EDAA40, Lab 1: Learning Clojure

(version 1.2)

The purpose of this lab is to get acquainted with the programming language
Clojure. You'll be working with (parts of) a tutorial called Clojure from the
ground up by Kyle Kingsbury.

Part 1: Doing the tutorial

The tutorial is available online at the following address:
https://aphyr.com/tags/Clojure-from-the-ground-up
We will work with the first three chapters, near the bottom of the page.

Most of the lab will be spent reading and discussing with your lab partner. Once
you have a working repl (read-eval-print-loop, explained in the first chapter of
the tutorial), you don’t actually need to type in all the examples, as long as
you've read and understood them. You are encouraged to discuss with your lab
partner, and you’ll find that the repl is often useful for getting ideas across, and
trying things out.

e Welcome. Read all of this chapter, and follow the instructions for in-
stalling Leiningen. You’'ll have to start a terminal window, and copy/paste
some commands from the browser into the terminal.

e Basic types. Read up to and including Vectors, but not the later sec-
tions about sets and maps.

e Functions. Read up to and including Defining functions (but not How
does type work?).

Part 2: Editing source files

So far, you have been working with the repl. It is also possible to write clojure
code in files and compile them. When you installed Leiningen, you created a
scratch project, and navigated to the corresponding directory in the terminal
window.

e Exit from the repl with Control-D.

e Edit the file src/scratch/core.clj (where scratch is the name of your
project). If you don’t know what editor to use, you could try gedit: At
the terminal prompt, type the following:

gedit src/scratch/core.clj &
e Add a function definition at the end of this file. The function should

compute a given element of the Fibonacci series, fib(n), defined as follows:

fib(n) =1 ifn<2
{ﬁb(n) =fib(n —1)+fib(n —2) ifn>2


https://aphyr.com/tags/Clojure-from-the-ground-up

You will need a conditional expression, for example if. Type (doc if)
in the repl to see its documentation.

e Save the file, and type in the terminal: lein repl This will give you
a repl where you get access to the Fibonacci function you defined. Run
(use 'scratch.core :reload) in the repl to load (or reload) and import
the namespace scratch.core where your functions are defined. Test your
function. For instance, (fib 10) should return 89.

e What is (fib 50)7 If this seems to take a long time, don’t wait for it to
complete; it’ll take ages. Stop the program with Control-C. Modify your
function to be more efficient by translating the following Java code into
Clojure:

int fibHelper(int n, int i, int previous, int current) {
if (n == i) {
return current;

} else {
return fibHelper(
n,
i+1,
current,
previous + current);
}

3

int fib(int n) {
return fibHelper(n, 0, 0, 1);
}

e What is (fib 100)? Clojure might complain about an integer overflow.
In that case, modify your function to use Biglnts.

e Ask the lab assistant to review your code.



