
MODULE 3
PROCESSES, THREADS

EDAF35: OPERATING SYSTEMS

MODULE 3
CONTENTS

• “Process” concept, features and operations

• Inter-process communication (IPC)

• Examples from common OS

• “Thread” concept, relation to processes

• Multithreading and OS

• Examples of threading APIs

CHAPTER 3

CHAPTER 4

PROCESSES (CH3)

PROCESSES
A FEW DEFINITIONS

• job (batch systems), task/user program (time sharing system)
= process

• process — “a program in execution”

• sequence of instructions (text), data (heap, stack,…),
current instruction to execute (PC), other state info, etc.

A process (in memory)

DISK

PROGRAM

execute

PROCESSES
PROCESS STATE

• multiple processes on the same CPU

• only one active (running) at any time

PROCESSES
PCB AND CONTEXT SWITCHES

Process Control Block (PCB)

Context Switch from P0 to P1 and back

(e.g. “ready”) (“running”)

PID

PROCESSES
PROCESS SCHEDULING

• multiprogramming — keep several processes in memory and run them concurrently

• a goal: maximize the use of the CPU

• processes migrate among different queues: job queue — all processes, ready
queue — waiting to run, device queue — waiting for a particular I/O device

• schedulers — selects which process to run next

• good mix of I/O-bound and CPU-bound processes

more in Module 5

A “queuing diagram” — helper tool

PROCESSES
OPERATIONS ON

• “parent” creates “children”
(tree of processes)

• how do they execute relative to each other?
(wait)

• what happens to the parent’s resources?

CREATE TERMINATE
• normally — execute last instruction,

produces a exit code
(main return or exit)

• parent terminates a child
(identified via “pid”, given on creation)

• choice: whole branch or only one?

• zombie vs. orphan processes

CHECK MAN PAGES FOR:
FORK, EXEC, WAIT, EXIT, PS, KILL

FORKING PROCESSES IN UNIX (C)

fork() returns both in child (0) and in parent
(child pid)

exec() replaces the process’ memory with a
new process!

(instructions after the exec line are not run)

PROCESSES
INTERPROCESS COMMUNICATION (IPC)

• independent vs. cooperating processes:
sharing information, computation speedup, modularity, convenience

• two basic IPC types:

(a) message passing

(b) shared memory

advantages and drawbacks?

PROCESSES
AN EXAMPLE: POSIX SHARED MEMORY

•Create shared memory segment (“everything is a file in UNIX”):
 shm_fd = shm_open(name, O_CREAT | O_RDWR, 0666);
— other processes use it to open an existing segment.

•Set the size of the object: ftruncate(shm_fd, 4096);
•Map it to memory:
 ptr = mmap(0, 4096, PROT_READ, MAP_SHARED, shm_fd, 0);

•Write to/read from the shared memory:
 sprintf(ptr, "Writing to shared memory”);

•Remove the segment: shm_unlink(name);

…check also man pages…

STANDARD
FILE

OPERATIONS

PROCESSES
IPC — MESSAGE PASSING

• more structured and controlled than shared memory

• goto model for distributed systems

• operations — send(message,…), receive(message,…)

• naming — direct (process-to-process) vs. indirect communication (via mailboxes)

• synchronization — blocking (synchronous) vs. non-blocking (asynchronous)

• buffering — zero/bounded/unbounded capacity

PROCESSES
AN EXAMPLE: MACH MESSAGE PASSING

• even system calls are messages

• Kernel and Notify mailboxes (ports) in each task

• three system calls:
msg_send(), msg_receive(), msg_rpc()

• ports created via:
port_allocate()

• send and receive — flexible

• e.g. on full mailbox choose to:

‣wait indefinitely

‣wait at most n milliseconds

‣ return immediately

‣ temporarily cache a message

PROCESSES
COMMUNICATIONS IN CLIENT-SERVER SYSTEMS

• Sockets

• Remote Procedure Calls (RPC) / Remote Method Invocations (Java RMI)

• Pipes

focus of Networking and Web Programming courses — see book for more details

PROCESSES
SOCKET COMMUNICATION

PROCESSES
SOCKETS IN JAVA

• Three types of sockets:

• connection oriented (Transmission
Control Protocol TCP) — messages
arrive in order as sent

• connectionless (User Datagram
Protocol UDP) — no order
guarantees

• multicast — send data to several
recipients

see book for the client code

A Date Server

PROCESSES
PIPES

• another IPC mechanism, originally from UNIX

• choices:
uni- or bi-directional?
full or half duplex?
parent—child based or not?
local or network based?

• ordinary (anonymous) vs. named pipes

see UNIX and Windows code samples in the book

WrRd

PROCESSES
A SIMPLE UNIX PIPE EXAMPLE

int fd[2];
pid_t pid;

pipe(fd);
pid = fork();

if(pid == 0) {
 dup2(fd[0], STDIN_FILENO);
 close(fd[1]);
 exec(<whatever>);
} else {
 close(fd[0]);
 …

Figure this out by checking the man pages!

THREADS (CH4)

THREADS
SINGLE- VS. MULTI-THREADED PROCESSES

thread
context

THREADS
WHY MULTIPLE THREADS?

• Responsiveness – part of a process can block while other parts still run (e.g. GUI)

• Resource Sharing – process resources are shared (no IPC needed)

• Economy – cheaper than processes, thread switching lower overhead

• Scalability – multithreaded processes can take advantage of multiprocessors

THREADS
MULTICORE PROGRAMMING

More challenging to efficiently use the architecture:

• divide activities

• balance

• divide the data

• handle dependencies

• test and debug

— see Jonas Skeppstedt course, EDAN26

THREADS
CONCURRENCY VS. PARALLELISM

T3 and T4 execute in parallel

T3 and T4 (and T1, T2) execute concurrently

PARALLELISM AND PERFORMANCE

The serial portion of an application (S) has a disproportionate
effect on performance when adding additional cores (N).

speedup ≤
1

S + 1 − S
N

AMDAHL’S LAW

THREADS
TYPE OF THREADS IN AN OS

User Space

Kernel Space

MANAGED HERE = USER LEVEL

MANAGED HERE = KERNEL LEVEL

May (or not) employ these

POSIX THREADS
WINDOWS THREADS

JAVA THREADS

VIRTUALLY ALL
GENERAL PURPOSE

OS

MAPPING THREADS
MULTITHREADING MODELS

User Space

Kernel Space

MOST COMMON:
WINDOWS, LINUX

many-to-one1 one-to-one2 many-to-many3

bind only some4

THREAD LIBRARIES
PTHREADS

• interface/specification, not implementation

• may be implemented as user or kernel level

• POSIX standard API, IEEE Std 1003.1c—1995

• thread creation and synchronization

• common in Unix-like OS (BSD, Mac OS X, Linux,…)

• some ports for Windows

THREAD LIBRARIES
PTHREADS EXAMPLE

PROGRAMMING WITH THREADS
IMPLICIT THREADING

Can we decouple programming functionality from thread management?

THREADING BUILDING BLOCKS (C++ LIB)

JAVA.UTIL.CONCURRENT (JAVA LIB)

THREAD POOLS

OPENMP

GRAND CENTRAL DISPATCH

text book

others

see also Patrik Persson’s course, EDAP10 — Concurrent Programming

THREADING ISSUES

• fork() and exec() semantics with threads

• signal handling — which thread(s)?

• thread cancellation — async. vs deferred

• thread local storage

• scheduler activations

see pthread_cancel and pthread_testcancel

see Unix kill and pthread_kill

see C11 thread_local and pthread_key_*

THREADS
SCHEDULER ACTIVATIONS

• “many-to-many”— how many k-threads?

• lightweight process (LWP) — intermediate level data structure

• kernel: LWP attached to a k-thread
 (blocks if k-thread blocks)

• user: LWP is virtual processor
 (u-threads can be scheduled on it)

• scheduler activation — scheme for communicating between u-thread lib and kernel

• upcalls — kernel informs u-thread lib about k- events (e.g.“LWP about to block”)

http://www.cs.washington.edu/homes/bershad/Papers/p53-anderson.pdf

http://www.cs.washington.edu/homes/bershad/Papers/p53-anderson.pdf

 OS EXAMPLES
WINDOWS THREADS

• Windows API — Win 98, NT, 2000, XP, 7

• kernel-level, one-to-one

• executive thread block (ETHREAD),
kernel thread block (KTHREAD),
thread environment block (TEB)

• separate kernel & user stacks

OS EXAMPLES
LINUX THREADS

• called tasks (= threads = processes)

• remember “one-to-one” model

• clone(…),clone3(…) — like fork(), but finer control of what is shared

see man clone

END OF MODULE 3

