
EDAF35 Lecture 4

March 27, 2020

1 EDAF35: Lecture 4
Contents: - UNIX Shell Programming - UNIX Commands

1.1 Why Shell Programming ?
• A program written for a shell is called a shell script.
• Shell scripts are (almost always) interpreted

– (there is a company in the USA which sold shell-compilers but they now focus on selling
C++ compilers instead)

– see also the Shell Script Compiler tool
• Shell programs have some advantages over C programs:

– More convenient to write when dealing with files and text processing.
– The building blocks of the shell are of course all the usual UNIX commands.
– More portable.

• However, the shell is slower than compiled languages.

1.2 Different Shells
• There are a number of shells.
• Bourne shell is the original but lacked many features (e.g. name completion).
• The csh and tcsh have different syntax but were more advanced.
• The Korn shell was written at Bell Labs as a superset of Bourne shell but with modern

features.
• The GNU program Bourne Again Shell, or bash, is similar to Korn shell.
• We will focus on bash.

1.3 Bash as Login Shell
• Every user has a path to the login shell in the password file.
• When you login, and have bash as login shell, bash will process the following files:

– /etc/profile
– First found (in $HOME) of .bash_profile, .bash_login, .profile.

• When the login shell terminates, it will read the file .bash_logout.

[1]: cat /etc/profile

System-wide .profile for sh(1)

1

http://www.linux-magazine.com/Online/Features/SHC-Shell-Compiler

if [-x /usr/libexec/path_helper]; then
eval `/usr/libexec/path_helper -s`

fi

if ["${BASH-no}" != "no"]; then
[-r /etc/bashrc] && . /etc/bashrc

fi

1.4 Interactive Non-Login Shell
• An interactive shell is, of course, one which one types commands to.
• A non-interactive shell is one which is executing a shell script.
• An interactive shell which is not the login shell executes the file .bashrc.
• There is a file /etc/bashrc, but it is not automatically read.
• To read it automatically, insert source /etc/bashrc in your .bashrc.

1.5 Non-Interactive Shell
• Non-interactive shells do not start with reading a specific file.
• If the environment variable $BASH_ENV (or $ENV if the bash was started as /bin/sh) contains

a file name, then that file is read.
• The first argument to bash itself, contains the program name, so echo $0 usually prints bash.

[2]: echo $BASH_ENV
echo $ENV
echo $0

/bin/bash

1.6 Source Builtin Command
• To ask the current shell to read some commands use the source filename command.
• You can use . instead of source.

1.7 Aliases and Noclobber
• UNIX commands perform their tasks without asking the user whether he/she really means

what he/she just typed. This is very convenient (most of the time).
• For instance the rm command has an option -i to ask for confirmation before a file is removed.

– Sometimes people put the command alias rm=’rm -i’ in a bash start file.
• A similar feature is to use the command: set -o noclobber which avoids deleting an existing

file with I/O redirection (e.g. ls > x).
• But remember, generally UNIX is not a safe place

1.8 I/O Redirection
• < file Use file as stdin.
• > file Use file as stdout.

2

• >> file Append output to file.
• 2> file Use file as stderr.
• 2>&1 Close stderr and dup stdout to stderr.
• cmd1 | cmd2 Use the stdout from cmd1 as stdin for cmd2 (aka pipe)

[4]: #echo 'Hello' > f1
echo ' world!' >> f1
cat < f1

Hello
world!
world!
world!
world!
world!

[5]: ls -al f1
f1

-rw-r--r-- 1 flagr staff 46 Jan 20 13:58 f1
bash: f1: command not found

[6]: chmod a-x f1

[7]: ls -al f1
./f1

-rw-r--r-- 1 flagr staff 46 Jan 20 13:58 f1
bash: ./f1: Permission denied

1.9 Shell Script Basics
• The first line should contain the line #!/bin/bash
• To make the script executable, use chmod a+x file.
• A line comment is started with #.
• Commands are separated with newline or semicolon ;.
• Backslash \ continues a command on the next line.
• Parenthesis () group commands and lets a new shell execute the group.

1.10 More About Parentheses
• A subshell has its own shell variables such as current directory.
• The builtin cd does not read from stdin, so we can pipe as follows: (cd ; ls) | (cd

˜/Desktop; cat > ls-in-home)

3

[8]: (cd ; ls) | (cd ˜/Desktop; cat > ls-in-home)
cat ls-in-home

bash: cd: ˜/Desktop: No such file or directory
Applications
Box Sync
Desktop
Documents
Downloads
Dropbox
Library
Movies
Music
Pictures
Privat
Public
Qt
SimplicityStudio
Sites
Terminal Saved Output
Zotero
bin
exjobb2017_v2.csv
gcviewer.properties
git
go
moss
node_modules
package-lock.json
target
temp

1.11 Shell Variables
• Shell variables do not have to be declared — just assign to them:

$ a=unix
$ echo $a
$ b=wrong rm can have unexpected results
$ c="wrong rm can have unexpected results"

• The difference between the last two assignments is significant (see prepend variables definition
to command).

• A shell variable is by default local to the shell but can be exported to child processes using:

$ export a

• C/C++ programs get the value using char* value = getenv("VAR");

4

[9]: a=unix
echo $a
b=wrong rm can have unexpected results
echo $b
c="wrong rm can have unexpected results"
echo $c

unix
rm: can: No such file or directory
rm: have: No such file or directory
rm: unexpected: No such file or directory
rm: results: No such file or directory

wrong rm can have unexpected results

[10]: echo $b

[11]: x="once upon" y="a time" bash -c 'echo $x $y'

once upon a time

[12]: echo $x

1.12 Using Shell Variables
• Use a dollar sign before the name to get the value: $HOME.
• If you wish to concatenate a shell variable and a string, use ${VAR}suffix

– without {} you get wrong identifier

[13]: b=bumble
echo $b
echo ${b}bee
echo $bbee

bumble
bumblebee

1.13 More about Using Shell Variables
• The value of ${var-thing} is $var if var is defined, otherwise thing were thing is not

expanded. Value of var is unchanged.
• The value of ${var=thing} is $var if var is defined, otherwise thing and var is set to thing.
• The value of ${var+thing} is thing if var is defined, otherwise nothing.

5

• The value of ${var?message} is $var if var is defined, otherwise a message is printed and
the shell exits.

[14]: echo ${a-something}
echo ${d-nothing}
echo $d
echo ${e=everything}
echo $e
echo ${d?Variable d not defined}

unix
nothing

everything
everything
bash: d: Variable d not defined

1.14 PS1 and PS2
• The prompts, $ and > are called the primary and secondary prompts. These were the original

values of these and they are stored in PS1 and PS2.
• For the root user, the prompt is #
• It is possible to get a more informative prompt by using the escapes: e.g. PS1="\w "

– \$ # if root, otherwise dollar.
– \! Current history number (see below).
– \w Pathname of working directory.
– \W Basename of working directory.
– \h Hostname.
– \H Hostname including domain.
– \u User.
– \t 24-hour time.
– \d Date.

1.15 Reexecuting Commands with a Builtin Editor
• To reexecute a command, use either the builtin editor (vi or emacs) as specified in your

.inputrc file.
• .inputrc can contain e.g. set editing-mode vi
• Using the editor is very convenient since you can change the command if it didn’t work as

expected. Simply hit ESC (for vi).
• This is a convenient way to experiment with new commands.

1.16 Reexecuting Commands with an Exclamation
Commands available include: - !! Reexecute most recent command. - !n Reexecute command
number n. - !-n Reexecute the nth preceding command. - !string Redo the most recent command
starting with string. - !?string Redo the most recent command containing string. - The last word
on the previous command can be refered to as !$

6

Check also history

[15]: ls
ls f1
ls -al f1
!!
!-2

EDAF35 Lecture 4.ipynb ls-in-home svib
a.c svi
f1 svia
f1
-rw-r--r-- 1 flagr staff 46 Jan 20 13:58 f1
ls -al f1
-rw-r--r-- 1 flagr staff 46 Jan 20 13:58 f1
ls -al f1
-rw-r--r-- 1 flagr staff 46 Jan 20 13:58 f1

[16]: ls -al ls-in-home
cat !$

-rw-r--r-- 1 flagr staff 254 Jan 20 13:59 ls-in-home
cat ls-in-home
Applications
Box Sync
Desktop
Documents
Downloads
Dropbox
Library
Movies
Music
Pictures
Privat
Public
Qt
SimplicityStudio
Sites
Terminal Saved Output
Zotero
bin
exjobb2017_v2.csv
gcviewer.properties
git
go
moss
node_modules
package-lock.json

7

target
temp

[17]: history

63 ./a.out ls
64 ./a.out ls ls
65 ./a.out ls .
66 ./a.out "ls ."
67 ./a.out "ls ."
68 pico fastest.c
69 gcc fastest.c
70 ./a.out ls
71 ./a.out ls .
72 ./a.out "ls ."
73 ./a.out "ls .."
74 ./a.out "ls .. ."
75 ./a.out "ls .." "ls ."
76 ./a.out "ls .." "ls ." "echo Haha"
77 ./a.out "ls .." "ls ." "echo Haha"
78 ./a.out "ls .." "ls ." "echo Haha"
79 ./a.out "ls .." "ls ." "echo Haha" echo echo
80 ./a.out "ls .." "ls ." "echo Haha" echo echo "sleep 5"
81 pico fastest.c
82 gcc fastest.c
83 ./a.out "ls .." "ls ." "echo Haha" echo echo "sleep 5"
84 ./a.out "ls .." "ls ." "echo Haha" echo echo "sleep 5"
85 ./a.out "ls .." "ls ." "echo Haha" echo echo "sleep 5"
86 pic fastest.c
87 pico fastest.c
88 gcc fastest.c
89 ./a.out "ls .." "ls ." "echo Haha" echo echo "sleep 5"
90 ./a.out "ls .." "ls ." "echo Haha" echo echo "sleep 5"
91 pico fastest.c
92 gcc fastest.c
93 pico fastest.c
94 gcc fastest.c
95 ./a.out "ls .." "ls ." "echo Haha" echo echo "sleep 5"
96 ./a.out "sleep 10" "sleep 2"
97 ./a.out "sleep 10" "sleep 1"
98 man sleep
99 pico fastest.c
100 gcc fastest.c
101 ./a.out "sleep 10" "sleep 1"
102 ./a.out "ls .." "ls ." "echo Haha" echo echo "sleep 5"
103 ./a.out "ls .." "ls ." "echo Haha" echo echo "sleep 5"
104 ./a.out "ls .." "ls ." "echo Haha" echo echo "sleep 5"
105 ./a.out "ls .." "ls ." "echo Haha" echo echo "sleep 5"

8

534 echo $?
535 echo $b
536 echo $?
537 x="once upon" y="a time" bash -c 'echo $x $y'
538 echo $?
539 echo $x
540 echo $?
541 b=bumble
542 echo $b
543 echo ${b}bee
544 echo $bbee
545 echo $?
546 echo ${a-something}
547 echo ${d-nothing}
548 echo $d
549 echo ${e=everything}
550 echo $e
551 echo ${d?Variable d not defined}
552 echo $?
553 ls
554 ls f1
555 ls -al f1
556 ls -al f1
557 ls -al f1
558 echo $?
559 ls -al ls-in-home
560 cat ls-in-home
561 echo $?
562 history

[20]: !542

echo $b
bumble

1.17 Quotation Marks
• There are three kinds of quotation marks:

– in a string enclosed by ": variables are expanded.
– in a string enclosed by ’: variables are not expanded.
– the value of ‘string‘ is the stdout from executing string as a command and removing

each trailing newline character:
$ rm ‘du -ks * | sort -n | awk ’ { print $2 } ’‘ # remove big file/directory
Note: the last form (back single quote) is equivalent to $(command).

[21]: du -ks * | sort -n | awk '{ print $2 }'

a.c

18

f1
ls-in-home
svi
svia
svib
EDAF35

[22]: echo $(du -ks * | sort -n | awk '{ print $2 }')

a.c f1 ls-in-home svi svia svib EDAF35

[23]: echo `du -ks * | sort -n | awk '{ print $2 }'`

a.c f1 ls-in-home svi svia svib EDAF35

1.18 Here Documents
• Sometimes it can be useful to provide the input to a script in the script file. The input is

right ”here”.

$ cat phone
grep "$*" <<End
Office 046 222 9484
Mobile 0767 888 124
$X
End

• Above script contains both the command and the input.
• The variable X is expanded; suppress this behaviour by preceding End with a backslash on

first line.

[24]: variable=$(cat <<SETVAR
This variable
runs over multiple lines.
SETVAR
)

echo "$variable"

This variable
runs over multiple lines.

1.18.1 broadcast: Sends message to everyone logged in

#!/bin/bash

wall <<zzz23EndOfMessagezzz23
E-mail your noontime orders for pizza to the system administrator.

(Add an extra dollar for anchovy or mushroom topping.)
Additional message text goes here.

19

Note: 'wall' prints comment lines.
zzz23EndOfMessagezzz23

Could have been done more efficiently by
wall <message-file
However, embedding the message template in a script
#+ is a quick-and-dirty one-off solution.

exit

more about here documents

1.19 Functions
function fun()
{
echo $1 # echo first argument
echo $2 # echo second argument
}

• The keyword function is optional.
• A function must be declared before it can be used.
• A function can be used as if it was any other UNIX command, i.e. no parentheses when the

function is called (not even for passing arguments).

[25]: function fun()
{
echo $1 # echo first argument
echo $2 # echo second argument
echo $0
}

fun ha hi
fun he ho hu
fun hiii

ha
hi
/bin/bash
he
ho
/bin/bash
hiii

/bin/bash

1.20 Simple Shell Syntax
• a && b executes b only if a succeeds (ie returns 0).
• a || b executes b only if a fails (ie returns nonzero).

20

http://tldp.org/LDP/abs/html/here-docs.html

The following commands can cause unhappiness if you run out of disk space during tar:

$ tar cf dir.tar dir; rm -rf dir; bzip2 -9v dir.tar

This is better:

$ tar cf dir.tar dir && rm -rf dir && bzip2 -9v dir.tar

Edit-compile-run without leaving the keyboard:

vi a.c && gcc a.c && a.out

But it is better to remap e.g. v, V, or t in vi to run make

1.21 For Loops
Iterate through certain files in your the current directory:

for x in *.c
do

lpr $x # prints them
done

or through all argumets passed to a script:

for x in $*
do

lpr $x
done

[26]: for x in *
do

echo $x
done

EDAF35 Lecture 4.ipynb
a.c
f1
ls-in-home
svi
svia
svib

You can also iterate through a string:

[27]: a="x y z v"
for s in $a
do

echo $s
done

x
y

21

z
v

Or simply a list:

[28]: for s in a b c b
do

echo $s
done

a
b
c
b

1.22 While and Until
while command
do

body # do body while command returns true
done

until command
do

body # do body while command returns false
done

1.23 If-Then-Else-Fi
if command
then

then-commands
[else

else-commands]
fi

if ! command
then

then-commands
[else

else-commands]
fi

1.24 Case
case word in
pattern1) commands;;
pattern2) commands;;
*) commands;;

22

esac

• Nothing happens if no pattern matches: putting *) last makes a default.

1.24.1 Longer example:

This is an excerpt of the script that starts Anacron, a daemon that runs commands periodically
with a frequency specified in days.

case "$1" in
start)

start
;;

stop)
stop
;;

status)
status anacron
;;

restart)
stop
start
;;

condrestart)
if test "x`pidof anacron`" != x; then

stop
start

fi
;;

*)
echo $"Usage: $0 {start|stop|restart|condrestart|status}"
exit 1

esac

1.25 cmp, diff, and ndiff
• cmp reports whether two files are equal.
• diff does the same but also shows how they differ.
• ndiff is a variant for which one can specify numerical differences which should be ignored.

– ndiff is not standard but easy to find.

1.26 cut
• cut cuts out characters from each line of stdin
• ls -l | cut -c2-10 prints the rwx-flags of the files.
• The first character on a line is c1.

23

• Multiple ranges can be specified: ls -l | cut -c2-10 -c51-55 also prints five characters
from the file name.

[29]: ls -l | cut -c2-10
ls -l

otal 624
rw-r--r--
rw-r--r--
rw-r--r--
rw-r--r--
rwxr-xr-x
rwxr-xr-x
rwxr-xr-x
total 624
-rw-r--r--@ 1 flagr staff 293310 Jan 20 14:03 EDAF35 Lecture 4.ipynb
-rw-r--r-- 1 flagr staff 14 Mar 26 2018 a.c
-rw-r--r-- 1 flagr staff 46 Jan 20 13:58 f1
-rw-r--r-- 1 flagr staff 254 Jan 20 13:59 ls-in-home
-rwxr-xr-x 1 flagr staff 93 Mar 26 2018 svi
-rwxr-xr-x 1 flagr staff 81 Mar 26 2018 svia
-rwxr-xr-x 1 flagr staff 93 Mar 26 2018 svib

[30]: ls -l | cut -c2-10 -c51-55

otal 624
rw-r--r--AF35
rw-r--r--c
rw-r--r--
rw-r--r---in-h
rwxr-xr-xi
rwxr-xr-xia
rwxr-xr-xib

1.27 find
Example: find . -name ’*.c’ The output will be a list of files (with full path) with suffix c.

We can feed that list to wc using: wc ‘find . -name ’*.java’‘ The default action is to print
the file name.

A number of criteria can be specified, including - -anewer filename selects files newer than file-
name. - -type type selects files of type type which is one of b,c,d,f,l, p, or s (with the same
meaning as printed by ls -l: block special file (eg disk), character special file (eg usb port),
directory, ordinary file, symbolic link, name pipe, or socket).

[31]: find . -name '*.ipynb'
find . -name '*.c'

24

./EDAF35 Lecture 4.ipynb

./.ipynb_checkpoints/EDAF35 Lecture 3-checkpoint.ipynb

./.ipynb_checkpoints/EDAF35 Lecture 4-checkpoint.ipynb

./a.c

1.28 cleanfiles
find . -name *.tac.??? -exec rm ’{}’ \;
find . -name *.pr -exec rm ’{}’ \;
find . -name cmd.gdb -exec rm ’{}’ \;
find . -name *.ps -exec rm ’{}’ \;
find . -name *.dot -exec rm ’{}’ \;
find . -name *.aux -exec rm ’{}’ \;
find . -name *.o -exec rm ’{}’ \;
find . -name out -exec rm ’{}’ \;
find . -name x -exec rm ’{}’ \;
find . -name y -exec rm ’{}’ \;
find . -name a.out -exec rm ’{}’ \;
find . -name cachegrind.out.* -exec rm ’{}’ \;

Have a look at man find

1.29 awk
• Stands for Aho (from the Dragonbook), Weinberger (from hashpjw in the Dragonbook), and

Kernighan (K in K&R C).
• Each line of input is separated into fields and are denoted $1,$2,... Assume a variable is

called X and has value 2. Then $X refers to the second field.
• The entire line is $0, number of fields on a line is denoted NF, and line number is NR.
• Each line in an awk program has a pattern and an action. If a line in the input matches the

pattern, the action is executed.

1.30 Example awk programs
$ awk ’{ print $1, $5; }’ # print first and fifth item.
$ awk ’$1 > 10 { print $1, $2; }’ # print first two items if $1 is > 10.
$ awk ’NR == 10’ # print tenth line.
$ awk ’NF > 4’ # print each line with > 4 fields.
$ awk ’NF > 0 ’ # print each nonempty line.
$ awk ’$NF > 4 ’ # print each line with last field > 4.
$ awk ’/abc/ ’ # print each line containing abc.
$ awk ’/abc/ { n = n + 1; }\

END { print n;}’ # print number of lines containing abc.
$ awk ’length($0) > 80’ # print each line longer than 80 bytes.

The END pattern matches at EOF. There is also a BEGIN pattern which is matched before the first
character is read.

[32]: echo a b c d e | awk '{ print $1, $5; }'

25

https://en.wikipedia.org/wiki/Compilers:_Principles,_Techniques,_and_Tools

a e

1.31 head and tail
• head prints the first 10 lines of a file (or stdin).
• head -100 prints the first 100 lines of a file (or stdin).
• tail prints the last 10 lines of a file (or stdin).
• tail -100 prints the last 100 lines of a file (or stdin).
• tail -f file like normal tail but at EOF waits for more data.

1.32 od
• Octal dump
• od file dumps the file contents on stdout in as octal numbers.
• od -c file prints file as characters.
• od -x file prints file as hex numbers.

1.33 sed
• stream editor.
• It can be useful for e.g. changing prefixes in a Yacc generated parser:

sed ’s/yydebug/pp_debug/g’ y.tab.c > tmp; mv tmp y.tab.c

[33]: echo a b c d aa | sed 's/a/Hahahah/g'

Hahahah b c d HahahahHahahah

1.34 grep
• Grep searches for a pattern in files.
• GNU grep has the useful -r option which traverses directories.
• In basic regular expressions ?, +, braces, parentheses and bar (i.e. |) have no special meaning.

Backslash them to get that.
• In extended regular expressions, enabled with -E, above characters are special. More about

that on next slide.

$ grep abc # matches line with abc.
$ grep -e ’[abc]’ # matches line with any of a, b, or c.
$ grep -e ’[^abc]’ # matches line with none of a, b, or c.
$ grep -e ’[^ab-d]’ # matches line with none of a, b, c, or d.
$ grep ab*c # matches line with ac, abc, abbbbbc.

[34]: grep abc EDAF*

"$ awk ’/abc/ ’ # print each line containing abc.\n",
"$ awk ’/abc/ { n = n + 1; }\\\n",
" END { print n;}’ # print number of lines containing abc.\n",
"$ grep abc # matches line with abc.\n",
"$ grep -e ’[abc]’ # matches line with any of a, b, or c.\n",

26

drrPiOPw9bT2egx65qUMSXmqJotpdXNtpa3ssosILiaK22JK618TPE4ipRoYepXq1MPhnVeHoTqTlSoO
vKMqzo023Gm6soxlU5EudxTldo+mhhsPTrV8TToUoYjEqksRWhTjGrXVCMo0VVqL3qipRlKNPmfuKTSt
c36xNgoAKAPMfiP8E/g58Yv7C/4W18KPhx8T/+EXu5r7w3/wALA8E+G/GH9g3dybY3U+kf8JBpuof2dJ
dmzs/tZtBGLr7Ja/aBJ9nh2ehgM2zTK/bf2bmWPy/6xFQr/UsXXwvtox5uWNX2FSHOo80uXmvy80uW3N
I4MdlWV5n7H+0suwOYfV5OVD67hKGK9jKXLzOl7aE/ZuXLHm5bc3LHmvZI9MRFjVURVREUIiIAqoqjCq
qjAVVAAAAwAMDHFee3fV6t6tvqd6VtFolokuhyt54D8Eah4x0f4h3/AIQ8M3vj3w9pOoaDoHjS80PTbn
xToeiatIkuq6To+vTWz6ppmn6nJGjahaWVzBBelE+0pKEUV0xxmLhhauBhisRDBV6sK1bCRrVI4atVpq
1OrVoJqnUqU1pCc1KUfs2OeWEwk8TSxs8NQnjKNOdGjipUacsRSpVHepTpVnF1KcKjXvxhKKl1vax1lc
x0BQAUAFABQAUAFAGBoXhTwx4Xl8QT+G/D2i6DP4r8QXPivxPNo+mWenS+IfE97Zafpt34h1p7SGFtT1
q50/SdMsZ9TvDPeS2mnWNu8zQ2sCLvWxOIxCoqvXq1lhqMcNh1VqSmqGHhOc40KSk2qdKM6tScacLRUp
zlZuTZjRw+Hw7rSoUKVF4mtLEYh0qcYOviJQhTlXquKTqVZQp04OpO8nGEI3ailHfrA2CgAoAKACgAoA
KACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKAC
gAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoAKACgAoA/9k=\"
\n"

" \"$ awk ’/abc/ ’ # print each line containing abc.\\n\",\n",
" \"$ awk ’/abc/ { n = n + 1; }\\\\\\n\",\n",
" \" END { print n;}’ # print number of lines containing

abc.\\n\",\n",
" \"$ grep abc # matches line with abc.\\n\",\n",
" \"$ grep -e ’[abc]’ # matches line with any of a, b, or c.\\n\",\n",
" \"$ grep -e ’[^abc]’ # matches line with none of a, b, or

c.\\n\",\n",
" \"$ grep ab*c # matches line with ac, abc, abbbbbc.\\n\",\n",
" \"grep abc EDAF*\"\n"

"grep abc EDAF*"

[35]: cat f1
echo ----------------------
grep -e '[^leoH]' f1

Hello
world!
world!
world!
world!
world!

world!
world!
world!
world!
world!

[37]: grep -e '[^leo]' f1

Hello
world!
world!

87

world!
world!
world!

1.35 grep -E
$ grep -E -e ’a|b’ # matches line with a or b.
$ grep -E -e ’a|bc’ # matches line with a or bc.
$ grep -E -e ’(a|b)c’ # matches line with a or b, followed by c.
$ grep -E -e ’(a|b)?c’ # ? denotes optional item.
$ grep -E -e ’(a|b)+c’ # + denotes at least once.
$ grep -E -e ’(a|b)*c’ # + denotes zero or more.
$ grep -E -e ’(a|b){4}c’ # {4} matches pattern four times.

• Without -E use backslash before above metacharacters.
• Without ’ the shell will try to setup a pipe … |

1.36 sort and uniq
• sort file sorts a file alphabetically.
• sort -n file sorts a file numerically.
• uniq removes duplicates line if found in sequence

[38]: sort f1

world!
world!
world!
world!
world!
Hello

[39]: uniq f1

Hello
world!

[40]: cat svi

#!/bin/bash
vi -c /$1 `egrep -e $1 *.[ch] */*.[ych] | awk -F: '{ print $1; }' | uniq | sort`

1.36.1 What does the above script do?

[]:

88

	EDAF35: Lecture 4
	Why Shell Programming ?
	Different Shells
	Bash as Login Shell
	Interactive Non-Login Shell
	Non-Interactive Shell
	Source Builtin Command
	Aliases and Noclobber
	I/O Redirection
	Shell Script Basics
	More About Parentheses
	Shell Variables
	Using Shell Variables
	More about Using Shell Variables
	PS1 and PS2
	Reexecuting Commands with a Builtin Editor
	Reexecuting Commands with an Exclamation
	Quotation Marks
	Here Documents
	broadcast: Sends message to everyone logged in

	Functions
	Simple Shell Syntax
	For Loops
	While and Until
	If-Then-Else-Fi
	Case
	Longer example:

	cmp, diff, and ndiff
	cut
	find
	cleanfiles
	awk
	Example awk programs
	head and tail
	od
	sed
	grep
	grep -E
	sort and uniq
	What does the above script do?

