EDAF35: OPERATING SYSTEMS

MODULE 1
INTRODUCTION, OVERVIEW




EDAF35 MODULE 1
CONTENTS

* Introduction:
Motivation, OS Roles, Course Aim, Prerequisites (Quick Recap)

* Organization:
Lectures, Laboratories, Project, Examination, Support

 Qverview of an OS:
Views, Components, Functionality, Examples

(Material loosely based on the course book, Chapters 1 and 2)




WHAT IS AN OPERATING SYSTEM?

INTRODUCTION

Convenient and/or Efficient




(THE UNIX/LINUX TIMELINE)

INTRODUCTION =
1970 1980 1990 2000 2010 Time |
P — T———— T — —— — ' — ' ' Y — e p— e p— -
11.0
DragonFly BSD &l el
Matthew Dillon i
BSD family :
OpenBSD 6.1 ==
—>| BSD (Berkeley Software Distribution) 4.4 ' THeq 98 aady P
, O )=
Giioy —#= SUnOS 4.1.4 =
Darwin 16.4 - |
NextStep 3.3 | -
i w T i
| Xenix OS ' Apple ' (/7
b GNU/Hurd 09 Linux Distributions | e —
= s > /“/"""\.‘ A“-;’ =
----------------------- >|—Minix£ 3.4 ‘ =
Andrew S. lanenbaum » "
| G a1 JN [ | —
Bell Labs.: Ken Thompson, | . [~ . . ___ -
Dennis Ritchie, et al. " 1mercialUNIX | UnixWare ' VRN
ATET UNIVE - e
| Solaris 11.3 _ =
| un/Oracle
System Il & V family = HpP-ux 1liv3 '
AIX 7.2 =

P‘. IRIX 6.5.30 '



https://upload.wikimedia.org/wikipedia/commons/1/1b/Linux_Distribution_Timeline.svg

BUT WHAT IS AN OPERATING SYSTEM?
INTRODUCTION

M) 2%%28 Executable
11110

|deally:
download and run

simple and to the point ‘ on any platform

Code
once

OPERATING SYSTEM | ‘ Kernel (always running)




FOUR COMPONENTS OF A COMPUTER SYSTEM
INTRODUCTION

user user user user
Users 1 5 3 s .
compiler assembler text editor S database
system Applications

system and application programs

operating system

OS

firmware

Hardware computer hardware




OS ROLE 1: ABSTRACT MACHINE
INTRODUCTION

* Presents a standard set of high-level abstractions
» Extends the hardware with more functionality

» Abstracts away from hardware details

2 Programmer friendly, Portable code, Reusable/common core




OS ROLE 2: RESOURCE MANAGER

INTRODUCTION

* Allocates resources for users/applications

(processor time, memory, disk space, device access, network bandwidth, etc.)

e Ensures:

progress, policies, safety/error handling, etficient use of resources

2 Safe interaction between applications, safe and fair use of hardware




COURSE AIM
INTRODUCTION

* General elements and principles in OS

» User, application programmer, and OS developer viewpoints

» OS design and implementation choices, internal operations
» hand-on experience in laboratory and project assignments
» more experience with C and related development tools

» Examples of the above in specific OS

» focus on Linux and related




ASSUMED BACKGROUND KNOWLEDGE

INTRODUCTION

» Data structures and algorithms (EDAAO1)
 Good to have at least:

» Some computer organization and architecture (e.g. EITF20)

» Some concurrent or real-time programming (e.g. FRTNO1, EDAP10)

* Minimal networking/web programming (e.g. EDAF90)

» Some programming experience (Java, even better: C)

» Minimal contact with development tools (git, shell, make, grep, gdb, ...)




DATA STRUCTURES IN OS

QUICK REMINDER

HIsts Hash Maps
12 .__> 99 .__) 37 .__>|X| keys buckets entries

000 | X

01 e+ X Lisa Smith 521-8976
John Smith
B e = e = F_)E 002 | x
|X|<7 12 K—/. 99 L/. 37 S |k ® | John Smith 521-1234
1ISda omi
By Lasindi - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=2194027 151 | X ¢
( 1 2 .__> 99 .__} 37 , Sam Doe E X Sandra Dee 521-9655
/ Sandra Dee 1o N
: X Ted Baker 418-4165
Ted Baker zzi :
- M X | Sam Doe 521-5030
255 | X

By Jorge Stolfi - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6471915

Bitmaps

0 bits (ON/OFF) N

By CyHawk - Own work based on [1]., CC BY-SA 3.0, https://comm




COMPUTER SYSTEM ARCHITECTURE

QUICK REMINDER

mouse

disks

keyboard

printer

disk

CPU (s)
controller

USB controller

memory

I—;I—I—I

monitor

Bl

graphics
adapter




STORAGE DEVICE HIERARCHY
QUICK REMINDER

registers In or close to the CPU
Fast, but Small s

(capacity)! | The CPU works

cache
A on these

main memory Volatile

% Persistent
solid-state disk

A

hard disk

optical disk

—

Large’ bUt SIOW! magnetictapes Far away fI‘Om the CPU




COMPUTER ARCHITECTURES
QUICK REMINDER

von Neumann Harvard modified Harvard:

»split-cache
pinstruction-memory-as-data

CPU CPU

ARITHMETIC/
LOGIC UNIT

INUGTYae : :
LOGIC UNIT »data-memory-as-instruction

ALU

I

INSTRUCTIONS
MEMORY

/O
DEVICES

/O
DEVICES




BEYOND SINGLE PROCESSOR SYSTEMS

QUICK REMINDER

SMP - Symmetric Multiprocessor System
vs. Asymmetric Multiprocessing

Main
Memory

- System Bus ]

Cache | Cache I

k

Cache l

I/O

1y I'erruccio Zulion - Milan. 1 taly

NUMA - Non-Uniform Memory Architecture
vs. UMA

STIT W TTT

BUS | BUS |

* e 0
By Ferry24.Milan - Own work, CC BY-SA 3.0, https://commons.wikimedi

a.org/w/index.php?curid=17202548

By Moop2000 - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=11693791




COURSE
ORGANIZATION




COURSE OVERVIEW

ORGANIZATION

» Staft (Dept. of Computer Science):

* Lecturer: Flavius Gruian (Associate Professor of Embedded Systems); Office E:2125b
* Lab assistant: Alexandru Dura (PhD student)

e Books

» Silberschatz, Galvin & Gagne, “"Operating Systems Concepts” 9th ed. - the dinosaur
book

 (adv.) R. Love, “Linux Kernel Development” 3rd ed.

« Website:



http://cs.lth.se/edaf35

2 I f\hﬁ-l- I\IF\ E ’)1 ']A !pt\r\nl A4 'I'L\I\ LIF BV I\IJ 4 11 nnlﬂs !Jl I

|ECTURES OVERVIEW

ORGANIZATION

11 content (1 guest) + 1 preparatory for exam

2/week up to L8, 1/week after that

L

u

for

m

f\ ) = N
W - e ® \vviévase -iiv @ iE BN - v\dli\- T ol 1% WA \.' L Y | v

\ ZOOM!
/ CHECK THE COURSE PAGE

Much as self-study: watch pre-recorded video lectures + 1h Q/A

Covering mainly the dinosaur book chapters (overviews)

Consult the course web page for details




LECTURES OVERVIEW

System Structures

(user/programmer view) Shell Programming
L1 L4
Protection

Security L10

Virtualization
(hardware abstraction) L11

ot .
(Sﬁtlce)rsajlygsetel\rI:]aSnageme;\itSkS mouse keyboard printer  monitor Working in C
. K (R e A (pointers, memory model,
Lrgplementatlon) @9 é / @\ ! I tools, execution)

\ / L2
Process Management CPU L USB controller SEpliles
. o controller adapter
(execution, communication, :
scheduling, synchronization) Input/Output L9 I Exam preparation

L12

L3, L5, L6

Memory Management

(strategies, virtual memory)
memory || -




LABORATORY ASSIGNMENTS
ORGANIZATION

developing (parts of) PintOS, educational OS, Stanford, 2009

1.5 credit points
4 (+1 preparatory) assignments, in C, building upon each other

work in pairs... or not

:lf\ +|f\a | in1i1v I’\If\e_': [l liniv iAoty E-'—lg_h!!g Or
an & - & § - =l R wEs - B > 2 I

E - e - \-‘VIII'ViJii]‘I s o i WA WINN

on your own machine (Linux or Docker container)

descriptions and more info on the course web page



https://pintos-os.org

PROJECT ASSIGNMENT

ORGANIZATION

* further development of your PintOS version
» 3 credit points

» work on your own time

» submit/present when you are done (not necessarily before the exam)




EXAMINATION

ORGANIZATION

3 credit points
time-constrained home-assignment (very likely using Canvas)
dedicated lecture for preparation (L12)

some previous exams available

...more on the course page




EDAF35 MODULE 1
CONTENTS

* |ntroduction:
Motivation, OS Roles, Course Aim, Prerequisites (Quick Recap)

* Organization:
Lectures, Laboratories, Project, Examination, Support

* Overview of an OS:
Views, Components, Functionality, Examples

(Material loosely based on the course book, Chapter 2)




OVERVIEW OF AN O
(CH2) ;



VIEWPOINTS
OVERVIEW OF AN OS

» what services are provided?
» (functionality)

* how are these made available to the user?
» (interface)

* what are the components and how are they interconnected?

» (structure)




OS SERVICES
OVERVIEW OF AN OS

user and other system programs

GUI batch command line

user interfaces

system calls
T e e communication S accounting
execution operations systems allocation
error pro;icglon
detection | security
services

operating system

hardware




OS USER INTERFACE
OVERVIEW OF AN OS

Command Line Interface (CLI) Graphical User Interface (GUI)

®Ce [0 care — pintos@88451ccOcfd: ~fpimtos/sre — -zsh — 72x28

.Y3 =
constraint_alldiff.rs constraint_ xplusceqy.rs mod.rs
constraint_axplusbyeqc.rs constraint_xplusyeqz.rs store.rs

flagr@flavius core % w
13:33 up 24 days, 1:42, 10 users, load averaqges: 1.86 1.81 1.88

USER TTY FROM LOGINE IDLE WHAT
flagr console =~ Z20Decl9 Z4days = g VR - L I $ B QS .0 A& i s w SO S
flagr  s000 - 20Decl9 23days =-zsh === e — B — 1
flagr  s001 - 20Decl9 2:16 -zsh ' =t = ST ' S Y . W
flagr s002 - 20Decl? 23days =-zsh = = —— _ &, s
flagr s003 - 20Decl? Z3days =zsh - . 3% = s > - &
flagr  s004 - 20Decl9 2:16 /usr/bin/less -is = £33 D —— s s e =
flagr s005 - 20Decl® 2:16 =-zsh et : - - .
£lagr s006 - 20Dec19 -w B ey — ishe s Touchscreen (IOS)
flagr s007 - 20Decl?9 Z23days =-zsh : LR
flagr s008B - 20Decl?9 Z3days =zsh
flagr@flavius core % iostabt 5
disk0 cpu load average
KBE/L Lps MB/s us sy id im Sm 15m
24.10 11 0.25 5 2 %93 1.88 1.82 1.88
135.28 17 2.19 8 2 9%0_ 2.05 1.85 1.B9
419.05 B 3.44 6 1 93 4 REM BY UARXALON - 1995
4.00 0 0.00 8 2 91 S»>GO0_SU (%)
160.77 6 0.97 10 3 87 4 T i A
A 20 IF w=0 THEN GO T 10
C 25 PRINT CHRa W, v e : e e — .
flagr@flavius core % pwd SO IF w>=48 AND w<¢=57 THEN LET - = PR Mg == - — e R - o Ckindle
/Users /flagr/Documents/Work/R‘ .:z-ig: u?gegongg w<=91 THEN LET e =c= == —aw ' :
flagr@flavius core &t [ 50

. |

ZSH (Linux)

Mac OS X GUI

Sinclair ZX Spectrum BASIC (1995) When to choose which?




SYSTEM CALLS
OVERVIEW OF AN OS

» programming interface to the OS services
* used via a high-level intertace (API) rather than directly

» (another layer of abstraction)

» examples: Win32 API (Windows), POSIX API (Unix/Linux), Java APl (JVM)

(we'll use generic system-call names in the following examples)




SYSTEM CALLS, AN EXAMPLE
OVERVIEW OF AN OS

source file —COE;; destination file

a Example System Call Sequence D

Acquire input file name
Write prompt to screen
Accept input

Acquire output file name
Write prompt to screen
Accept input

Open the input file
If file doesn't exist, abort

Create output file
If file exists, abort

Loop
Read from input file
Write to output file

Until read fails

Close output file

Write completion message to screen

. Terminate normally ,




SYSTEM CALL STANDARD API EXAMPLE

OVERVIEW OF AN OS

EXAMPLE OF STANDARD API

As an example of a standard API, consider the read() function that is
available in UNIX and Linux systems. The API for this function is obtained

from the man page by invoking the command
man read

on the command line. A description of this API appears below:

#include <unistd.h>

ssize_ t read(int fd, wvoid *buf, size_ t count)
I | | | | I
return function parameters
value name

A program that uses the read () function must include the unistd.h header
file, as this file defines the ssize t and size t data types (among other

things). The parameters passed to read () are as follows:
¢ int fd—the file descriptor to be read
¢ void *buf-—a buffer where the data will be read into

¢ size -t count—the maximum number of bytes to be read into the
buffer

On a successful read, the number of bytes read is returned. A return value of
0 indicates end of file. If an error occurs, read () returns —1.

core — pintos@88451ec0ef0d: ~/pintos/src — less « man -s 2 read — 84x34

READ(2) BSD System Calls Manual READ(2)

pread, read, readv -- read input

LIBRARY

Standard C Library (libc, =1lc)

SYNOPSIS

#include <sys/types.h>
#include <sys/uio.h>
#include <unistd.h>

ssize t
pread(int d, void *buf, size t nbyte, off t offset);

ssize t
read(int fildes, void *buf, size t nbyte);

ssize t
readv(int d, const struct iovec *iov, int iovcnt);

DESCRIPTION

read() attempts to read nbyte bytes of data from the object referenced
by the descriptor fildes into the buffer pointed to by buf. readv()
performs the same action, but scatters the input data into the iovcnt
buffers specified by the members of the iov array: iov([0], iov[1l],

., liov[iovcnt-1]. pread() performs the same function, but reads
from the specified position in the file without modifying the file
pointer.

For readv(), the iovec structure is defined as:

man -s 2 read




open () (

HANDLING A SYSTEM CALL
OVERVIEW OF AN OS

* one entry point, call identified
CPU . user application by number (index in a table of
support!

j addresses)

system call interface

» parameters passed:

-

» In registers

open ()
T, » via memory (specific addr)
of open ()
system call

» pushed onto the stack
return

(advantages/drawbacks?)




TYPES OF SYSTEM CALLS

OVERVIEW OF AN OS

Windows Unix
* six classes, managing:
Process CreateProcess () fork ()
Control ExitProcess () exit ()
WaitForSingleObject() wait ()
1. processes
File CreateFile() open ()
Manipulation ReadFile () read ()
2 files WriteFile() write()
CloseHandle () close()
8 Device SetConsoleMode () Teck )
3. devices Manipulation ReadConsole() read ()
WriteConsole() write(]
4. system information Infc?nnation Get@rrentProcessID() getpid()
Maintenance SetTimer () alarm()
Sleep() sleep()
5 .commun | cat | on Communication CreatePipe() pipe()
CreateFileMapping() shmget ()
MapViewOfFile () mmap ()
6. prOteCtlon/SeCU”ty Protection SetFileSecurity() chmod ()

InitlializeSecurityDescriptor() umask()
SetSecurityDescriptorGroup()

chown()




SYSTEM PROGRAMS
OVERVIEW OF AN OS

Convenient environment for program development and execution

- file manipulation: create, delete, list, copy, locate, print,...

 status information: date, time, available resources, logging, debugging, registry,...
- file modification: edit, search, transform,...

* programming support: compiler, assembler, linker, emulator, interpreter,...

* communication: email, instant messages, web browsers, remote desktops,...

* background services (daemons): launch at boot, periodic or on demand facilities




OS STRUCTURE
OVERVIEW OF AN OS

» Various ways of structuring, some very abstract — in reality: combinations

Monolithic Kernel Microkernel
based Operating System based Operating System
Applleaien System Call
/

Application UNIX Device
IPC Server Driver

kernel
mode

Hardware Hardware




LAYERED APPROACH
OVERVIEW OF AN OS

7 layerN * pros: simple to construct and
user interface ™S ok
e . . \\\\\ e u
// * \\ J
e . N
4 N\ \\ o
/ /,/"ﬂ\\ \, \ * cons: overhead of calling
layer 1
/ \\ through layers
/ \ |
’ IayerO ‘
| ( hardware
| \
\ /
\ N /
A N
\\\ \\T// /// // o o
N v / * in practice: only few layers
T - g adopted in modern OS




OS STRUCTURE: TRADITIONAL UNIX
OVERVIEW OF AN OS

* Beyond simple, but not fully layered; monolithic

(the users)

shells and commands
compilers and interpreters
system libraries

system-call interface to the kernel

= signals terminal file system CPU scheduling

c handling swapping block I/O page replacement

V. character |/O system system demand paging
terminal drivers disk and tape drivers virtual memory

kernel interface to the hardware

terminal controllers device controllers memory controllers
terminals disks and tapes physical memory




MICROKERNEL SYSTEM STRUCTURE
OVERVIEW OF AN OS

Application File Device user
Program System Driver mode
AN AN A N =
.......... messages { ... messages .
Interprocess fizanielny CPU kernel
A microkernel 4
Il v E.g.:
hardware Mach, 1980s CMU...

part of Mac OS X today




MODULES
OVERVIEW OF AN OS

« modern OS: loadable kernel modules

* OO approach, separate core

components, known interfaces scheduling
s ' device and classes
bus drivers

» each loads (in memory) as needed by
the kernel core Solaris

miscellaneous erne s lgtaedn?télgus
modules /

STREAMS executable
advantages vs. drawbacks?




HYBRID STRUCTURE: MAC OS X
OVERVIEW OF AN OS

graphical user interface Aqua

application environments and services

kernel environment

BSD

Mach

/O kit kernel extensions

Mach microkernel, layers, loadable modules




OS DESIGN AND IMPLEMENTATION
OVERVIEW OF AN OS

stakeholders with (often) different goals:
users, application programmers, OS developers, sys admins

aftected by hardware and overall system purpose
widely different internal solutions to similar problems

no universal “best solution” — only successful (and copied) approaches
— some in this course

separate policy (what) from mechanism (how)




OS DESIGN AND IMPLEMENTATION (CONT’D)
OVERVIEW OF AN OS

* language choice:
» Early OSes — fully written in assembly, C/Algol/shell scripts (system programs)

» Modern OSes — mix of languages — ASM (low level functionality), C/Rust (main
body), C/C++/PERL/Python/shell script (system programs)

» portability vs. performance tradeoft

e correctness: tested vs. formally verified (selL4)

» emulation: run (trace, debug) on non-native hardware (QEMU)



https://sel4.systems
https://www.qemu.org

DEBUGGING
OVERVIEW OF AN OS

more complex, due to user/kernel modes: logs, dumps, profiles, emulators,...
OS usually generate log-files with error information
on failure

» applications: core dump — file with application memory contents

» OS: crash dump — file with kernel memory contents HAVE A LOOK AT THIS!

performance tuning: trace listings, profiling (e.g. DTrace)

Kernighan’s Law: “Debugging is twice as hard as writing the code in the first place. Therefore, if you

write the code as cleverly as possible, you are, by definition, not smart enough to debug it.”




PERFORMANCE TUNING: DTRACE
OVERVIEW OF AN OS

e DTrace — live instrumentation

of user and kernel processes -« Jiaann

source files

4 ./all.d '‘pgrep xoloock' XIventaDusied

a.d b.d dtraco: 3crint ./ /all.d’ matched 2277 probes
C=1T TUNITTON
0 —-» XEventasQueusd |9}

X 1TransSocket3yteasReadasn e U

: C -> ZIvenTtelueu=d [

. SOlaI‘IS, Fl‘eeBSD, MaC OS XI"‘ I ( intrstat (1M) ) (plockstat(lM) ' o) - ;Z‘_lTL'aIIsBlyLe.slc'adable U
0 <— X_1TransBvtaslieadalkle U

0 -_> J

QM lockstat (1M) o A 0 <— 5 o

0 ~ ool L

¥ 1TranaSocketsytearaaden
* D programming language, I Dirace o e

consumers 0 —-> get” K

1;

0 > got actve f£d K

g {
0 < @s2bL o azbove L[d K
Scrlpts ( libdtrace (3LIB) ’ 0 «— gell B K
) -> Vt—f' ll"]dt’ nocel K

userland 0 «- et udatamodel K
——————— dtrace (/D) = TR ST T Yy
o kernel 0 -» releasesl K
» probes fire when code ; et S
<- clear active Id K
3 " DTra Ce 0 > v broadocast K
executes in a provider and DTrace : X
providers 0 <- ioct]

send data to consumers

0 2= _ocol L

0 <— _XIGventelueusd 9]

0 «=- XEventsQueusd |9}
(sys:Lnfo) C vminfo ) (fasttrap)

(syscalr ) ((profilte ) ( mt ) ( s




END OF MODULE 1



