
Contents of Lecture 3

UNIX Shell programming
UNIX commands

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

Why Shell Programming?

A program written for a shell is called a shell script.
Shell scripts are (almost always) interpreted (there is a
company in the USA which sold shell-compilers but they now
focus on selling C++ compilers instead).
Shell programs have some advantages over C programs:

More convenient to write when dealing with files and text
processing.
The building blocks of the shell are of course all the usual
UNIX commands.
More portable.

However, the shell is slower than compiled languages.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

Different Shells

There are a number of shells.
Bourne shell is the original but lacked many features eg name
completion.
The csh and tcsh have different syntax but were more
advanced.
The Korn shell was written at Bell Labs as a superset of
Bourne shell but with modern features.
The GNU program Bourne Again Shell, or bash, is similar to
Korn shell.
We will focus on bash.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

Bash as Login Shell

Every user has a path to the login shell in the password file.
When you login, and have bash as login shell, bash will process
the following files:

/etc/profile
First found in $HOME of .bash_profile, .bash_login,
.profile.

When the login shell terminates, it will read the file
.bash_logout.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

Interactive Non-Login Shell

An interactive shell is, of course, one which one types
commands to.
A non-interactive shell is one which is executing a shell script.
An interactive shell which is not the login shell executes the
file .bashrc.
There is a file /etc/bashrc but it is not automatically read.
To read it automatically, insert source /etc/bashrc in your
.bashrc.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

Non-Interactive Shell

Non-interactive shells do not start with reading a specific file.
If the environment variable $BASH_ENV (or $ENV if the bash
was started as /bin/sh) contains a file name, then that file is
read.
The first argument to bash itself, contains the program name,
so echo $0 usually prints bash.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

Source Builtin Command

To ask the current shell to read some commands use the
source filename command.
You can use . instead of source.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

Aliases and Noclobber

UNIX commands perform their tasks without asking the user
whether he/she really means what he/she just typed. This is
very convenient (most of the time).
For instance the rm command has an option -i to ask for
confirmation before a file is removed.
Sometimes people put the command alias rm=’rm -i’ in a
bash start file.
A similar feature is to use the command: set -o noclobber
which avoids deleting an existing file with I/O redirection (eg
ls > x).
All such features should be avoided (in my opinion) since they
just reduce productivity and make people think UNIX is a safe
place.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

I/O Redirection

Common directives include:

< file: Use file as stdin.
> file: Use file as stdout.
>> file: Append output to file.
2> file: Use file as stderr.
2>&1 : Close stderr and dup stdout to stderr.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

Shell Script Basics

The first line should contain the line #!/bin/bash

To make the script executable, use chmod a+x file.
A line comment is started with #.
Commands are separated with newline or semicolon.
Backslash continues a command on the next line.
Parenthesis group commands and lets a new shell execute the
group.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

More about Parenthesis

A subshell has its own shell variables such as current directory.
The builtin cd does not read from stdin, so we can pipe as
follows:
We can now type
(cd ; ls) | (cd ˜/Desktop; cat > ls-in-home)

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

Shell Variables

Shell variables do not have to be declared — just assign to
them:
$ a=unix
$ echo $a
$ b=wrong rm can have unexpected results
$ c="wrong rm can have unexpected results"

The difference between the last two assignments is significant.
A shell variable is by default local to the shell but can be
exported to child processes using: $ export a.
C/C++ programs get the value using char* value =
getenv("VAR");.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

Using Shell Variables

Use a dollar sign before the name to get the value: $HOME.
If you wish to concatenate a shell variable and a string, use
${VAR}suffix

without it you would get the wrong identifer
VARsuffix

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

More about Using Shell Variables

The value of ${var-thing} is $var if var is defined,
otherwise thing were thing is not expanded. Value of var is
unchanged.
The value of ${var=thing} is $var if var is defined,
otherwise thing; and var is set to thing.
The value of ${var+thing} is thing if var is defined,
otherwise nothing.
The value of ${var?message} is $var if var is defined,
otherwise a message is printed and the shell exits.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

PS1 and PS2

The prompts, $ and > are called the primary and secondary
prompts. These were the original values of these and they are
stored in PS1 and PS2.
For the root user, the prompt is #.
It is possible to get a more informative prompt by using the
escapes: e.g. PS1="\w "
\$ # if root, otherwise dollar.
\! Current history number (see below).
\w Pathname of working directory.
\W Basename of working directory.
\h Hostname.
\H Hostname including domain.
\u User.
\t 24-hour time.
\d Date.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

Reexecuting Commands with a Builtin Editor

To reexecute a command, use either the builtin editor (vi or
emacs) as specified in your .inputrc file.
.inputrc can contain eg set editing-mode vi.
Using the editor is very convenient since you can change the
command if it didn’t work as expected. Simply hit ESC (for vi).
This is a convenient way to experiment with new commands.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

Reexecuting Commands with an Exclamation

Commands available include:
!! Reexecute most recent command.
!n Reexecute command number n.
!−n Reexecute the nth preceding command.
!string Redo the most recent command starting with string.
!?string Redo the most recent command containing with string.

The last word on the previous command can be refered to as
!$

$ /usr/sbin/adduser rodeorm # beware of adduser
$ passwd !$ # and useradd!

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

Quotation Marks

There are three kinds of quotation marks:
in a string enclosed by ": variables are expanded.
in a string enclosed by ’: variables are not expanded.
the value of ‘string‘ is the stdout from executing string as
a command and removing each trailing newline character:
$ rm -rf ‘du -ks * | sort -n | awk ’ { print $2 } ’‘ # remove big
file/directory
Note: the last form is equivalent to $(command).

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

Here Documents

Sometimes it can be useful to provide the input to a script in
the script file. The input is right ”here” .
$ cat phone
grep "$*" <<End
Office 046 222 9484
Mobile 0767 888 124
$X
End

Above script contains both the command and the input.
The variable X is expanded; suppress this behaviour by
preceding End with a backslash on first line.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

Functions

function fun()
{

echo $1 # echo first argument
echo $2 # echo second argument

}

The keyword function is optional.
A function must be declared before it can be used.
A function can be used as if it was any other UNIX command,
ie no parenthesis when the function is called (ie not even for
passing arguments).

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

Simple Shell Syntax

a && b executes b only if a succeeds (ie returns 0).
a || b executes b only if a fails (ie returns nonzero).
The following commands can cause unhappiness if you run out
of disk space during tar:
$ tar cf dir.tar dir; rm -rf dir; bzip2 -9v dir.tar

This is better:
$ tar cf dir.tar dir && rm -rf dir && bzip2 -9v dir.tar

Edit-compile-run without leaving the keyboard:
vi a.c && gcc a.c && a.out

But it is better to remap e.g. v, V, or t in vi to run make

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

For Loops

Iterate through certain files in your the current directory:
for x in *.c
do

lpr $x
done

or through all argumets passed to a script:
for x in $*
do

lpr $x
done

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

More for Loops

You can also iterate through a string:
a="x y z"
for s in $a
do

echo $s
done

Or simply a list:
for s in a b c
do

echo $s
done

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

While and Until

while command
do

body # do body while command returns true
done

until command
do

body # do body while command returns false
done

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

If-Then-Else-Fi

if command
then

then-commands
[else

else-commands]
fi

if ! command
then

then-commands
[else

else-commands]
fi

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

Case

case word in
pattern1) commands;;
pattern2) commands;;
*) commands;;
esac

Nothing happens if no pattern matches: putting *) last makes
a default.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

cmp, diff, and ndiff

cmp reports whether two files are equal.
diff does the same but also shows how they differ.
ndiff is a variant for which one can specify numerical
differences which should be ignored.
ndiff is not standard but easy to find.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

cut

cut cuts out characters from each line of stdin
ls -l | cut -c2-10 prints the rwx-flags of the files.
The first character on a line is c1.
Multiple ranges can be specified:
ls -l | cut -c2-10 -c51-55 also prints five characters
from the file name.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

find

Example: find . -name ’*.c’. The output will be a list of
files (with full path) with suffix c.
We can feed that list to wc using:
wc ‘find . -name ’*.java’‘

The default action is to print the file name.
A number of criterions can be specified, including

1 -anewer filename selects files newer than filename.
2 -type type selects files of type type which is one of b,c,d,f,

l, p, or s (with the same meaning as printed by ls -l: block
special file (eg disk), character special file (eg usb port),
directory, ordinary file, symbolic link, name pipe, or socket).

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

cleanfiles

find . -name *.tac.??? -exec rm ’{}’ \;
find . -name *.pr -exec rm ’{}’ \;
find . -name cmd.gdb -exec rm ’{}’ \;
find . -name *.ps -exec rm ’{}’ \;
find . -name *.dot -exec rm ’{}’ \;
find . -name *.aux -exec rm ’{}’ \;
find . -name *.o -exec rm ’{}’ \;
find . -name out -exec rm ’{}’ \;
find . -name x -exec rm ’{}’ \;
find . -name y -exec rm ’{}’ \;
find . -name a.out -exec rm ’{}’ \;
find . -name cachegrind.out.* -exec rm ’{}’ \;

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

awk

Stands for Aho (from the Dragonbook), Weinberger (from
hashpjw in the Dragonbook), and Kernighan (K in K&R C).
Each line of input is separated into fields and are denoted $1,
$2,
Assume a variable is called X and has value 2. Then $X refers
to the second field.
The entire line is $0, number of fields on a line is denoted NF,
and line number is NR.
Each line in an awk program has a pattern and an action.
If a line in the input matches the pattern, the action is
executed.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

Example awk programs

$ awk ’{ print $1, $5; }’ # print first and fifth item.
$ awk ’$1 > 10 { print $1, $2; }’ # print first two items if $1 is > 10.
$ awk ’NR == 10’ # print tenth line.
$ awk ’NF > 4’ # print each line with > 4 fields.
$ awk ’NF > 0 ’ # print each nonempty line.
$ awk ’$NF > 4 ’ # print each line with last field > 4.
$ awk ’/abc/ ’ # print each line containing abc.
$ awk ’/abc/ { n = n + 1; }\

END { print n;}’ # print number of lines containing abc.
$ awk ’length($0) > 80’ # print each line longer than 80 bytes.

The END pattern matches at EOF. There is also a BEGIN
pattern which is matched before the first character is read.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

head and tail

head prints the first 10 lines of a file (or stdin).
head -100 prints the first 100 lines of a file (or stdin).
tail prints the last 10 lines of a file (or stdin).
tail -100 prints the last 100 lines of a file (or stdin).
tail -f file like normal tail but at EOF waits for more data.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

od

Octal dump
od file dumps the file contents on stdout in as octal
numbers.
od -c file prints file as characters.
od -x file prints file as hex numbers.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

sed

sed stands for stream editor.
It can be useful for eg changing prefixes in a Yacc generated
parser:
sed ’s/yydebug/pp_debug/g’ y.tab.c > tmp;mv tmp
y.tab.c

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

grep

Grep searches for a pattern in files.

GNU grep has the useful -r option which traverses directories.

In basic regular expressions ?, +, braces, parentheses and bar (ie |)
have no special meaning. Backslash them to get that.

In extended regular expressions, enabled with -E, above characters
are special. More about that on next slide.

$ grep abc # matches line with abc.
$ grep -e ’[abc]’ # matches line with any of a, b, or c.
$ grep -e ’[^abc]’ # matches line with none of a, b, or c.
$ grep -e ’[^ab-d]’ # matches line with none of a, b, c, or d.
$ grep ab*c # matches line with ac, abc, abbbbbc.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

grep -E

$ grep -E -e ’a|b’ # matches line with a or b.
$ grep -E -e ’a|bc’ # matches line with a or bc.
$ grep -E -e ’(a|b)c’ # matches line with a or b, followed by c.
$ grep -E -e ’(a|b)?c’ # ? denotes optional item.
$ grep -E -e ’(a|b)+c’ # + denotes at least once.
$ grep -E -e ’(a|b)*c’ # + denotes zero or more.
$ grep -E -e ’(a|b){4}c’ # {4} matches pattern four times.

Without -E use backslash before above metacharacters.
Without ’ the shell will try to setup a pipe.

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

sort and uniq

sort file sorts a file alphabetically.
sort -n file sorts a file numerically.
uniq removes duplicates line if found in sequence

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

svi

vi -c /$1 ‘egrep -e $1 *.[ch] */*.[ych] |
awk -F: ’ { print $1; } ’ |
uniq |
sort‘

What does this script do?

Jonas Skeppstedt js@cs.lth.se

Lecture 3

js@cs.lth.se

