
MODULE 1
INTRODUCTION, OVERVIEW

EDAF35: OPERATING SYSTEMS

CONTENTS
EDAF35 MODULE 1

• Introduction:
Motivation, OS Roles, Course Aim, Prerequisites (Quick Recap)

• Organization:
Lectures, Laboratories, Project, Examination, Support

• Overview of an OS:
Views, Components, Functionality, Examples

(Material loosely based on the course book, Chapters 1 and 2)

WHAT IS AN OPERATING SYSTEM?
INTRODUCTION

Convenient and/or Efficient

(THE UNIX/LINUX TIMELINE)
INTRODUCTION

Linux Distributions

https://upload.wikimedia.org/wikipedia/commons/1/1b/Linux_Distribution_Timeline.svg

BUT WHAT IS AN OPERATING SYSTEM?
INTRODUCTION

Compile (once!)
Executable

Ideally:
download and run
on any platform

OPERATING SYSTEM

Code
once

Kernel (always running)

simple and to the point

FOUR COMPONENTS OF A COMPUTER SYSTEM
INTRODUCTION

firmware

Users

Hardware

Applications

OS

INTRODUCTION
OS ROLE 1: ABSTRACT MACHINE

• Presents a standard set of high-level abstractions

• Extends the hardware with more functionality

• Abstracts away from hardware details

 Programmer friendly, Portable code, Reusable/common core

INTRODUCTION
OS ROLE 2: RESOURCE MANAGER

• Allocates resources for users/applications
(processor time, memory, disk space, device access, network bandwidth, etc.)

• Ensures:
progress, policies, safety/error handling, efficient use of resources

 Safe interaction between applications, safe and fair use of hardware

INTRODUCTION
COURSE AIM

• General elements and principles in OS

• User, application programmer, and OS developer viewpoints

• OS design and implementation choices, internal operations

‣ hand-on experience in laboratory and project assignments

‣ more experience with C and related development tools

• Examples of the above in specific OS

‣ focus on Linux and related

INTRODUCTION
ASSUMED BACKGROUND KNOWLEDGE

• Data structures and algorithms (EDAA01)

• Good to have at least:

• Some computer organization and architecture (e.g. EITF20)

• Some concurrent or real-time programming (e.g. FRTN01, EDAP10)

• Minimal networking/web programming (e.g. EDAF90)

• Some programming experience (Java, even better: C)

• Minimal contact with development tools (git, shell, make, grep, gdb, …)

ADMIN

DATA STRUCTURES IN OS
QUICK REMINDER

Lists

Trees

Bitmaps
0 Nbits (ON/OFF)

B-Trees

By CyHawk - Own work based on [1]., CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=11701365

Hash Maps

By Jorge Stolfi - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=6471915

Binary
Search
Tree

By Lasindi - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=2194027

COMPUTER SYSTEM ARCHITECTURE
QUICK REMINDER

(s)

STORAGE DEVICE HIERARCHY
QUICK REMINDER

Fast, but Small
(capacity)!

Large, but Slow!

Volatile

Persistent

The CPU works
on these

Far away from the CPU

In or close to the CPU

CPU

COMPUTER ARCHITECTURES
QUICK REMINDER

von Neumann modified Harvard:
‣split-cache
‣instruction-memory-as-data
‣data-memory-as-instruction

CONTROL UNIT

ARITHMETIC/
LOGIC UNIT

ALU

I/O
DEVICES

DATA AND
INSTRUCTIONS

MEMORY

Harvard

CPU

CONTROL UNIT

ARITHMETIC/
LOGIC UNIT

ALU

I/O
DEVICES

INSTRUCTIONS
MEMORYDATA MEMORY

BEYOND SINGLE PROCESSOR SYSTEMS
QUICK REMINDER

NUMA - Non-Uniform Memory Architecture

By Moop2000 - Own work, Public Domain, https://commons.wikimedia.org/w/index.php?curid=11693791By Ferry24.Milan - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=17202548

vs. UMAvs. Asymmetric Multiprocessing

COURSE
ORGANIZATION

ORGANIZATION
COURSE OVERVIEW

• Staff (Dept. of Computer Science):

• Lecturer: Flavius Gruian (Associate Professor of Embedded Systems); Office E:2125b

• Lab assistant: Alexandru Dura (PhD student)

• Books

• Silberschatz, Galvin & Gagne, “Operating Systems Concepts” 9th ed. - the dinosaur
book

• (adv.) R. Love, “Linux Kernel Development” 3rd ed.

• Website: http://cs.lth.se/edaf35

ADMIN

http://cs.lth.se/edaf35

ORGANIZATION
LECTURES OVERVIEW

• 11 content (1 guest) + 1 preparatory for exam

• 2/week up to L8, 1/week after that

• Location: E:2116 (consult the “time edit” schedule for changes)

• Much as self-study: watch pre-recorded video lectures + 1h Q/A

• Covering mainly the dinosaur book chapters (overviews)

• Consult the course web page for details

ADMIN

ZOOM!
CHECK THE COURSE PAGE

LECTURES OVERVIEW

System Structures
(user/programmer view)
L1

Process Management
(execution, communication,
scheduling, synchronization)
L3, L5, L6

Memory Management
(strategies, virtual memory)
L7

Storage Management
(file systems,  
implementation)
L8

Input/Output L9

Protection
Security L10

Virtualization
(hardware abstraction) L11

Exam preparation
L12

Working in C
(pointers, memory model,
tools, execution)
L2

Shell Programming
L4

ADMIN

ORGANIZATION
LABORATORY ASSIGNMENTS

• developing (parts of) PintOS, educational OS, Stanford, 2009

• 1.5 credit points

• 4 (+1 preparatory) assignments, in C, building upon each other

• work in pairs… or not

• in the Linux labs (University) E:Hacke, or
on your own machine (Linux or Docker container)

• descriptions and more info on the course web page

ADMIN

https://pintos-os.org

ORGANIZATION
PROJECT ASSIGNMENT

• further development of your PintOS version

• 3 credit points

• work on your own time

• submit/present when you are done (not necessarily before the exam)

ADMIN

ORGANIZATION
EXAMINATION

• 3 credit points

• time-constrained home-assignment (very likely using Canvas)

• dedicated lecture for preparation (L12)

• some previous exams available

• …more on the course page

ADMIN

CONTENTS
EDAF35 MODULE 1

• Introduction:
Motivation, OS Roles, Course Aim, Prerequisites (Quick Recap)

• Organization:
Lectures, Laboratories, Project, Examination, Support

• Overview of an OS:
Views, Components, Functionality, Examples

(Material loosely based on the course book, Chapter 2)

OVERVIEW OF AN OS
(CH2)

OVERVIEW OF AN OS
VIEWPOINTS

• what services are provided?

‣ (functionality)

• how are these made available to the user?

‣ (interface)

• what are the components and how are they interconnected?

‣ (structure)

OVERVIEW OF AN OS
OS SERVICES

OVERVIEW OF AN OS
OS USER INTERFACE

Command Line Interface (CLI) Graphical User Interface (GUI)

Touchscreen (iOS)

Mac OS X GUI

When to choose which?

ZSH (Linux)

Sinclair ZX Spectrum BASIC (1995)

OVERVIEW OF AN OS
SYSTEM CALLS

• programming interface to the OS services

• used via a high-level interface (API) rather than directly

‣ (another layer of abstraction)

• examples: Win32 API (Windows), POSIX API (Unix/Linux), Java API (JVM)

(we’ll use generic system-call names in the following examples)

OVERVIEW OF AN OS
SYSTEM CALLS, AN EXAMPLE

Copy

OVERVIEW OF AN OS
SYSTEM CALL STANDARD API EXAMPLE

man -s 2 read

OVERVIEW OF AN OS
HANDLING A SYSTEM CALL

• one entry point, call identified
by number (index in a table of
addresses)

• parameters passed:

‣ in registers

‣ via memory (specific addr)

‣ pushed onto the stack

(advantages/drawbacks?)

CPU support!

OVERVIEW OF AN OS
TYPES OF SYSTEM CALLS

• six classes, managing:

1. processes

2. files

3. devices

4. system information

5. communication

6. protection/security

OVERVIEW OF AN OS
SYSTEM PROGRAMS

Convenient environment for program development and execution

• file manipulation: create, delete, list, copy, locate, print,…

• status information: date, time, available resources, logging, debugging, registry,…

• file modification: edit, search, transform,…

• programming support: compiler, assembler, linker, emulator, interpreter,…

• communication: email, instant messages, web browsers, remote desktops,…

• background services (daemons): launch at boot, periodic or on demand facilities

OVERVIEW OF AN OS
OS STRUCTURE

• Various ways of structuring, some very abstract — in reality: combinations

OVERVIEW OF AN OS
LAYERED APPROACH

• pros: simple to construct and
debug

• cons: overhead of calling
through layers

• in practice: only few layers
adopted in modern OS

OVERVIEW OF AN OS
OS STRUCTURE: TRADITIONAL UNIX

• Beyond simple, but not fully layered; monolithic

OVERVIEW OF AN OS
MICROKERNEL SYSTEM STRUCTURE

E.g.:
Mach, 1980s CMU…

part of Mac OS X today

OVERVIEW OF AN OS
MODULES

• modern OS: loadable kernel modules

• OO approach, separate core
components, known interfaces

• each loads (in memory) as needed by
the kernel

advantages vs. drawbacks?

OVERVIEW OF AN OS
HYBRID STRUCTURE: MAC OS X

Mach microkernel, layers, loadable modules

OVERVIEW OF AN OS
OS DESIGN AND IMPLEMENTATION

• stakeholders with (often) different goals:
users, application programmers, OS developers, sys admins

• affected by hardware and overall system purpose

• widely different internal solutions to similar problems

• no universal “best solution” — only successful (and copied) approaches
— some in this course

• separate policy (what) from mechanism (how)

OVERVIEW OF AN OS
OS DESIGN AND IMPLEMENTATION (CONT’D)

• language choice:

‣ Early OSes — fully written in assembly, C/Algol/shell scripts (system programs)

‣ Modern OSes — mix of languages — ASM (low level functionality), C/Rust (main
body), C/C++/PERL/Python/shell script (system programs)

‣ portability vs. performance tradeoff

• correctness: tested vs. formally verified (seL4)

• emulation: run (trace, debug) on non-native hardware (QEMU)

https://sel4.systems
https://www.qemu.org

OVERVIEW OF AN OS
DEBUGGING

• more complex, due to user/kernel modes: logs, dumps, profiles, emulators,…

• OS usually generate log-files with error information

• on failure

‣ applications: core dump — file with application memory contents

‣ OS: crash dump — file with kernel memory contents

• performance tuning: trace listings, profiling (e.g. DTrace)

Kernighan’s Law: “Debugging is twice as hard as writing the code in the first place. Therefore, if you
write the code as cleverly as possible, you are, by definition, not smart enough to debug it.”

HAVE A LOOK AT THIS!

OVERVIEW OF AN OS
PERFORMANCE TUNING: DTRACE

• DTrace — live instrumentation
of user and kernel processes

• Solaris, FreeBSD, Mac OS X,…

• D programming language,
scripts

• probes fire when code
executes in a provider and
send data to consumers

END OF MODULE 1

