
MODULE 5.A
CPU SCHEDULING

EDAF35: OPERATING SYSTEMS

MODULE 5
CONTENTS

• Scheduling concepts

• Criteria

• Algorithms

• Threads vs. process scheduling

• Multiprocessor and multicore issues

• Real-time scheduling

CHAPTER 5
(OR 6)

SCHEDULING
BASIC CONCEPTS

• “multiprogramming” — for maximizing CPU utilization

• typical program: sequence of CPU— I/O bursts

• CPU-bound vs. I/O-bound processes

e.g. CPU bursts
histogram

SCHEDULING
BASIC CONCEPTS (II)

• short-term scheduler — choose the next to run from the “ready” queue. When?

• dispatcher — gives control of the CPU to the selected process:

‣ switch context, switch to user mode, jump to user PC (“dispatch latency”)

1.

2.

NON-PREEMPTIVE
(COOPERATIVE)

4.

3.

PREEMPTIVE

SCHEDULING
CRITERIA

• CPU utilization — busy ratio for the CPU

• throughput — # processes completed per time unit

• turnaround time — process submit to complete time

• waiting time — time spent as “ready”

• response time — submit to first output time

Are these independent? Which to maximize and which to minimize?

SCHEDULING ALGORITHMS

• First-Come, First-Served (FCFS)

• Shortest-Job-First (SJF)

• Priority

• Round-Robin

• Multilevel Queue

• Multilevel Feedback Queue

SCHEDULING
FIRST-COME, FIRST-SERVED (FCFS)

Process CPU Burst time

P1 24

P2 3

P3 3

Arrive order: 1, 2, 3

Arrive order: 2, 3, 1

Waiting time for 1, 2, 3? Average waiting time?

Convoy effect — short processes stuck after a long one (non-preemptive!)

SCHEDULING
SHORTEST-JOB-FIRST (SJF)

Process CPU Burst time
P1 6
P2 8
P3 7
P4 3

Execute the shortest job first!

Practical issue —
how to find out the burst times?

Waiting time for each? Average waiting time?

predict —
e.g exponential average:

where (here 0.5)

τn+1 = αtn + (1 − α)τn

α = 0..1

SCHEDULING
PRIORITY

• preemptive or not

• problem: starvation (for low priority) — solution: aging (increase priority over time)

Process CPU Burst time Priority

P1 10 3

P2 1 1

P3 2 4

P4 1 5

P5 5 2

ASSOCIATE A NUMBER (PRIORITY) WITH EACH —
here, smallest number means highest priority

reformulate SJF as priority scheduling — how?

Waiting time for each? Average waiting time?

SCHEDULING
ROUND ROBIN (RR)

• time quantum or time slice (q) — execute, interrupt, preempt, repeat

• with N processes in ready queue
- each gets 1/N processor time
- max wait is (N-1)q

• how to choose q?
- very large — FIFO
- very small — context switch overhead becomes high

Process CPU Burst time

P1 24

P2 3

P3 3

E.g. compared to SJF: larger average turnaround (more wait), better response (starts fast).

SCHEDULING
TIME QUANTUM AND CONTEXT SWITCHES

SCHEDULING
MULTILEVEL QUEUE

• several queues,
different priorities,
different policies

• permanently assign a process to a queue

• to choose among queues:

‣ fixed priority

‣ time slice
(e.g. 80% interactive, 20% batch)

e.g. RR

e.g. FCFS

SCHEDULING
MULTILEVEL FEEDBACK QUEUE

• processes can move between queues

Upgrade
process

Demote
process

SCHEDULING
THREAD

USER-LEVEL THREADS

KERNEL-LEVEL THREADS

CPU

REMEMBER THE THREAD
MAPPING MODELS?

SINGLE PROCESS

System-Contention Scope
(compete with all threads/
processes in the system)

Process-Contention Scope
(compete with other threads

in the same process)

LWP

THREADING LIBRARY

SCHEDULING PTHREADS

• PTHREAD_SCOPE_PROCESS vs. PTHREAD_SCOPE_SYSTEM (limited by the OS)

EXAMPLE

#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5
int main(int argc, char *argv[]) {
 int i, scope;
 pthread_t tid[NUM THREADS];
 pthread_attr_t attr;
 /* get the default attributes */
 pthread_attr_init(&attr);
 /* first inquire on the current scope */
 if (pthread_attr_getscope(&attr, &scope) != 0)
 fprintf(stderr, "Unable to get scheduling scope\n");
 else {
 if (scope == PTHREAD_SCOPE_PROCESS)
 printf("PTHREAD_SCOPE_PROCESS");
 else if (scope == PTHREAD_SCOPE_SYSTEM)
 printf("PTHREAD_SCOPE_SYSTEM");
 else
 fprintf(stderr, "Illegal scope value.\n");
 }

 /* set the scheduling algorithm to PCS or SCS */

 pthread_attr_setscope(&attr, PTHREAD_SCOPE_SYSTEM);
 /* create the threads */
 for (i = 0; i < NUM_THREADS; i++)

 pthread_create(&tid[i],&attr,runner,NULL);

 /* now join on each thread */
 for (i = 0; i < NUM_THREADS; i++)

 pthread_join(tid[i], NULL);

}

/* Each thread will begin control in this function */

void *runner(void *param)
{

 /* do some work ... */

 pthread_exit(0);

}

SCHEDULING
MULTI-PROCESSOR SYSTEMS

• homogeneous (similar processors)

• symmetric vs. asymmetric multiprocessing:
who does the scheduling and other system activities?

• processor affinity: where to run a task?
soft affinity (recommendation), hard affinity (rule)

• load balancing: distribute the workload evenly
push vs. pull migration

• multithreaded multicore processors:
coarse-grained vs. fine-grained multithreading

PLAYS A ROLE

NUMA

Hw managed threadsINSTR. CYCLE

BOUNDARY

REAL-TIME SCHEDULING

• soft vs. hard real-time systems: meeting deadlines

• Time-predictability is key

• Optimize the worst case latency
(rather than common case)

• Interrupt and dispatch latency are important

• Worst case response time guarantees

latency
distribution

Desktop Systems

OK

worst case
latency

distribution

RT Systems
O

K

worst case

REAL-TIME SYSTEMS
PRIORITY-BASED SCHEDULING

• Special task model

• periodic (p)

• worst case execution time (t)

• have deadlines (d)
often d = p

• How to assign priorities?
(fixed vs. dynamic, values)

• Analysis techniques? (guarantees)
assumption: independent tasks

— can be relaxed somewhat

REAL-TIME
RATE-MONOTONIC SCHEDULING (RMS)

• fixed priorities (1/p)

• guarantees? static analysis

• feasible for tasks if CPU utilization
is below a certain limit

• otherwise, may miss deadlines!

• optimal, in its class!

n

U = ∑
n

Un = ∑
n

tn
pn

≤ n(21
n − 1)

RMS for P1 (t=20, p=50) and P2 (t=35, p=100)

RMS for P1 (t=20, p=50) and P2 (t=35, p=80)

REAL-TIME SCHEDULING
EARLIEST DEADLINE FIRST (EDF)

• dynamic priorities

• guarantees: works if

• optimal: reaches 100% CPU utilization

U ≤ 1

RMS for P1 (t=20, p=50) and P2 (t=35, p=80)

PTHREADS SCHEDULING

• Two standard policies: SCHED_FIFO, SCHED_RR (same, but with time slice)

• Non-standard, OS-specific:
SCHED_OTHER (default for the OS)
SCHED_DEADLINE (EDF based, Linux),
SCHED_SPORADIC (fixed budget, some RTOS)

• Reading and updating policy API:

pthread_attr_getsched_policy(pthread_attr_t *attr, int *policy)

pthread_attr_setsched_policy(pthread_attr_t *attr, int policy)

POSIX 1.B STANDARD

https://en.wikipedia.org/wiki/SCHED_DEADLINE

EXAMPLE OF POSIX RT API
#include <pthread.h>
#include <stdio.h>
#define NUM_THREADS 5
int main(int argc, char *argv[])
{
 int i, policy;
 pthread_t_tid[NUM_THREADS];
 pthread_attr_t attr;
 /* get the default attributes */
 pthread_attr_init(&attr);
 /* get the current scheduling policy */
 if (pthread_attr_getschedpolicy(&attr, &policy) != 0)
 fprintf(stderr, "Unable to get policy.\n");
 else {
 if (policy == SCHED_OTHER) printf("SCHED_OTHER\n");
 else if (policy == SCHED_RR) printf("SCHED_RR\n");
 else if (policy == SCHED_FIFO) printf("SCHED_FIFO\n");
 }

 /* set the scheduling policy - FIFO, RR, or OTHER */
 if (pthread_attr_setschedpolicy(&attr, SCHED_FIFO) != 0)
 fprintf(stderr, "Unable to set policy.\n");
 /* create the threads */
 for (i = 0; i < NUM_THREADS; i++)
 pthread_create(&tid[i], &attr, runner, NULL);
 /* now join on each thread */
 for (i = 0; i < NUM_THREADS; i++)
 pthread_join(tid[i], NULL);
}

/* Each thread will begin control in this function */
void *runner(void *param)
{
 /* do some work ... */
 pthread_exit(0);
}

… AND COMPLEMENT WITH ONLINE INFORMATION
READ THE TEXTBOOK EXAMPLES FOR DIFFERENT OS

• Linux scheduling

• Windows scheduling

• Solaris scheduling

SCHEDULING
ALGORITHM EVALUATION

• How to choose a CPU-scheduling algorithm for an OS?

• Two phases:

1. determine criteria (measure what?)

2. evaluate according to the above (four different ways…)

SCHEDULING EVALUATION
1. DETERMINISTIC MODELING

Process CPU Burst time
P1 10
P2 29
P3 3
P4 7
P5 12

all arrive at t = 0

Criterium:
minimal average wait time?

FCFS: 28

SJF, non-preemptive: 13

RR (q = 10): 23

PROS: SIMPLE & FAST

CONS: REQUIRES EXACT DATA, GUARANTEES ONLY FOR THAT DATA

SCHEDULING EVALUATION
2. USE PROBABILISTIC MODELS

PROS: CAN MODEL A RANGE OF DATA, KNOWN METHOD, FORMAL PROOF

CONS: SIMPLIFIED MODELS (UNREALISTIC), MAY DIVERGE (USELESS RESULTS)

• queuing theory (alternatively, network calculus)

• process parameters (arrival times, duration, bursts) = probability distributions

• computing system = network of servers, each with own waiting queue

• knows arrival rates, service rates

• computes utilization, average waiting time, average queue length, throughput,
etc.

SCHEDULING EVALUATION
3. BY SIMULATION

PROS: MORE ACCURATE AND REALISTIC, ALLOWS FOR SOME EXPLORATION

CONS: MORE COMPLEX TO DEVELOP, DOES NOT CAPTURE ALL THE REAL DETAILS

• programmed model of the computer system

• may be at different levels of detail - thus accuracy

• may be stopped and resumed at any time

• data may come from:

(a) randomly generated from given distributions

(b) trace tapes recorded from real executions

SCHEDULING EVALUATION
4. BY IMPLEMENTATION

PROS: MOST ACCURATE, SUITABLE FOR EXPLORATION, CATCHES THE UNEXPECTED

CONS: VERY HIGH COST, TIME-CONSUMING,
CANNOT ACCOUNT FOR ALL POSSIBLE VARIATIONS

• Implement in a real system

• Test in real operation

• Obtain real measures in real environments

• Note: no formal proof, only “works for my tests”

END OF MODULE 5.A

