
Exam in Operating Systems (EDAF35)
2018-08-30, 08:00–13:00

Inga hjälpmedel! No external resources allowed!

Examiner: Flavius Gruian, tel 046 2224518

25 out of 50p are needed to pass the exam.
You may answer in English/på svenska.

1. (6p) Define the following terms (1–2 sentences each):

(a) (1p) kernel space

(b) (1p) processor affinity

(c) (1p) translation look-aside buffer (TLB)

(d) (1p) file control block

(e) (1p) port I/O

(f) (1p) race condition

2. (6p) Describe/explain concepts:

(a) (3p) Describe the concept of journaling in file systems.

(b) (3p) Explain deadlocks and give strategies for managing them (at least two).

3. (12p) Compare/discuss:

(a) (6p) Define and compare user threads vs. kernel threads. In this context, discuss advan-
tages and drawbacks fo one-to-one, many-to-one and many-to-many mapping strategies.

(b) (6p) In the context of memory management, compare linear page tables, two-level page
tables and hashed page tables. Give at least one advantage and one drawback for each.

4. (10p) Assuming demand paging with three (3) frames, and the following page reference string
1 2 2 3 1 1 4 2 1 3 4 3 1 2 1 4 3 4 1 3

Show the page table contents for every access and count the page faults for

(a) (4p) a LRU page replacement strategy, and for

(b) (4p) an optimal replacement strategy.

(c) (2p) Compare the results and the feasibility of the strategies.

5. (8p) Consider the less inspired dots.c program (next page) using fork() and POSIX pthreads
(on Linux, kernel ≥2.6). The program is compiled into a.out. Assuming no errors occur,

(a) (2p) Which lines can result in system calls? How about the pthread_* calls?

(b) (3p) How many dots (".") does the program output when run with "./a.out"? Motivate.

(c) (3p) What if you run it with "./a.out 1 2 3 4"? Why?

Hint: Be extra-careful with execv(...).

1

Listing 1: dots.c

1 #include <pthread.h>
2 #include <stdio.h>
3 #include <unistd.h>
4

5 void *run(void *ptr)
6 {
7 char** ss = ptr;
8 if(ss[1] != NULL) execv("./a.out",&ss[1]);
9 fprintf(stderr, ".");

10 return ptr;
11 }
12

13 int main(int argc, char **argv)
14 {
15 pthread_t thread[2];
16 pthread_create(&thread[0], NULL, run, (void *) &argv[0]);
17 pthread_create(&thread[1], NULL, run, (void *) &argv[0]);
18 if(fork()) fprintf(stderr,"b");
19 else fprintf(stderr,"a");
20 pthread_join(thread[0],NULL);
21 pthread_join(thread[1],NULL);
22 return 0;
23 }

6. (8p) The readers-writers problem is a classic synchronization problem you should be familiar
with already. Consider the following solution (pseudo-code) suggested by a forgetful engineer:

Listing 2: Erroneous Readers-Writers

1 /* code for a writer */
2 do {
3 wait(rw_mutex);
4 /* do some writing */
5 signal(rw_mutex);
6 } while(true);
7

8 /* code for a reader */
9 do {

10 wait(mutex);
11 reads++; / / zero in i t i a l l y
12 if(reads==1) wait(rw_mutex);
13 /* do some reading */
14 reads--;
15 if(reads==0) signal(rw_mutex);
16 signal(mutex);
17 } while(true)

(a) (4p) What is the problem with this code? What is missing? (add two lines)

(b) (4p) When fixed according to (a), are there any issues with this solution?

2

