
Exam EDAF05
29 Aug 2013

Thore Husfeldt

Instructions
What to bring. You can bring any written aid you want. This includes the course book and a dictionary. In fact, these
two things are the only aids that make sense, so I recommend you bring them and only them. But if you want to bring
other books, notes, print-out of code, old exams, or today’s newspaper you can do so. (It won’t help.)

You can’t bring electronic aids (such as a laptop) or communication devices (such as a mobile phone). If you really
want, you can bring an old-fashioned pocket calculator (not one that solves recurrence relations), but I can’t see how
that would be of any use to you.

You can answer the questions in Swedish or English. Be neat and tidy. Most questions can be answered by a single
word or sentence, some require a few sentences, and some require a well-chosen drawing or example.



/ – Page 2 of 8 – Name:

Consistency

HateBook is a new social media site where you connect with people you hate.

The Consistency problem is to verify that HateBook satisfies the well-known rule that “the enemy of
you enemy is your friend,” in the following sense: If Alice hates Bob, and Bob hates Clare, then Alice does
not hate Clare, and Clare does not hate Alice.

Input

The input is a complete specification of the social network HateBook. It contains n lines. Every line contains
a HateBook member, followed by colon, followed by a comma-separated (possibly empty) list of people he
or she hates. Let m denote the total number of connections in the input.

Output

Write consistent if the whole social network is consistent. Otherwise output a counterexample: three
people that violate the rule.

Examples

Here are two examples with n = m = 4.

Input:
Juliet: Alice, Bob

Bob: Romeo

Alice:

Romeo: Juliet

Output:
Romeo, Juliet, Bob

Input:
Juliet: Alice, Bob

Bob: Romeo

Alice: Romeo

Romeo: Clare

Clare: Juliet

Output:
consistent



/ – Page 3 of 8 – Name:

Loveletter

(See the Consistency problem for a definition of HateBook.)

Romeo does not really hate Juliet, it’s just something he has to claim because of pressure from his family.
In truth, he loves her with fiery passion. He wants to send her a love letter. The messaging system of
HateBook only allows you to send letters to people you don’t hate, so he can’t send the letter directly.
Instead, Romeo will split the letter in half, and send each half on separate paths through the HateBook
network. (Why exactly two letters are better than one is explained in figure 1 below. It’s a simple (but cute)
cryptographic idea that has nothing to do with the exercise, so you can safely ignore it.)

Input

Same as for the Consistency problem. You can assume that Romeo and Juliet are both part of the network,
and that Romeo hates Juliet.

Output

Two sequences of names of HateBook members, each starting in Romeo and ending in Juliet. No other
person may appear on both sequences. If p follows q on a sequence then q may not hate p.

If this can’t be done, write impossible.

Input:
Juliet: Alice, Bob

Bob: Romeo

Alice: Claire

Romeo: Juliet, Claire

Claire: Claire

Output:
Romeo, Alice, Juliet
Romeo, Bob, Claire, Juliet

I L O V E Y O U
M = 8 11 14 21 4 24 14 20
R = 7 3 20 18 24 1 11 7
C = 1 23 14 12 18 21 5 1

Figure 1: How to transform a message into two messages that are indistinguishable from random noise. M
is the message (in fact, the encoding of “ILOVEYOU”). R is a string of random numbers between 0 and 25.
C is the ciphertext, C[i] = M[i] + R[i] mod 26. In particular, both C and R by themselves are random noise
and can be freely sent through the network, provided nobody unwanted receives both of them. Only Juliet,
who receives both messages, can recover M (by computing M[i] = C[i]− R[i] mod 26.) Warning: Don’t
misinterpret the picture. The arrow from Romeo to Bob means that Romeo sends message R to Bob. It’s not
an edge in the social network.



/ – Page 4 of 8 – Name:

Party

(See the Consistency problem for a definition of HateBook.)

In a fit of good will, all HateBook members arrange a party. You need to seat them around a large table
such that nobody sits next to somebody they hate.

Input

Same as for the Consistency problem.

Output

A list of names l1, . . . , ln such that li does not hate li+1, li+1 does not hate li (for each i = 1, . . . , n − 1), ln
does not hate l1, and l1 does not hate ln.

Input:
Juliet: Alice, Bob

Bob: Romeo

Alice: Claire

Romeo: Juliet, Claire

Claire: Claire

Output:
impossible

Input:
Juliet: Bob, Romeo

Bob: Alice

Romeo: Claire

Alice: Bob

Claire: Claire, Alice

Output:
Juliet, Alice, Romeo, Bob, Claire



/ – Page 5 of 8 – Name:

Spread

Suppose we need to distribute the message “I dislike you” to all the nodes in a rooted tree of n nodes.
Initially, only the root node knows the message. In a single round, any node that knows the message can
forward it to at most one of its children. Design an algorithm to compute the minimum number of rounds
required for the message to be delivered to all nodes.

Algorithms Lecture 3: Dynamic Programming

(a) Describe a simple algorithm to compute the shortest cyclic tour of P.

(b) A simple tour is one that never crosses itself. Prove that the shortest tour of P must be simple.

(c) Describe and analyze an efficient algorithm to compute the shortest tour of P that starts at
the leftmost point P[1] and ends at the rightmost point P[r].

15. Describe and analyze an algorithm to solve the traveling salesman problem in O(2n poly(n)) time.
Given an undirected n-vertex graph G with weighted edges, your algorithm should return the
weight of the lightest cycle in G that visits every vertex exactly once, or1 if G has no such cycles.
[Hint: The obvious recursive algorithm takes O(n!) time.]

16. Recall that a subtree of a (rooted, ordered) binary tree T consists of a node and all its descendants.
Design and analyze an efficient algorithm to compute the largest common subtree of two given
binary trees T1 and T2; this is the largest subtree of T1 that is isomorphic to a subtree in T2.
The contents of the nodes are irrelevant; we are only interested in matching the underlying
combinatorial structure.

Two binary trees, with their largest common subtree emphasized

17. Suppose we need to distribute a message to all the nodes in a rooted tree. Initially, only the root
node knows the message. In a single round, any node that knows the message can forward it
to at most one of its children. Design an algorithm to compute the minimum number of rounds
required for the message to be delivered to all nodes.

A message being distributed through a tree in five rounds.

18. A company is planning a party for its employees. The employees in the company are organized
into a strict hierarchy, that is, a tree with the company president at the root. The organizers of
the party have assigned a real number to each employee measuring how ‘fun’ the employee is. In
order to keep things social, there is one restriction on the guest list: an employee cannot attend
the party if their immediate supervisor is present. On the other hand, the president of the company
must attend the party, even though she has a negative fun rating; it’s her company, after all. Give
an algorithm that makes a guest list for the party that maximizes the sum of the ‘fun’ ratings of the
guests.

19

Input

Each line contains two integers from {1, . . . , n} denoting an edge in the tree.

Output

The minimum number of rounds it takes to pass the message.

Input:
1 2

1 3

2 4

2 5

2 6

3 7

4 8

4 9

7 10

7 11

11 12

Output:
5



/ – Page 6 of 8 – Name:

Fixpoint

Let A be an array of n integers, A[0], . . . , A[n− 1]. The method

public static int fixpoint(int[] A)

returns i (0 ≤ i ≤ n− 1) such that A[i] = i, or −1 if no such i exists.
Design an algorithm for this problem faster than linear time.



/ – Page 7 of 8 – Name:

Exam Questions

There are five exam questions in this set (on page 7 and 8), corresponding to the five algorithmic problems
on pages 2–6. Answer them on a separate piece of paper.

1.
(a) (1 pt.) What is the running time of the following piece of code in terms of n?

for i = 1 to n:

print i

endfor

for j = 1 to n:

print j

endfor

2. One of the problems in the set can be solved using divide-and-conquer.
(a) (1 pt.) Which one?
(b) (2 pt.) Describe the algorithm, for example by writing it in pseudocode.
(c) (1 pt.) Formulate a recurrence relation that describes the asymptotic running time of your algorithm.

State the running time of your algorithm in terms of the original parameters.

3. One of the problems can be efficiently solved using standard graph traversal methods (such as the ones
used for breadth-first search, depth-first search, shortest paths, connected components, etc.), without
using more advanced design paradigms such as dynamic programming or network flows.
(a) (1 pt.) Which one?
(b) (1 pt.) Very briefly explain the graph problem you will solve. In particular, tell me what the graph

is (What are the vertices? How many are there? What are the edges? How many are there? Are the
edges directed? Are there weigths on the edges?) Draw a small example graph.

(c) (1 pt.) Describe your algorithm, for example in pseudocode. You are welcome to use existing algo-
rithms from the course book.

(d) (1 pt.) State the running time of your algorithm.

4. One of the problems is solved by dynamic programming.
(a) (1 pt.) Which one?
(b) (3 pt.) Following the book’s notation, we let OPT(i) denote the value of a partial solution. (Maybe

you need more than one parameter, like OPT(i, j). Who knows?) Give a recurrence relation for OPT,
including relevant boundary conditions and base cases.

(c) (1 pt.) State the running time and space of the resulting algorithm.

5. One of the problems in the set is easily solved by a reduction to network flow.
(a) (1 pt.) Which one?
(b) (3 pt.) Describe the reduction. Be ridiculously precise about which nodes and arcs there are, how

many there are (in terms of size measures of the original problem), how the nodes are connected and
directed, and what the capacities are. Do this in general (use words like “every node corresponding
to a giraffe is connected to every node corresponding to a letter by an undirected arc of capacity the
length of the neck”), and also draw a small, but complete example for an example instance. What
does a maximum flow mean in terms of the original problem, and what size does it have in terms of
the original parameters?

(c) (1 pt.) State the running time of the resulting algorithm, be precise about which flow algorithm you
use. (Use words like “Using Bellman–Ford (p. 5363 of the textbook), the total running time will be
O(n17 log−3 ε + log2 m).”)1

1This part merely has to be correct. There is no requirement about choosing the cleverest flow algorithm.



/ – Page 8 of 8 – SOLUTIONS

6. We will show that Spread belongs to NP.
(a) (1 pt.) Is Spread a decision problem? Answer “yes” or “no”. If “no”, describe the decision version of

Spread: what are the inputs, what are the outputs?
(b) (1 pt.) Describe a certificate for Spread. In particular, give an example of such a certificate for a small

instance. How long is this certificate in terms of the instance size?
(c) (1 pt.) Describe very briefly how your certificate can be checked. In particular, what is the running

time of that procedure?

7. One of the problems in the set is NP-complete.2

(a) (1 pt.) Which problem is it? (Let’s call it P1.)
(b) (1 pt.) The easiest way to show that P1 is NP-hard is to consider another NP-hard problem (called

P2). Which one?
(c) (1 pt.) Do you now need to prove P1 ≤P P2 or P2 ≤P P1 ?
(d) (3 pt.) Describe the reduction. Do this both in general and for a small but complete example. In

particular, be ridiculously precise about what instance is given, and what instance is constructed by
the reduction, the parameters of the instance you produce (for example number of vertices, edges,
sets, colors) in terms of the parameters of the original instance, what the solution of the transformed
instance means in terms of the original instance, etc.

2If P = NP then all these problems are NP-complete. Thus, in order to avoid unproductive (but hypothetically correct) answers
from smart alecks, this section assumes that P 6= NP.


