EDAF35 Lecture 4

March 27, 2020

1 EDAF35: Lecture 4

Contents: - UNIX Shell Programming - UNIX Commands

1.1 Why Shell Programming ?

e A program written for a shell is called a shell script.
o Shell scripts are (almost always) interpreted
— (there is a company in the USA which sold shell-compilers but they now focus on selling
C++ compilers instead)
— see also the Shell Script Compiler tool
e Shell programs have some advantages over C programs:
— More convenient to write when dealing with files and text processing.
— The building blocks of the shell are of course all the usual UNIX commands.
— More portable.
o However, the shell is slower than compiled languages.

1.2 Different Shells

e There are a number of shells.

o Bourne shell is the original but lacked many features (e.g. name completion).

e The csh and tcsh have different syntax but were more advanced.

e The Korn shell was written at Bell Labs as a superset of Bourne shell but with modern
features.

e The GNU program Bourne Again Shell, or bash, is similar to Korn shell.

o We will focus on bash.

1.3 Bash as Login Shell

e Every user has a path to the login shell in the password file.

e When you login, and have bash as login shell, bash will process the following files:
— /etc/profile
— First found (in $HOME) of .bash_profile, .bash_login, .profile.

e When the login shell terminates, it will read the file .bash_logout.

[1]: cat /etc/profile

System-wide .profile for sh(1)

http://www.linux-magazine.com/Online/Features/SHC-Shell-Compiler

if [-x /usr/libexec/path_helper]; then

eval ~/usr/libexec/path_helper -s-

fi
if ["${BASH-no}" != "no"]; then
[-r /etc/bashrc] && . /etc/bashrc
fi
1.4 Interactive Non-Login Shell
e An interactive shell is, of course, one which one types commands to.
o A non-interactive shell is one which is executing a shell script.
e An interactive shell which is not the login shell executes the file .bashrc.
e There is a file /etc/bashrc, but it is not automatically read.
o To read it automatically, insert source /etc/bashrc in your .bashrc.
1.5 Non-Interactive Shell

Non-interactive shells do not start with reading a specific file.

If the environment variable $BASH_ENV (or $ENV if the bash was started as /bin/sh) contains
a file name, then that file is read.

The first argument to bash itself, contains the program name, so echo $0 usually prints bash.

[2]: echo $BASH_ENV
echo $ENV
echo $0

/bin/bash

1.6

1.7

Source Builtin Command

To ask the current shell to read some commands use the source filename command.
You can use . instead of source.

Aliases and Noclobber

UNIX commands perform their tasks without asking the user whether he/she really means

what he/she just typed. This is very convenient (most of the time).

For instance the rm command has an option -i to ask for confirmation before a file is removed.
— Sometimes people put the command alias rm=’rm -i’ in a bash start file.

A similar feature is to use the command: set -o noclobber which avoids deleting an existing

file with I/O redirection (e.g. 1s > x).

But remember, generally UNIX is not a safe place

I/0 Redirection

< file Use file as stdin.
> file Use file as stdout.

e >> file Append output to file.

e« 2> file Use file as stderr.

e 2>&1 Close stderr and dup stdout to stderr.

e cmdl | cmd2 Use the stdout from cmdl as stdin for cmd2 (aka pipe)

[4]: #echo 'Hello' > f1
echo ' world!' >> f1
cat < f1

Hello
world!
world!
world!
world!
world!

[6]: 1s -al f1
f1

-rw-r-—-r—— 1 flagr staff 46 Jan 20 13:58 f1
bash: f1: command not found

[6]: chmod a-x f1

[7]: 1s -al f1
/f1

-rw-r--r—— 1 flagr staff 46 Jan 20 13:58 f1
bash: ./fl: Permission denied

1.9 Shell Script Basics

o The first line should contain the line #!/bin/bash

e To make the script executable, use chmod a+x file.

e A line comment is started with #.

e Commands are separated with newline or semicolon ;.

e Backslash \ continues a command on the next line.

e Parenthesis () group commands and lets a new shell execute the group.

1.10 More About Parentheses

e A subshell has its own shell variables such as current directory.
e The builtin cd does not read from stdin, so we can pipe as follows: (cd ; 1s)
~/Desktop; cat > ls-in-home)

(cd

[8]: (cd ; 1s) | (cd ~/Desktop; cat > ls-in-home)
cat ls-in-home

bash: cd: “/Desktop: No such file or directory
Applications

Box Sync

Desktop

Documents

Downloads

Dropbox

Library

Movies

Music

Pictures

Privat

Public

Qt

SimplicityStudio
Sites

Terminal Saved Output
Zotero

bin
exjobb2017_v2.csv
gcviewer.properties
git

go

moss

node_modules
package-lock. json
target

temp

1.11 Shell Variables
e Shell variables do not have to be declared — just assign to them:

a=unix

echo $a

b=wrong rm can have unexpected results
c="wrong rm can have unexpected results"

#H hH L &P

o The difference between the last two assignments is significant (see prepend variables definition
to command)
e A shell variable is by default local to the shell but can be exported to child processes using:

$ export a

o C/C++ programs get the value using char* value = getenv("VAR");

[9]:

[10]:

[11]:

[12]:

[13]:

a=unix

echo $a

b=wrong rm can have unexpected results
echo $b

c="wrong rm can have unexpected results"
echo $c

unix

rm: can: No such file or directory

rm: have: No such file or directory

rm: unexpected: No such file or directory
rm: results: No such file or directory

wrong rm can have unexpected results

echo $b

x="once upon" y="a time" bash -c 'echo $x $y'

once upon a time

echo $x

1.12 Using Shell Variables

e Use a dollar sign before the name to get the value: $HOME.
e If you wish to concatenate a shell variable and a string, use ${VAR}suffix
— without {} you get wrong identifier

b=bumble
echo $b

echo ${blbee
echo $bbee

bumble
bumblebee

1.13 More about Using Shell Variables

e The value of ${var-thing} is $var if var is defined, otherwise thing were thing is not
expanded. Value of var is unchanged.

e The value of ${var=thing} is $var if var is defined, otherwise thing and var is set to thing.

o The value of ${var+thing} is thing if var is defined, otherwise nothing.

[14]:

e The value of ${var?message} is $var if var is defined, otherwise a message is printed and
the shell exits.

echo ${a-something}

echo ${d-nothing}

echo $d

echo ${e=everything}

echo $e

echo ${d?Variable d not defined}

unix
nothing

everything
everything
bash: d: Variable d not defined

1.14 PS1 and PS2

e The prompts, $ and > are called the primary and secondary prompts. These were the original
values of these and they are stored in PS1 and PS2.
e For the root user, the prompt is #
o It is possible to get a more informative prompt by using the escapes: e.g. PS1="\w "
— \$ # if root, otherwise dollar.
— \! Current history number (see below).
— \w Pathname of working directory.
— \W Basename of working directory.
— \h Hostname.
— \H Hostname including domain.
— \u User.
— \t 24-hour time.
— \d Date.

1.15 Reexecuting Commands with a Builtin Editor

o To reexecute a command, use either the builtin editor (vi or emacs) as specified in your
.inputrc file.

e .inputrc can contain e.g. set editing-mode vi

o Using the editor is very convenient since you can change the command if it didn’t work as
expected. Simply hit ESC (for vi).

e This is a convenient way to experiment with new commands.

1.16 Reexecuting Commands with an Exclamation

Commands available include: - !! Reexecute most recent command. - !n Reexecute command
number n. - !'-n Reexecute the nth preceding command. - !string Redo the most recent command
starting with string. - !?string Redo the most recent command containing string. - The last word
on the previous command can be refered to as !'$

[15]:

[16]:

Check also history

1s

1s f1

1ls -al f1
!

1-2

EDAF35 Lecture 4.ipynb 1ls-in-home svib

a.c
f1

f1

-rw-r—--r—-
1s -al f1
-rw-r—--r—-
1s -al f1
-rw-r—-r--

1 flagr
1 flagr

1 flagr

ls -al 1ls-in-home

cat '$

“IW-r--r--

1 flagr

cat ls-in-home

Applications

Box Sync
Desktop
Documents
Downloads
Dropbox
Library
Movies
Music
Pictures
Privat
Public

Qt

SimplicityStudio

Sites

Terminal Saved Output

Zotero
bin

exjobb2017_v2.csv
gcviewer.properties

git
go
moss

node_modules

package-lock. json

SV1

svia

staff

staff

staff

staff

46 Jan 20 13:58 f1

46 Jan 20 13:58 f1

46 Jan 20 13:58 f1

254 Jan 20 13:59 ls-in-home

[17]:

target

." "echo
." "echo
." "echo
." "echo
." "echo

." "echo
." "echo
." "echo

." "echo
." "echo

." "echo

"sleep 10" "sleep 1"

." "echo
." "echo
." "echo

temp

history
63 ./a.out 1ls
64 ./a.out 1ls 1s
65 ./a.out 1s
66 ./a.out "ls ."
67 ./a.out "ls ."
68 pico fastest.c
69 gcc fastest.c
70 ./a.out 1ls
71 ./a.out 1ls
72 ./a.out "ls ."
73 ./a.out "ls .."
74 ./a.out "ls .. ."
75 ./a.out "ls .." "ls
76 ./a.out "ls .." "ls
77 ./a.out "ls .." "ls
78 ./a.out "ls .." "ls
79 ./a.out "ls .." "ls
80 ./a.out "ls .." "ls
81 pico fastest.c
82 gcc fastest.c
83 ./a.out "ls .." "ls
84 ./a.out "ls .." "ls
85 ./a.out "ls .." "ls
86 pic fastest.c
87 pico fastest.c
88 gcc fastest.c
89 ./a.out "ls .." "ls
90 ./a.out "ls .." "ls
91 pico fastest.c
92 gcc fastest.c
93 pico fastest.c
94 gcc fastest.c
95 ./a.out "ls .." "ls
96 ./a.out "sleep 10" "sleep 2"
97 ./a.out "sleep 10" "sleep 1"
98 man sleep
99 pico fastest.c
100 gcc fastest.c
101 ./a.out
102 ./a.out "ls .." "ls
103 ./a.out "ls .." "ls
104 ./a.out "ls .." "ls
105 ./a.out "ls .." "ls

." "echo

Haha"
Haha"
Haha"
Haha"
Haha"

Haha"
Haha"
Haha"

Haha"
Haha"

Haha"

Haha"
Haha"
Haha"
Haha"

echo
echo

echo
echo
echo

echo
echo

echo

echo
echo
echo
echo

echo
echo

echo
echo
echo

echo
echo

echo

echo
echo
echo
echo

"sleep

"sleep
"sleep
"sleep

"sleep
"sleep

"sleep

"sleep
"sleep
"sleep
"sleep

5"
5"
5"

5"
5"

5"

5"
5"
5"
5"

534 echo $7

535 echo $b
536 echo $7
537 x="once upon" y="a time" bash -c 'echo $x $y'
538 echo $7

539 echo $x

540 echo $7

541 Db=bumble

542 echo $b

543 echo ${b}bee

544 echo $bbee

545 echo $7

546 echo ${a-something}
547 echo ${d-nothing}
548 echo $d

549 echo ${e=everything}
550 echo $e

551 echo ${d?Variable d not defined}
552 echo $7

563 1s

554 1s f1

565 1s -al f1

b56 1s -al f1

657 1s -al f1

558 echo $7

559 1s -al ls-in-home
560 cat ls-in-home

561 echo $7

562 history

[20]: !B42

echo $b
bumble

1.17 Quotation Marks

e There are three kinds of quotation marks:
— in a string enclosed by ": variables are expanded.
— in a string enclosed by ’: variables are not expanded.
— the value of ‘string‘ is the stdout from executing string as a command and removing
each trailing newline character:
$ rm ‘du -ks * | sort -n | awk ’ { print $2 } ’¢ # remove big file/directory
Note: the last form (back single quote) is equivalent to $ (command).

[21]: du -ks * | sort -n | awk '{ print $2 }'

18

f1
ls-in-home
svi

svia

svib
EDAF35

[22]: echo $(du -ks * | sort -n | awk '{ print $2 }')

a.c f1 1s-in-home svi svia svib EDAF35

[23]: echo "du -ks * | sort -n | awk '{ print $2 }'"~
a.c f1 ls-in-home svi svia svib EDAF35

1.18 Here Documents

e Sometimes it can be useful to provide the input to a script in the script file. The input is
right "here”.

$ cat phone

grep "$*" <<End
Office 046 222 9484
Mobile 0767 888 124
$X

End

e Above script contains both the command and the input.
e The variable X is expanded; suppress this behaviour by preceding End with a backslash on
first line.

[24]: variable=$(cat <<SETVAR
This variable
runs over multiple lines.
SETVAR
)

echo "$variable"

This variable
runs over multiple lines.

1.18.1 broadcast: Sends message to everyone logged in

#!/bin/bash

wall <<zzz23EndOfMessagezzz23

E-mail your noontime orders for pizza to the system administrator.

(Add an extra dollar for anchovy or mushroom topping.)
Additional message text goes here.

19

[25] :

Note: 'wall' prints comment lines.
zzz23EndOfMessagezzz23

Could have been done more efficiently by

wall <message-file

However, embedding the message template in a script
#+ is a quick-and-dirty omne-off solution.

exit

more about here documents

1.19 Functions

function fun()

{

echo $1 # echo first argument
echo $2 # echo second argument

¥

e The keyword function is optional.

o A function must be declared before it can be used.

e A function can be used as if it was any other UNIX command, i.e. no parentheses when the
function is called (not even for passing arguments).

function fun()

{

echo $1 # echo first argument
echo $2 # echo second argument
echo $0

}

fun ha hi

fun he ho hu

fun hiii

ha

hi

/bin/bash

he

ho

/bin/bash

hiii

/bin/bash

1.20 Simple Shell Syntax

e a && b executes b only if a succeeds (ie returns 0).
e a || b executes b only if a fails (ie returns nonzero).

20

http://tldp.org/LDP/abs/html/here-docs.html

[26]:

[27]:

The following commands can cause unhappiness if you run out of disk space during tar:
$ tar cf dir.tar dir; rm -rf dir; bzip2 -9v dir.tar

This is better:

$ tar cf dir.tar dir && rm -rf dir && bzip2 -9v dir.tar

Edit-compile-run without leaving the keyboard:

vi a.c && gcc a.c && a.out

But it is better to remap e.g. v, V, or t in vi to run make

1.21 For Loops
Iterate through certain files in your the current directory:

for x in *.c
do

lpr $x # prints them
done

or through all argumets passed to a script:

for x in $*
do

lpr $x
done

for x in *
do

echo $x
done

EDAF35 Lecture 4.ipynb
a.c

f1

1s-in-home

svi

svia

svib

You can also iterate through a string;:
a="x y z v"

for s in $a

do

echo $s
done

21

Z
A\

Or simply a list:

[28]: for s ina b c b
do
echo $s
done

o o o w

1.22 While and Until

while command
do

body # do body while command returns true
done

until command
do

body # do body while command returns false
done

1.23 If-Then-Else-Fi

if command

then
then-commands

[else
else-commands]

fi

if ! command

then
then-commands

[else
else-commands]

fi

1.24 Case

case word in
patternl) commands;;
pattern2) commands;;
*) commands; ;

22

esac

e Nothing happens if no pattern matches: putting *) last makes a default.

1.24.1 Longer example:

This is an excerpt of the script that starts Anacron, a daemon that runs commands periodically
with a frequency specified in days.

case "$1" in
start)
start

0

stop)
stop

0

status)
status anacron

0

restart)
stop
start
55
condrestart)
if test "x pidof anacron™" != x; then
stop
start
fi
HH
*)

echo $"Usage: $0 {start|stoplrestart|condrestart|status}"
exit 1

esac

1.25 cmp, diff, and ndiff

» cmp reports whether two files are equal.

e diff does the same but also shows how they differ.

e ndiff is a variant for which one can specify numerical differences which should be ignored.
— ndiff is not standard but easy to find.

1.26 cut

e cut cuts out characters from each line of stdin
e 1s -1 | cut -c2-10 prints the rwx-flags of the files.
e The first character on a line is c1.

23

[29] :

[30]:

[31]:

o Multiple ranges can be specified: 1s -1 | cut -c2-10 -c51-55 also prints five characters
from the file name.

1s -1 | cut -c2-10

1s -1

otal 624
rw-r—--r--
rw-r—--r--
rw-r—--r--
rw-r—--r--

IWXr—-Xr—-Xx
IWXIr—XIr—X
IWXr—Xr—-Xx

total 624

-rw-r--r--@ 1 flagr staff 293310 Jan 20 14:03 EDAF35 Lecture 4.ipynb
-rw—r——r—— 1 flagr staff 14 Mar 26 2018 a.c

-rw-r--r-— 1 flagr staff 46 Jan 20 13:58 f1

-rw-r——r—— 1 flagr staff 254 Jan 20 13:59 ls-in-home

-rwxr-xr-x 1 flagr staff 93 Mar 26 2018 svi

-rwxr-xr-x 1 flagr staff 81 Mar 26 2018 svia

-rwxr-xr-x 1 flagr staff 93 Mar 26 2018 svib

1s -1 | cut -c2-10 -c51-55

otal 624
rw-r—--r——-AF35
rw-r—--r--c
Irw-r—-r—-—
rw-r--r—---in-h
rwXr-xr-xi
rwxr-xr-xia
IrWwXr—-xr-xib

1.27 find

Example: find . -name ’*.c’ The output will be a list of files (with full path) with suffix c.

We can feed that list to wc using: wc ‘find . -name ’*.java’‘ The default action is to print
the file name.

A number of criteria can be specified, including - ~anewer filename selects files newer than file-
name. - -type type selects files of type type which is one of b,c,d,f], p, or s (with the same
meaning as printed by 1s -1: block special file (eg disk), character special file (eg usb port),
directory, ordinary file, symbolic link, name pipe, or socket).

find . -name '*.ipynb'
find . —-name 'x.c'

24

./EDAF35 Lecture 4.ipynb

./ .ipynb_checkpoints/EDAF35 Lecture 3-checkpoint.ipynb
./ .ipynb_checkpoints/EDAF35 Lecture 4-checkpoint.ipynb
./a.c

1.28 cleanfiles

find . -name *.tac.??? -exec rm ’{}’ \;
find . -name *.pr -exec rm ’{}’ \;

find . -name cmd.gdb -exec rm ’{}’ \;
find . -name *.ps -exec rm ’{}’ \;

find . -name *.dot -exec rm ’{}’ \;
find . -name *.aux -exec rm ’{}’ \;
find . -name *.0 -exec rm ’{}’ \;

find . -name out -exec rm {3}’ \;

find . -name x -exec rm ’{}’ \;

find . -name y -exec rm ’{}’ \;

find . -name a.out -exec rm ’{}’ \;
find . -name cachegrind.out.* -exec rm ’{}’ \;

Have a look at man find

1.29 awk

o Stands for Aho (from the Dragonbook), Weinberger (from hashpjw in the Dragonbook), and
Kernighan (K in K&R C).

o Each line of input is separated into fields and are denoted $1,$2,... Assume a variable is
called X and has value 2. Then $X refers to the second field.

e The entire line is $0, number of fields on a line is denoted NF, and line number is NR.

e Each line in an awk program has a pattern and an action. If a line in the input matches the
pattern, the action is executed.

1.30 Example awk programs

$ awk ’{ print $1, $5; }’ # print first and fifth item.

$ awk ’$1 > 10 { print $1, $2; }’ # print first two items if $1 is > 10.
$ awk °NR == 10’ # print tenth line.

$ awk °NF > 4’ # print each line with > 4 fields.

$ awk °NF > O ’ # print each nonempty line.

$ awk ’$NF > 4 ’ # print each line with last field > 4.

$ awk ’/abc/ ’ # print each line containing abc.

$ awk ’/abc/ { n =n + 1; }\

END { print n;}’ # print number of lines containing abc.
$ awk ’length($0) > 80’ # print each line longer than 80 bytes.

The END pattern matches at EOF. There is also a BEGIN pattern which is matched before the first
character is read.

[32]: echo a bcde | awk '{ print $1, $5; }'

25

https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools

[33]:

[34]:

1.31 head and tail

head prints the first 10 lines of a file (or stdin).

head -100 prints the first 100 lines of a file (or stdin).

tail prints the last 10 lines of a file (or stdin).

tail -100 prints the last 100 lines of a file (or stdin).

tail -f file like normal tail but at EOF waits for more data.

1.32 od

1.33

sed

Octal dump

od file dumps the file contents on stdout in as octal numbers.
od -c file prints file as characters.

od -x file prints file as hex numbers.

sed

stream editor.
It can be useful for e.g. changing prefixes in a Yacc generated parser:

’s/yydebug/pp_debug/g’ y.tab.c > tmp; mv tmp y.tab.c

echo a b ¢ d aa | sed 's/a/Hahahah/g'

Hahahah b ¢ d HahahahHahahah

1.34 grep

Grep searches for a pattern in files.

GNU grep has the useful -r option which traverses directories.

In basic reqular expressions 7, +, braces, parentheses and bar (i.e. |) have no special meaning.
Backslash them to get that.

In extended regular expressions, enabled with -E, above characters are special. More about
that on next slide.

$ grep abc # matches line with abc.

$ grep -e ’[abc]l’ # matches line with any of a, b, or c.

$ grep -e ’[Tabc]l’ # matches line with none of a, b, or c.

$ grep -e ["ab-d]’ # matches line with none of a, b, c, or d.
$ grep ab*c # matches line with ac, abc, abbbbbc.

grep abc EDAF*

"$ awk ’/abc/ ’ # print each line containing abc.\n",

"$ awk ’/abc/ { n =n + 1; }\\\n",

" END { print n;}’ # print number of lines containing abc.\n",
"$ grep abc # matches line with abc.\n",

"$ grep -e ’[abc]l’ # matches line with any of a, b, or c.\n",

26

[35]:

[37]:

drrPi0OPw9bT2egx65qUMSXmqJotpdXNtpa3dssosILiaK22JK618TPE4ipRoYepXql1MPhnVeHoTqT1So0
vKMgz0023Gm6sox1US5EudxT1do+mhhsPTrV8TToUoY jEqksRWhT jGrXVCMoOVVgL3qipR1KNPmfuKTSt
c36xNgoAKAPMfiP8E/g58Yv7C/4W18KPhx8T/+EXubr7w3/wALASE+G/GHIg3dybY3U+kf8JIBpuof2dJ
dmzs/tZtBGLr7Ja/aBJ9nh2ehgM2zTK/bf 2bmWPy/6xFQr/UsXXwvtox5uWNX2FSHO080uXmvy80uW3N
I14Md1WV5n7H+0suw0OY£fV50VD67hKGK jKXLz017aE/ZuXLHm5bc3LHmvZIOMRF jVURVREUIiIAqoqjCq
qjAVVAAAAwAMDHFee3fV6t6tvqd6VtFolokuhyt54D8Eah4x0f4h3/ATIQ8M3v j3wIp0oaDoH jS80PTbn
xToeiatIkuq6To+vIWz6ppmn6nJGjahaWVzBBelE+OpKEUVOxxmLhhauBhisRDBV6sK1bCRrVI4atVpq
10rVoJqnUqU1pCc1KUfs20eWEwk8TSxs8N(njKNOAGjipUacsRSpVHepTpVnF1KcKjXvxhKKl1vaxllc
xOBQAUAFABQAUAFAGBoXhTwx4X18QT+G/D2i6DP4r8QXPivxPNo+mWenS+IfE97Zafpt34h1p7SGFtT1
q50/SdMsZ9TvDPeS2mnWNu8zQ2sCLvWx0IxCoqvXqllhgMcNh1VgSmgGHhOc40KSk2qdKM6tScacLRUp
z1ZuTZ jRuw+Hw7rSoUKVF4mt LEYhOqcY0OviJQhT1XquKkTqVZQp040p08nGEI3ailHfrA2CgAoAKACgAOA
KACgAoAKACgAoAKACgAoAKACgA0AKACgAOAKACgAOAKACgAOAKACgAOAKACEAOAKACgAOAKACgAOAKAC
gAoAKACgA0AKACgA0AKACgAOAKACgAOAKACEAOAKACEAOAKACEAOAKACEAOAKACgAOAKACgAOA/9k=\"
\n"

" \"$ awk ’/abc/ ’ # print each line containing abc.\\n\",\n",

" \"$ awk ’/abc/ { n =n + 1; I\\\\\\n\",\n",

" \" END { print n;}’ # print number of lines containing
abc.\\n\",\n",

" \"$ grep abc # matches line with abc.\\n\",\n",

" \"$ grep -e ’[abc]’ # matches line with any of a, b, or c.\\n\",\n",

" \"$ grep -e ’["abc]l’ # matches line with none of a, b, or
c.\\n\",\n",

" \"$ grep ab*c # matches line with ac, abc, abbbbbc.\\n\",\n",

" \"grep abc EDAFx*\"\n"

"grep abc EDAF*"

cat f1
echo -—————————————————————-
grep —e '[TleoH]' f1

Hello
world!
world!
world!
world!
world!

grep —e '[Tleo]' f1
Hello

world!
world!

87

world!

world!

world!

1.35 grep -E

$ grep -E -e ’alb’ # matches line with a or b.

$ grep -E -e ’albc’ # matches line with a or bc.

$ grep -E -e ’(alb)c’ # matches line with a or b, followed by c.
$ grep -E -e ’(alb)?c’ # 7 denotes optional item.

$ grep -E -e ’(alb)+c’ # + denotes at least once.

$ grep -E -e ’(alb)*c’ # + denotes zero or more.

$ grep -E -e ’(alb){4}c’ # {4} matches pattern four times.

o Without -E use backslash before above metacharacters.
o Without ’ the shell will try to setup a pipe ... |
1.36 sort and uniq

e sort file sorts a file alphabetically.
e sort -n file sorts a file numerically.
e uniq removes duplicates line if found in sequence

[38]: sort f1

world!
world!
world!
world!
world!
Hello

[39]: uniq f1

Hello
world!

[40]: | cat svi

#!/bin/bash
vi -c /$1 “egrep -e $1 *.[ch] */*.[ych] | awk -F: '{ print $1; }' | uniq | sort"

1.36.1 What does the above script do?

[]:

88

	EDAF35: Lecture 4
	Why Shell Programming ?
	Different Shells
	Bash as Login Shell
	Interactive Non-Login Shell
	Non-Interactive Shell
	Source Builtin Command
	Aliases and Noclobber
	I/O Redirection
	Shell Script Basics
	More About Parentheses
	Shell Variables
	Using Shell Variables
	More about Using Shell Variables
	PS1 and PS2
	Reexecuting Commands with a Builtin Editor
	Reexecuting Commands with an Exclamation
	Quotation Marks
	Here Documents
	broadcast: Sends message to everyone logged in

	Functions
	Simple Shell Syntax
	For Loops
	While and Until
	If-Then-Else-Fi
	Case
	Longer example:

	cmp, diff, and ndiff
	cut
	find
	cleanfiles
	awk
	Example awk programs
	head and tail
	od
	sed
	grep
	grep -E
	sort and uniq
	What does the above script do?

