

(huffman-encode S)

This function computes the complete Huffman code (as described above under Data structures) 
from a sequence of symbols S.

4



 3. Decoding 
This function handles the decoding of a single symbol. It is called in a loop until all the symbols in 
the original sequence have been restored.

(decode-symbol T bits)

T is a Huffman tree and bits a sequence of bits. This function returns a map with the following 
fields:

{:value symbol, :remaining-bits rbits}

Here, symbol is the next symbol encoded in the bit sequence, and rbits are the remaining bits not 
used to decode it.

Working with files

If you want to try your compression algorithm on different kinds of files, you can use the functions 

huffman-compress and huffman-decompress at the bottom of the lab5.clj file.

5


	Logistics
	Background
	Data structures
	This is a quick description of the data structures used in this lab. You will find examples at the beginning of the program code, used for testing.
	1. Building the tree
	2. Encoding
	3. Decoding
	Working with files
	If you want to try your compression algorithm on different kinds of files, you can use the functions huffman-compress and huffman-decompress at the bottom of the lab5.clj file.

