EDAF35: OPERATING SYSTEMS

MODULE 5.A
CPU SCHEDULING

CONTENTS

MODULE 5

Scheduling concepts

Criteria

Algorithms

Threads vs. process scheduling

Multiprocessor and multicore issues

Real-time scheduling

CHAPTER 5
(OR 6)

BASIC CONCEPTS
SCHEDULING

* "multiprogramming” — for maximizing CPU utilization
» typical program: sequence of CPU— I/O bursts

» CPU-bound vs. I/O-bound processes

A

160 |

140 |

120 |

—h

(-

L
|

Qc
C

frequency

e.g. CPU bursts 60{
histogram 40

I I I 1 | >

0 8 16 24 32 40
burst duration (milliseconds)

load store
add store
read from file

wait for /O

store increment
index
write to file

wait for /O

load store
add store
read from file

wait for I/O

A

SAY

J_

~ CPU burst

- 1/0O burst

> CPU burst

- 1/0O burst

~ CPU burst

- 1/0 burst

BASIC CONCEPTS (Il)
SCHEDULING

» short-term scheduler — choose the next to run from the “ready” queue. When?

admitted { interrupt } { . »{ terminated
NON-PREEMPTIVE
(COOPERATIVE)

. 4

Z71/0 or event wait

3 [] = S - NS
il -

7" 1/O or event completion'}

scheduler dispatch

» dispatcher — gives control of the CPU to the selected process:

» switch context, switch to user mode, jump to user PC (“dispatch latency”)

CRITERIA
SCHEDULING

CPU utilization — busy ratio for the CPU
throughput — # processes completed per time unit
turnaround time — process submit to complete time
waiting time — time spent as “ready”

response time — submit to first output time

Are these independent? Which to maximize and which to minimize?

SCHEDULING ALGORITHMS

First-Come, First-Served (FCFS)
Shortest-Job-First (SJF)

Priority

Round-Robin

Multilevel Queue

Multilevel Feedback Queue

FIRST-COME, FIRST-SERVED (FCFS)

SCHEDULING
Process ECPU Burst time)
: Arrive order: 1, 2, 3
P, 24 |
P2 3 P1 P2 P3
P 3 °

Waiting time for 1, 2, 3? Average waiting time?

Arrive order: 2, 3, 1

P

2

P

3

Convoy effect — short processes stuck after a long one (non-preemptive!)

SHORTEST-JOB-FIRST (SJF)

SCHEDULING
Process ECPU Burst time
P 6 Execute the shortest job first!
. 8 |
e > P, P, P, P,
: 0 3 9 16 24
P4 3

Waiting time for each? Average waiting time?

: 12 |
predict —
(i 7110]
e.g exponential average: |
I 6
Tl =0 (e)T, A
Practical issue — .
how to find out the burst times? where a = 0..1 (here 0.5) I D I R
1) B
CPU burst (t) DR At 6 ol a3 4] 3 e

"guess” (1) 10 8 6 6 3 9 11 2

PRIORITY

SCHEDULING
Process i CPU Burst time : ASSOCIATE A NUMBER (PRIORITY) WITH EACH —
P. 10 : here, smallest number means highest priority
P, ' 1 1
Ps 2 4 f2 s £ Py |Py
P, 1 5 0 6 16 18 19
D : . > Waiting time for each? Average waiting time?
5

w reformulate SJF as priority scheduling — how?

* preemptive or not

» problem: starvation (for low priority) — solution: aging (increase priority over time)

ROUND ROBIN (RR)
SCHEDULING

* time quantum or time slice (q) — execute, interrupt, preempt, repeat

» with N processes in ready queue
- each gets 1/N processor time
- max wait is (N-1)q

Process ECPU Burst time

* how to choose g? i e

P i 3
- very large — FIFO e

. : P3 3
- very small — context switch overhead becomes high |

P1 P2 P3 P1 P1 P1 P1 P‘I
0 4 7 10 14 18 22 26 30

E.g. compared to SJF: larger average turnaround (more wait), better response (starts fast).

TIME QUANTUM AND CONTEXT SWITCHES

SCHEDULING
process time = 10 quantum context
switches
12 0
0 10
6 1
0 6 10
1 9

MULTILEVEL QUEUE

SCHEDULING
» several queues,
different priorities, highest priority
different policies . = system processes | e
: e.g. RR
« permanently assign a process to a queue —5 interactive processes =
e to choose among queues: | = 2 interactive editing processes —>>
e.g. FCFS
» fixed priority | —=p> batch processes —=>
» time slice | =P student processes =P

(e.g. 80% interactive, 20% batch) lowest priority

MULTILEVEL FEEDBACK QUEUE
SCHEDULING

* processes can move between queues

highest priority

| = interactive processes =
Demote . . » VPorage
= Interactive editing processes = rocess
process P
| = batch processes =
* student Processes # —uﬁuantum =8 3
lowest priority y == I
S— quantum = 16
—T" FCFS lj

THREAD
SCHEDULING

~

USER-LEVEL THREADS

REMEMBER THE THREAD
THREADING LIBRARY MAPPING MODELS?

en SINGLE PROCESS

Process-Contention Scope

(compete with other threads
in the same process) KERNEL-LEVEL THREADS

System-Contention Scope
(compete with all threads/

processes in the system)

SCHEDULING PTHREADS
EXAMPLE

PTHREAD_SCOPE_PROCESS vs. PTHREAD_SCOPE_SYSTEM (limited by the OS)

#include <pthread.h>

#include <stdio.h>

#define NUM THREADS 5

AL e 015 SR R0 (e L OO = G ARCET St B e O R I W)

J

5

AI

e o amele SiKelais e (bRl Thintefe 1 o feraaMulaliy. | =0 LSS el e s S (E S
pthread attr setscope (&attr, PTHREAD SCOPE SYSTEM) ;

eSS - oo e el = ale S
RS (e = , (i] . NUM_THREADS; 1L 3o)

piEhiEEed. Seinea el (SiEReclklalEvuiia a8 rmm e, ST)i

int 1, scope;
pthread t tid[NUM THREADS] ;

| ISIGHE e E = e S SR

/* get the default attributes */

@ Chieee el ol el itk Stc) ww)

/* first inquire on the current scope */

if (pthread attr getscope (&attr, &scope) != 0)
Rt (S Ederr iy Enalilie F t @ get ¥schedull ing s copeSn

/* now join on each thread */
FOIEe (A =R eI TS RIS 'S AT

Eieliise ey ie PR aEEncl s s N)=
}

Tl -t e e SO A 6 =Ye el (8] (PO S oW .16 al e i S {GR B N e X

SIESEE,
if (scope == PTHREAD SCOPE PROCESS) volid *runner (void *param)
P (P TR By S O Pl PRE GFLS. 5PN, {
else if (scope == PTHREAD SCOPE_SYSTEM) /* do some work ... */

pitlEme a iy e e e

~
.-_-----------.--
- o
-..-
L]

PrenntsER e TR S @GR, e ST 1 MR =2

~
——

else
fprintf (stderr, "Illegal scope value.\n"): '/

MULTI-PROCESSOR SYSTEMS
SCHEDULING

* homogeneous (similar processors)
NUMA

* symmetric vs. asymmetric multiprocessing:
who does the scheduling and other system activities? CF’“\ Py

\fast access % Ifast access
soft affinity (recommendation), hard affinity (rule)

« processor affinity: where to run a task?

computer

 load balancing: distribute the workload evenly
push vs. pull migration

bme

» multithreaded multicore processors: . CYCE % . '
o o o o o : N
coarse-grained vs. fine-grained multithreading “3oun®** Hw managed threads

REAL-TIME SCHEDULING

« soft vs. hard real-time systems: meeting deadlines Desktop Systems RT Systems

» Time-predictability is key

latency latency
distaibEtions" ARIeEEpse distribution worst cpse

» Optimize the worst case latency
(rather than common case)

response to event

< response interval >

* Interrupt and dispatch latency are important morupt | avalable

rocessin
<p g’

< dispatch latency ——»

* Worst case response time guarantees calime

process

execution
< >

<«— conflicts >t dispatch —»

time

PRIORITY-BASED SCHEDULING
REAL-TIME SYSTEMS

» Special task model

* periodic (p)

| P [P [P |
| | | |

» worst case execution time (t) , d | , d | | d
| | | | |

: t t t
 have deadlines (d)
often d = o . | | |
! |' |' ' Tim
period; period, periods

* How to assign priorities?

(fixed vs. dynamic, values) &
assumption: independent tasks

— can be relaxed somewhat

» Analysis techniques? (guarantees)

RATE-MONOTONIC SCHEDULING (RMS)

REAL-TIME

» fixed priorities (1/
P (1/p) RMS for P4 (t=20, p=50) and P (t=35, p=100)

; . Deadlines P, Py, P> P 1, P2
» guarantees? static analysis | | ! '

it P2, Fi Pal, | Ri P2 Fr Pal, | |

» feasible for n tasks it CPU utilization 0 10 20 30 40 50 60 70 80 90 100110120130140150160170 80 190 200
is below a certain limit

U = ZU Z—” <@ =1)
RMS for P4 (t=20, p=50) and P, (t=35, p=80)

» otherwise, may miss deadlines! Deadiines FII FIQ FII FII FIQ

| I:)2| |P1 | FIZ

|P1 |

I I I I I I I

[) [] [] I
~ OPtlmaI, in its class! O 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 180

EARLIEST DEADLINE FIRST (EDF)
REAL-TIME SCHEDULING

» dynamic priorities
e guarantees: works if U < 1

* optimal: reaches 100% CPU utilization

RMS for P¢ (t=20, p=50) and P (t=35, p=80)
Deadlines P, P, P, Py Py

; ' ' o

|P2 | |P1 | 2 |P1 | |P2|

|P1 |

O 10 20 30 40 50 60 /70 80 90 100 110 120 130 140 150 160

PTHREADS SCHEDULING
POSIX 1.B STANDARD

» Two standard policies: SCHED_FIFO, SCHED_RR (same, but with time slice)

* Non-standard, OS-specific:
SCHED OTHER (default for the OS)
SCHED_DEADLINE (EDF based, Linux),
SCHED_SPORADIC (fixed budget, some RTOS)

» Reading and updating policy API:

pthread-attrivetsched pelTeyfpthread atti st * afth; ant Xpo.ticy)

pthread_attr_setsched_policy(pthread_attr_t *attr, int policy)

https://en.wikipedia.org/wiki/SCHED_DEADLINE

#include <pthread.h>
iEnclude s<ssiEdio. he

#define NUM THREADS 5
b= (10 T SFRgE s chari=Sargv 1%

{
Pk 1™ S® LR Ghy:
pthread t tid[NUM THREADS];

PICTEEE a6l fa b ==ty o fo b
/* get the default attributes */

priiveacshmiear s 1IN0t Rk
/* get the current scheduling policy */

if (pthread attr getschedpolicy(&attr, &policy)
INhabife: tosget “policyRadm") ;

L= =05

EpIEEENESEdE FE,

SEH DO RS e s G DRSSO HE RIS)
SICHEBSRR P D assri i E S CHT FsRENTET 2
SICHEEISEILFC)) printf("SCHED_FIFO\n")

else {
T T § SO B LY, (F
else 1f (policy ==

else 1f (policy ==

...
il
-

EXAMPLE OF POSIX RT API

/AR i i) © el R WD O AR C P W@ ¥ SRR o SERERIF R/
1f (pthread attr setschedpolicy(&attr, SCHED FIFO) != 0)
Fprshisf CSiEde RS- SEnabl-cliEo| SSet spoiEse .\

R et et et h readesdr /
B 1. - =Rl e NUM_THREADS; 14++)

i hlineis e reetise- (Cawaich i T S" < 8 .c) Mt et Ui ires, MM

[ERRON P SIO RO eich MalaTEeia Gl X/

@G O S VIRV R EIR V8IS et i)
pithiregisiiarensnnCra=ayl 1TSS

L mare s st e adSaEnEl Fe ghi-mfneemiticoll dnc st ntle® Al Somsa e/

MolTd Frunneriiuoid - Xparam)

{
3, "o A

/* do some work
pEhiicaesexis00s;

READ THE TEXTBOOK EXAMPLES FOR DIFFERENT OS
.. AND COMPLEMENT WITH ONLINE INFORMATION

Abraham Silberschatz « , :

 Linux scheduling SOYPSETIE ;
1

Ninth Edition

* Windows scheduling

 Solaris scheduling

ssniternational Student Version

ALGORITHM EVALUATION
SCHEDULING

* How to choose a CPU-scheduling algorithm for an OS?

* Two phases:

1. determine criteria (measure what?)

2. evaluate according to the above (four different ways...)

1. DETERMINISTIC MODELING
SCHEDULING EVALUATION

Process ECPU Burst time

2E=T aal FCFS: 28 | "2 B T | 5

P> 29 0 10 39 42 49 61

P3 3

= : P.| P p p p

P, 12 SJF, non-preemptive: 13 | 3| 4 1 5 -

’ 0 3 10 20 32 61
all arrive att =0
Criterium: RR (g = 10): 23 8 2 |Pa| P4 s P2 Ps| P2

minimal average wait time? 0 10 20 23 30 40 50 52 61

PROS: SIMPLE & FAST

CONS: REQUIRES EXACT DATA, GUARANTEES ONLY FOR THAT DATA

2. USE PROBABILISTIC MODELS
SCHEDULING EVALUATION

e gueuing theory (alternatively, network calculus)
» process parameters (arrival times, duration, bursts) = probability distributions
» computing system = network of servers, each with own waiting queue

 knows arrival rates, service rates

» computes utilization, average waiting time, average queue length, throughput,
etc.

PROS: CAN MODEL A RANGE OF DATA, KNOWN METHOD, FORMAL PROOF

CONS: SIMPLIFIED MODELS (UNREALISTIC), MAY DIVERGE (USELESS RESULTS)

3. BY SIMULATION
SCHEDULING EVALUATION

programmed model of the computer system

may be at different levels of detail - thus accuracy
may be stopped and resumed at any time

data may come from:

(a) randomly generated from given distributions

(b) trace tapes recorded from real executions

CPU 10

actual
process
execution

/O 213
CPU 12
— /0 112
CPU 2

/O 147
CPU 173

—

~] trace tape

simulation =
|_FCFS |
simulation | —=p»
SJF
simulation =P
RR (q = 14)]

PROS: MORE ACCURATE AND REALISTIC, ALLOWS FOR SOME EXPLORATION

CONS: MORE COMPLEX TO DEVELOP, DOES NOT CAPTURE ALL THE REAL DETAILS

performance
statistics
for FCFS

performance
statistics
for SJF

performance
statistics
for RR (g = 14)

4. BY IMPLEMENTATION

SCHEDULING EVALUATION

* Implement in a real system
» Test in real operation
* Obtain real measures in real environments

* Note: no formal prooft, only “works for my tests”

PROS: MOST ACCURATE, SUITABLE FOR EXPLORATION, CATCHES THE UNEXPECTED

CONS: VERY HIGH COST, TIME-CONSUMING,
CANNOT ACCOUNT FOR ALL POSSIBLE VYARIATIONS

END OF MODULE 5.A

