
Exam EDAF05
23 May 2012, 8.00–13.00

Thore Husfeldt

Instructions
What to bring. You can bring any written aid you want. This includes the course book and a dictionary. In fact, these
two things are the only aids that make sense, so I recommend you bring them and only them. But if you want to bring
other books, notes, print-out of code, old exams, or today’s newspaper you can do so. (It won’t help.)

You can’t bring electronic aids (such as a laptop) or communication devices (such as a mobile phone). If you really
want, you can bring an old-fashioned pocket calculator (not one that solves recurrence relations), but I can’t see how
that would be of any use to you.

Filling out the exam Some questions are multiple choice. Mark the box or boxes with a cross or a check-mark. If you
change your mind, completely black out the box and write your answer’s letter(s) in the left margin. In case it’s unclear
what you mean, I will choose the least favourable interpretation.

In those questions where you have to write or draw something, I will be extremely unco-operative in interpreting
your handwriting. So write clearly. Use English or Swedish. If there is a way to misunderstand what you mean, I will
use it.

Scoring For the free form choice questions, you get between 0 and the maximum number of points for that question.
Short, correct answers are preferred.

Each multiple choice question has exactly one correct answer. To get the maximum score for that question, you must
check that answer, and only that. However, to reflect partial knowledge, you may check several boxes, in case you’re
not quite sure (this lowers your score, of course – the more boxes you check, the fewer points you score). If you check
no boxes or all boxes, your score for that question is 0. If the correct answer is not among the boxes you checked, you
score is negative, so it’s better to not answer a question where you’re on very thin ice. The worst thing you can do is to
check all boxes except the correct one, which gives you a large negative score.

Want an example? Assume a question worth maximum 2 points has k = 4 possible answers (one of them correct).

• If you select only the correct answer, you receive 2 points.

• If you select 2 answers, one of which is correct, you receive 1 point.

• If you select 3 answers, one of which is correct, you receive 0.41 points.

• if you select no answer or all answers, you receive 0 point.

• If you select only one answer, and it is wrong, you receive −0.67 points.

• If you select 2 answers that are both wrong, you receive −1 point.

• If you select 3 answers that are all wrong, you receive −1.25 points.

As a special case, for a yes/no question, you receive 1, 0, or −1 points, depending on whether you answer is correct,
empty, or wrong.

If you want to know the precise formula: if the question has k choices, and you checked a boxes, your score is
log(k/a), provided you checked the correct answer, and −a log(k/a)/(k − a) if you only checked wrong answers.
Moreover, I have weighted the questions by relevance (not necessarily difficulty), and indicated the maximum points
with each question.

You really care why this scoring system makes sense? Then read [Gudmund Skovbjerg Frandsen, Michael I.
Schwartzbach: A singular choice for multiple choice. SIGCSE Bulletin 38(4): 34–38 (2006)]. For example, random
guessing will give you exactly 0 points, at least in expectation.

/ – Page 2 of 11 – Name:

Algorithmic Problems
Introduction. There are four algorithmic problems in this set; all of them are variants on the same basic
structure defined as follows.

Two words x and y are neighbours if

1. they have the same number of letters, i.e., x = x1, . . . , xk and y = y1, . . . , yk,

2. the agree on exactly k− 1 positions, i.e., xi = yi holds for k− 1 choices of i.

For example, “EXAM” and “ERAM” are neighbours, but “EXAM” and “EXOL” are not. Note that the
letters must have the same positions, so “EXAM” and “AEMY” are not neighbours (even though they have
3 letters in common). Let’s agree that a word is not its own neighbour.

To fix notation, we will maintain that the input consists of n such words. The words all have the same
number of letters, k. The words define an undirected, simple, unweighted graph G = (V, E) whose vertices
are the words and whose edges are the neighbour relation. Here is the graph defined by the words bade,
bode, bore, bose, made, maze, raze, rode, rose, and roze:

bade

bode

bore bose

made maze raze

rode

rose

roze

In your answer, I will assume that you use the terms word, graph, vertex, edge, neighbour, and the symbols
G, V, E, k, and n in the way defined above, unless you explicitly define them to mean something else.

Please read the above paragraph again, just to make sure.

There is no requirement that the words make sense. They could be “xxxxyz” or some other nonsense.
However, you can assume that the alphabet is finite, so let’s just agree that the input words are always taken
from the standard 24 letter English alphabet, so that we avoid silly ideas like encoding a 3-Sat instance in a
single Chinese (or Klingon) symbol.

/ – Page 3 of 11 – Name:

Ladder

Given two words s and t, find the shortest sequence of neighbouring words connecting s to t.

Input

The input starts with a line containing n, the number of words. The next n lines each contain a word, in
alphabetical order. Exactly two of the words are marked with a star; these are s and t.

Output

Output the shortest sequence of neighbouring words from s to t, separated by “-> ”. If there is no such
sequence, output the word “impossible”.

Input:
10

bade

bode

bore

bose *

made *

maze

raze

rode

rose

roze

Output:
bose -> bode -> bade -> made

Input:
3

bade *

bode

xxya *

Output:
impossible

/ – Page 4 of 11 – Name:

Cycle

Given two words s and t, find a simple cycle of neighbouring words passing through s and t. (A simple cycle
is a sequence of words w1, w2, . . . , wr such that w1 = wr and no other words appear twice in the sequence.
It does not have to be the shortest such cycle.)

Input

Exactly as for Ladder.

Output

If there is a simple cycle of neighbouring words containing both s and t, output the cycle as a sequence of
words separated by “-> ”. The first and the last words in that sequence must be the same. No other words
may appear more than once in the sequence. Both s and t must appear in the sequence.

If there is no such sequence, output the word “impossible”.

Input:
10

bade

bode

bore

bose *

made *

maze

raze

rode

rose

roze

Output:
bade -> made -> maze -> raze -> roze

-> rode -> rose -> bose -> bode ->

bade

Input:
3

bade *

bode

bose

bore *

Output:
impossible

/ – Page 5 of 11 – Name:

Manystars

Given m “starred” words, find a simple path connecting all of them. (The path does not have to be the
shortest. The order in which the starred words are visited is not important.)

Input

The input starts with the number of words n in the dictionary, followed by the number m of starred words.
Then follow the n words that make up the dictionary, in alphabetical order. Exactly m of these words are
starred.

Output

If there is a simple path through the dictionary containing all the starred words, print such a path, separated
by ->. Otherwise print impossible.

Input:
10

3

bade *

bode *

bore

bose

made

maze

raze *

rode

rose

roze

Output:
bade -> made -> maze -> raze -> roze

-> rode -> bode

Input:
4

3

bode *

rode

rose *

roze *

Output:
impossible

/ – Page 6 of 11 – Name:

Alphabetic

For words x and y we write x < y if x is alphabetically smaller than y in the standard English lexicographic
ordering. For example, made < maze and abbb < baaa. An alphabetic ladder is a sequence of neighbouring
words w1, . . . , wr that is alphabetically ordered, i.e., wi < wi+1 and {wi, wi+1} ∈ E for all 1 ≤ i < r. You
have to find an alphabetic ladder that includes as many starred words as possible.

Input

Exactly as for Manystars.

Output

A sequence of neighbouring words in alphabetical order, separated by ->, containing as many starred
words as possible.

Input:
10

3

bade

bode *

bore

bose *

made *

maze *

raze *

rode *

rose

roze *

Output:
made -> maze -> raze -> roze

/ – Page 7 of 11 – Name:

Exam Questions

Analysis of algorithms

1. Let f (n) = (n2 + n3) log n. True of false?
(a) (1 pt.) f (n) = O(n3 log n)

A true B false

(b) (1 pt.) f (n) = O(n3/ log n)

A true B false

(c) (1 pt.) f (k) = O(k3)

A true B false

2. Consider the following piece of code:
1: for i = 1 to n:
2: for j = 1 to n:
3: for k = 1 to 10:
4: print k;

(a) (2 pt.) What is the running time? (Choose the smallest correct estimate.)

A O(n) B O(n log n) C O(n2) D O(n3)

3. Assume you have a data structure that maintains a set S under insertion and deletion. The operation
“insert(s, S)” makes sure that s ∈ S holds, and the operation “remove(S)” chooses some s ∈ S (assuming
S is not empty) and removes it.
Consider the following piece of code, starting with an empty set S.
1: for i = 1 to n:
2: {
3: insert (i, S);
4: remove (S);
5: }

(a) (1 pt.) Assume insert (i, S) takes constant time and remove(S) takes time O(log |S|). Then the total
running time is: (Choose the smallest correct estimate.)

A O(n) B O(n log n) C O(n log2 n) D O(n2 log n)
(b) (1 pt.) Assume I change line 4 so that the remove operation is only executed if i is even. (So, every

second time.) Like this:
4: if (i mod 2 = 0): remove (S);
What is the total running time?

A O(n) B O(n log n) C O(n log2 n) D O(n2 log n)

4. Consider the following piece of code:
1: int f (int n) {
2: if n > 1: return max(f (n− 1), f (n− 2));
3: else: return 1;
4: }

/ – Page 8 of 11 – Name:

(a) (1 pt.) Which recurrence relation best characterises the running time of this method?

A T(n) = T(n− 1) + T(n− 2) + O(1)

B T(n) = T(n− 1) · T(n− 2) + O(1)

C T(n) = max{T(n− 1), T(n− 2)}+ O(1)

D T(n) = max{T(n− 1), T(n− 2)}+ O(n)

5. A complete bipartite graph Bl,r consists of two nonempty sets L and R of vertices. We use the notation
l = |L| and r = |R| for the number of vertices in each part. The graph Bl,r contains all edges of the form
{u, v} for every u ∈ L and v ∈ R. It contains no other edges. Here is an example

B3,2 =

(a) (1 pt.) What is the number of vertices in Bl,r?

A l + r B max{l, r} C lr D lr/2
(b) (1 pt.) What is the number of edges in Bl,r?

A l + r B max{l, r} C lr D lr/2
(c) (1 pt.) What is the size of the largest independent set in Bl,r?

A l + r B max{l, r} C lr D lr/2
(d) (1 pt.) Is Bl,r a tree?

A Never B Always C If l + r ≤ 3 D If P = NP.

Greedy

I want to solve Alphabetic greedily, like this: Start at the alphabetically first word. Repeat the following
process: From the current word x, consider the set of neighbouring words N = {y : x < y, {x, y} ∈ E} that
are alphabetically larger than current word. If any of the words in N has a star, go to that word. Otherwise
go to the alphabetically first word in N.

6.
(a) (2 pt.) Show that this algorithm is not optimal by drawing a concrete, small, and complete example

instance where the greedy algorithm fails in the box below.

/ – Page 9 of 11 – Name:

Graph connectivity

One of the four problems in the set can be solved as a simple graph connectivity problem.

7.
(a) (2 pt.) Which problem can be solved as a graph connectivity problem?

A Ladder B Cycle C Manystars D Alphabetic
(b) (2 pt.) The algorithm to use is

A BFS B DFS C MST D Topological sorting
(c) (2 pt.) On a separate piece of paper, explain how the connectivity instance is constructed. If you

use the graph G defined on page 2, just tell me. Otherwise, explain: What are the vertices, and how
many are there? What are the edges, and how many are there? Draw an example of a vertex in
the connectivity instance, including all vertices it is connected to (you don’t have to draw the whole
instance, but you can if you want.)
State the running time of your algorithm in terms of the original parameters. (The running time
must be polynomial in the original size.)

Dynamic programming

8.
(a) (2 pt.) Which problem can be solved using dynamic programming (but not by a simpler BFS/DFS or

greedy solution)?

A Ladder B Cycle C Manystars D Alphabetic
(b) (4 pt.) Following the book’s notation, we let OPT(· · ·) denote the value of a partial solution. Give a

recurrence relation for OPT in the box below:1

Please, please, please make this easy for me to grade by sticking to the notational conventions estab-
lished on page 2 about G, V, E, k, n. Use x, y, w to denote words. Otherwise my head will explode. If
you need any other notation, invent it, and tell me what it means.

OPT() =

(c) (1 pt.) The resulting running time is (give the smallest correct estimate)

A O(n) B O(n log n) C O(n2) D O(n3)

(d) (1 pt.) The space usage is (give the smallest correct estimate)

A O(n) B O(n log n) C O(n2) D O(n3)

1There may be other cases, in particular, boundary conditions such as maybe for OPT(1) or OPT(x, y) for x = y etc. Don’t worry
about them. You can get full credits for this question by just giving the most central part of the recurrence relation.

/ – Page 10 of 11 – Name:

Network flow

One of the four problems in the set can be solved using a network flow algorithm.

9.
(a) (2 pt.) Which problem can be solved using network flow?

A Ladder B Cycle C Manystars D Alphabetic
(b) (4 pt.) Describe the reduction on a separate piece of paper. Be ridiculously precise about how the

nodes are connected and directed, and what the capacities are. Do this in general (use words like
“every node corresponding to a giraffe is connected to every node corresponding to a letter by an
undirected arc of capacity the length of the neck”), and also draw a small, but complete example
for an example instance. I cannot stress how imporant such an example is: do it! What does a
maximum flow mean in terms of the original problem, and what size does it have in terms of the
original parameters?
Tell me which flow algorithm you are using (you don’t have to motivate that choice) and what the
resulting running time is.

Computational complexity

These questions are about Ladder, and include questions about NP. Don’t take this as an indication that
Ladder may or may not be NP-hard.

10. (Decision version.) The input to the decision version of Ladder includes
(a) (1 pt.) a list of words,

A true B false
(b) (1 pt.) an integer r,

A true B false
(c) (1 pt.) The output to the decision version of Ladder is

A “yes,” if there is a sequence of neighbouring words from s to t

B a list of neighbouring words from s to t s to t

C the length of the shortest sequence of words from s to t via v

D “yes” if there are r or fewer neighbouring words connecting s to t

11. Membership in NP. The decision version of Ladder is easily seen to be in NP, because it admits a certificate.
(a) (1 pt.) The certificate conists of

A “yes,” if there is a sequence of neighbouring words from s to t

B a list of neighbouring words from s to t s to t

C the length of the shortest sequence of words from s to t via v

D “yes” if there are r or fewer neighbouring words connecting s to t
(b) (1 pt.) The length of the certificate is (choose the smallest possible)

A O(n) words B O(r) words C O(k) words D O(|E|) words
(c) (1 pt.) The certificate can be checked in time (choose the smallest possible)

A O(n2) B O(rk) C O(kn) D O(|E| log |E|)

/ – Page 11 of 11 – SOLUTIONS

NP-hardness

One of the problems in the set is NP-hard.2

12.
(a) (2 pt.) The following problem (called P1) is NP-hard:

A Ladder B Cycle C Manystars D Alphabetic
(b) (1 pt.) The easiest way to see that is to take the following NP-hard problem, called P2,

A Graph colouring B 3-dim. matching C Independent set D Set Cover
E Vertex cover F 3-satisfiability G Travelling salesman H Hamiltonian path

(c) (1 pt.) and prove

A P1 ≤P P2 B P2 ≤P P1
(d) (1 pt.) For this, an arbitrary instance of

A Graph colouring B 3-dim. matching C Independent set D Set Cover
E Vertex cover F 3-satisfiability G Travelling salesman H Hamiltonian path
I Ladder J Cycle K Manystars L Alphabetic

(e) (1 pt.) is transformed into an instance of

A Graph colouring B 3-dim. matching C Independent set D Set Cover
E Vertex cover F 3-satisfiability G Travelling salesman H Hamiltonian path
I Ladder J Cycle K Manystars L Alphabetic

(f) (4 pt.) Describe the reduction on a separate piece of paper. Do this both in general and for a small
but complete example. I cannot stress how imporant such an example is: do it! In particular, be
ridiculously precise about the paramters of the instance you produce (for example number of ver-
tices, edges, sets, colors) in terms of the parameters of the original instance, what the solution of the
transformed instance means in terms of the original instance, etc.

2If P = NP then all these problems are NP-hard. Thus, in order to avoid unproductive (but hypothetically correct) answers from
smart alecks, this section assumes that P 6= NP.

