
Exam EDAF05
26 May 2014, 8–13, Vic2

Thore Husfeldt

Instructions
What to bring. You can bring any written aid you want. This includes the course book and a dictionary. In fact, these
two things are the only aids that make sense, so I recommend you bring them and only them. But if you want to bring
other books, notes, print-out of code, old exams, or today’s newspaper you can do so. (It won’t help.)

You can’t bring electronic aids (such as a laptop) or communication devices (such as a mobile phone). If you really
want, you can bring an old-fashioned pocket calculator (not one that solves recurrence relations), but I can’t see how
that would be of any use to you.

Filling out the exam Some questions are multiple choice. Mark the box or boxes with a cross or a check-mark. If you
change your mind, completely black out the box and write your answer’s letter(s) in the left margin. In case it’s unclear
what you mean, I will choose the least favourable interpretation.

In those questions where you have to write or draw something, I will be extremely unco-operative in interpreting
your handwriting. So write clearly. Use English or Swedish. If there is a way to misunderstand what you mean, I will
use it.

Scoring For the free form choice questions, you get between 0 and the maximum number of points for that question.
Short, correct answers are preferred.

Each multiple choice question has exactly one correct answer. To get the maximum score for that question, you must
check that answer, and only that. However, to reflect partial knowledge, you may check several boxes, in case you’re
not quite sure (this lowers your score, of course – the more boxes you check, the fewer points you score). If you check
no boxes or all boxes, your score for that question is 0. If the correct answer is not among the boxes you checked, your
score is negative, so it’s better to not answer a question where you’re on very thin ice. The worst thing you can do is to
check all boxes except the correct one, which gives you a large negative score.

Want an example? Assume a question worth maximum 2 points has k = 4 possible answers (one of them correct).

• If you select only the correct answer, you receive 2 points.

• If you select 2 answers, one of which is correct, you receive 1 point.

• If you select 3 answers, one of which is correct, you receive 0.41 points.

• if you select no answer or all answers, you receive 0 point.

• If you select only one answer, and it is wrong, you receive −0.67 points.

• If you select 2 answers that are both wrong, you receive −1 point.

• If you select 3 answers that are all wrong, you receive −1.25 points.

As a special case, for a yes/no question, you receive 1, 0, or −1 points, depending on whether your answer is correct,
empty, or wrong.

If you want to know the precise formula: if the question has k choices, and you checked a boxes, your score is
log(k/a), provided you checked the correct answer, and −a log(k/a)/(k − a) if you only checked wrong answers.
Moreover, I have weighted the questions by relevance (not necessarily difficulty), and indicated the maximum points
with each question.

You really care why this scoring system makes sense? Then read [Gudmund Skovbjerg Frandsen, Michael I.
Schwartzbach: A singular choice for multiple choice. SIGCSE Bulletin 38(4): 34–38 (2006)]. For example, random
guessing will give you exactly 0 points, at least in expectation.



/ – Page 2 of 9 – Name:

Subtree

In this exercise, we consider a rooted binary tree G.

Algorithms Lecture 1: Recursion

(a) How many cells are there, as a function of n? Prove your answer is correct.

(b) In the worst case, exactly how many cells can a horizontal line cross, as a function of n?
Prove your answer is correct. Assume that n= 2k � 1 for some integer k.

(c) Suppose we have n points stored in a kd-tree. Describe and analyze an algorithm that counts
the number of points above a horizontal line (such as the dashed line in the figure) as quickly
as possible. [Hint: Use part (b).]

(d) Describe an analyze an efficient algorithm that counts, given a kd-tree storing n points, the
number of points that lie inside a rectangle R with horizontal and vertical sides. [Hint: Use
part (c).]

13. You are at a political convention with n delegates, each one a member of exactly one political
party. It is impossible to tell which political party any delegate belongs to; in particular, you will
be summarily ejected from the convention if you ask. However, you can determine whether any
two delegates belong to the same party or not by introducing them to each other—members of the
same party always greet each other with smiles and friendly handshakes; members of different
parties always greet each other with angry stares and insults.

(a) Suppose a majority (more than half) of the delegates are from the same political party.
Describe an efficient algorithm that identifies a member (any member) of the majority party.

(b) Now suppose exactly k political parties are represented at the convention and one party
has a plurality: more delegates belong to that party than to any other. Present a practical
procedure to pick a person from the plurality political party as parsimoniously as possible.
(Please.)

14. The median of a set of size n is its dn/2eth largest element, that is, the element that is as close
as possible to the middle of the set in sorted order. In this lecture, we saw a fairly complicated
algorithm to compute the median in O(n) time.

During your lifelong quest for a simpler linear-time median-finding algorithm, you meet and
befriend the Near-Middle Fairy. Given any set X , the Near-Middle Fairy can find an element m 2 X
that is near the middle of X in O(1) time. Specifically, at least a third of the elements of X are
smaller than m, and at least a third of the elements of X are larger than m.

Describe and analyze a simple recursive algorithm to find the median of a set in O(n) time if
you are allowed to ask the Near-Middle Fairy for help.

15. For this problem, a subtree of a binary tree means any connected subgraph. A binary tree is
complete if every internal node has two children, and every leaf has exactly the same depth.
Describe and analyze a recursive algorithm to compute the largest complete subtree of a given
binary tree. Your algorithm should return the root and the depth of this subtree.

The largest complete subtree of this binary tree has depth 2.

16

In particular, every vertex has 0, 1, or 2 children, there are no cycles, and G is connected. There is a single
root.

Our task is to find a largest perfect subtree. (Recall that a binary tree is perfect if all leaves are at the same
depth and every non-leaf has exactly 2 children.) A largest perfect subtree with 7 vertices is shown above.

Input

A description of the tree as a directed graph, oriented towards the leaves.

Output

The depths of a largest perfect subtree. (Let’s agree that a single node has depth 1.)

Input:
1-->2 1-->3 2-->4 2-->5 3-->6 4-->7 4-->8 5-->9 5-->10 6-->11

6-->12 8-- 7-->11 7-->12 8-->13 8-->14 9-->15 9-->16 12-->17

12-->18 13-->19

Output:
3



/ – Page 3 of 9 – Name:

Clearance

Consider a weighted, undirected graph G, like this one:

Algorithms Lecture 12: Minimum Spanning Trees

2. Let G = (V, E) be an arbitrary connected graph with weighted edges.

(a) Prove that for any partition of the vertices V into two subsets, the minimum-weight edge
with one endpoint in each subset is in the minimum spanning tree of G.

(b) Prove that the maximum-weight edge in any cycle of G is not in the minimum spanning tree
of G.

(c) Prove or disprove: The minimum spanning tree of G includes the minimum-weighted edge
in every cycle in G.

3. Throughout this lecture note, we assumed that no two edges in the input graph have equal weights,
which implies that the minimum spanning tree is unique. In fact, a weaker condition on the edge
weights implies MST uniqueness.

(a) Describe an edge-weighted graph that has a unique minimum spanning tree, even though
two edges have equal weights.

(b) Prove that an edge-weighted graph G has a unique minimum spanning tree if and only if the
following conditions hold:

• For any partition of the vertices of G into two subsets, the minimum-weight edge with
one endpoint in each subset is unique.
• The maximum-weight edge in any cycle of G is unique.

(c) Describe and analyze an algorithm to determine whether or not a graph has a unique
minimum spanning tree.

4. (a) Describe and analyze an algorithm to compute the maximum-weight spanning tree of a given
edge-weighted graph.

(b) A feedback edge set of a graph G is a subset F of the edges such that every cycle in G contains
at least one edge in F . In other words, removing every edge in F makes the graph G acyclic.
Describe and analyze a fast algorithm to compute the minimum weight feedback edge set of
of a given edge-weighted graph.

5. Consider a path between two vertices s and t in an undirected weighted graph G. The bottleneck
length of this path is the maximum weight of any edge in the path. The bottleneck distance
between s and t is the minimum bottleneck length of any path from s to t. (If there are no paths
from s to t, the bottleneck distance between s and t is1.)

s

t

1 11

7

128

5

10

9

2

3

6

4

The bottleneck distance between s and t is 5.

7

The weights are security levels. To travel along an edge of security level w you need security clearance ≥ w.
In the above example, you can travel from s to t if you have security clearance 5 or higher. (Walk along the
highlighted path.)

The number of vertices is n, the number of edges is m. The weights are n-bit integers.

Input

The edges a weighted graph (endpoints separated by --, followed by the weight in parentheses), followed
by s and t.

Output

The smallest c so that you can get from s to t using clearance c.

Input:
1--2 (1)

1--3 (11)

2--3 (6)

2--4 (4)

2--5 (5)

3--4 (3)

3--6 (7)

4--5 (10)

4--6 (2)

4--7 (9)

5--7 (8)

6--7 (12)

5

3

Output:
5



/ – Page 4 of 9 – Name:

Long

In this exercise, the graph G is directed and that the vertices v1, v2, . . . , vn are topologically ordered. (Recall
that this means that if there is a directed edge from from vi to vj then i < j.) There are m edges.

v1 v2 v3 v4 v5 v6 v7

The task is to find a path of maximum length in G. In the above example, there is a path consisting of 4
edges: v1, v4, v5, v6, v7. The longest path in the example consists of 5 edges. (Find it!)

Input

A description of the directed graph G. All edges have weight 1. You can assume it is topologically ordered.

Output

The length of a longest path in G (an integer).

Example:

Input:
1 -> 4

1 -> 5

1 -> 7

2 -> 3

2 -> 5

2 -> 6

3 -> 4

3 -> 5

4 -> 5

5 -> 6

5 -> 7

6 -> 7

Output:

5



/ – Page 5 of 9 – Name:

V

This exercise considers an undirected, unweighted, bipartite graph G with 3n vertices. There are n vertices
in the left part L and 2n vertices in the right part R. No edges connect two vertices in L and no edges
connect two certices in R. There are m edges.

The task is to find a V-matching. In such a matching, every vertex in L picks exactly 2 vertices in R. No
vertex in R is picked twice. (It looks a bit like a bunch of Vs lying on the side, hence the name.) Here’s an
example for n = 2; the input graph is to the left and a V-matching is shown to the right.

1

2

3

4

5

6

1

2

3

4

5

6

Input

The input describes the edges of G.

Output

Yes or no: does G admit a V-matching?

Input:
1--3 1--4 1--6 2--3 2--4 2--5

Output:
yes



/ – Page 6 of 9 – Name:

Crossing

In this exercise, G is an unweighted, undirected, connected graph. There are n vertices and m edges.
A crossing in a spanning tree is an internal vertex with more than two neighbours. In the example

spanning tree to the right, there are two crossing vertices: vertex 3 and vertex 6.

1

2

3

4

5

6

7

8

9

1

2

3

4

5

6

7

8

9

The task is to find a spanning tree with no more than k crossings for given k.

Input

k, followed by a description of the graph. You can assume that the graph is connected.

Output

The edges of a spanning tree with at most k crossings, or impossible.

Input:
2

1--2 1--4 1--7 2--3 2--5 3--4 3--5

3--6 4--6 4--9 5--6 5--9 6--7 6--8

8--9

Output:
1--2 2--3 3--4 4--6 6--8 8--9 3--5

6--7



/ – Page 7 of 9 – Name:

Exam Questions

Analysis of algorithms

1.

(a) (1 pt.) How many stars are printed?
for (int i = N; i > 1; i = i/2) StdOut.print("*");

A O(log N) B O(N) C O(N log N) D O(N2)

(b) (1 pt.) How many stars are printed when I call f (N)?
static void f(int K)

{ for (int i = 0; i < K; i = i+1) g(i); }

static void g(int K)

{ for (int i = 0; i < K; i = i+1) StdOut.print("*"); }

A O(log N) B O(N) C O(N log N) D O(N2)

Divide-and-conquer

2. One of the problems in the set can be solved by divide-and-conquer.
(a) (1 pt.) Which one?

A Subtree B Clearance C Long D V E Crossing
(b) (3 pt.) Describe your solution. Use code, pseudocode, drawings—whatever it takes. Make it clear

what the arguments to the recursive call are, what a recursive call returns (it’s type, at least), and how
the returned results are combined.

(c) (1 pt.) The total running time is (give the smallest correct estimate)

A O(log n). B O(n). C O(n log n). D O(m log m).

Graph connectivity

3. One of the problems can be solved in polynomial time with a standard graph traversal or connectivity
algorithm (BFS, DFS, MST, Dijkstra, connected components, etc.)
(a) (1 pt.) Which one?

A Subtree B Clearance C Long D V E Crossing
(b) (2 pt.) Describe you algorithm in the box below. Be short and concise. (There is a one-sentence

answer. If you do need more space write “see page xxx” and use a separate piece of paper.) State the
running time in terms of the original parameters of the problem.



/ – Page 8 of 9 – Name:

Dynamic programming

4. One of the problems is solved by dynamic programming.
(a) (1 pt.) Which one?

A Subtree B Clearance C Long D V E Crossing
(b) (4 pt.) Following the book’s notation, we let OPT(i, j) (or OPT(i)? who knows?) denote the value of

a partial solution. Then OPT satisfies1

A

OPT(i, j) =

{
1 + min{OPT(i− 1, j), OPT(i− 1, j− 1), OPT(i, j− 1)} , if c > w,
0 , otherwise.

B

OPT(i, j) =

{
OPT(i + 1, j− 1) , if c > w,
1 + min

(
OPT(i + 1, j), OPT(i, j− 1), OPT(i + 1, j− 1)

)
, otherwise.

C
OPT(i) = 1 + max

j>i
{OPT(j) : (i, j) ∈ E }

D
OPT(i, j) = w(i, j) + max

j
{OPT(i− 1, j) }

E
OPT(i, j) = min

j−1≤k≤j+1
{OPT(i− 1, k) + 1 }

F

OPT(i, j) =

{
OPT(i− 1, j) if c > w(i, j)
max{OPT(i− 1, j), 1 + OPT(i− 1, j− 1)} otherwise

G
OPT(i) = max{OPT(i− 1), c + OPT(i− 2)}

(c) (1 pt.) State the running time of the resulting algorithm. (Choose the smallest correct estimate.)

A O(n) B O(m) C O(nm) D O(n2)

(d) (1 pt.) State the space usage of the resulting algorithm. (Choose the smallest correct estimate.)

A O(n) B O(m) C O(nm) D O(n2)

Network flow

1There may be other cases, in particular, boundary conditions such as maybe for OPT(1, 1) or OPT(n, 0) or i = j, etc. Don’t worry
about them. This question is just about the most central part of the recurrence relation, otherwise this exercise becomes too large.



/ – Page 9 of 9 – SOLUTIONS

5. One of the problems in the set is easily solved by a reduction to network flow.
(a) (1 pt.) Which one?

A Subtree B Clearance C Long D V E Crossing
(b) (3 pt.) Draw the resulting network for the example instance. Make sure your draw all nodes, all

edges, and all capacities. (I’ve started by already drawing the source and the sink for you.)

s t

(c) In general, the number of nodes in the resulting graph in terms of the original problem’s parameters
is: (Choose the smallest correct estimate). (1 pt.)

A O(n) B O(m) C O(nm) D O(n + m)

Computational complexity

6. One of the problems in the set is NP-hard.2

(a) (1 pt.) Which problem is it? (Let’s call it P1.)

A Subtree B Clearance C Long D V E Crossing
(b) (1 pt.) The easiest way to see that is to take the following NP-hard problem, called P2,

A Graph colouring B 3-dim. matching C Independent set D Set Cover
E Vertex cover F 3-satisfiability G Travelling salesman H Hamiltonian path

(c) (1 pt.) and prove

A P1 ≤P P2 B P2 ≤P P1
(d) (5 pt.) Describe the reduction on a separate piece of paper. Do this both in general and for a small

but complete example. In particular, be ridiculously precise about what instance is given, and what
instance is constructed by the reduction, the parameters of the instance you produce (for example
number of vertices, edges, sets, colors) in terms of the parameters of the original instance, what the
solution of the transformed instance means in terms of the original instance, etc. Please, please,
please start your answer with words like this “Given an instance to problem blabla, . . .,”.

2If P = NP then all these problems are NP-hard. Thus, in order to avoid unproductive (but hypothetically correct) answers from
smart alecks, this section assumes that P 6= NP.


