EDAF35: OPERATING SYSTEMS

MODULE 5.B
SYNCHRONIZATION

CONTENTS
SYNCHRONIZATION

"Critical Section” problem
Hardware support for synchronization

Higher-level mechanisms:
mutex, lock, semaphore, monitor, condition variable

Deadlocks

Alternative approaches

CHAPTER 6
SYNCHRONIZATION
(OR 5)

AN EXAMPLE

RACE CONDITION, CRITICAL SECTION

Producer

while (true) {

/* do nothing */
buffer[in] = next_produced;
in = (in + 1) % BUFFER_SIZE;

counter++;

registerl
registerl
counter =

Race Condition:
order decides the result

/* produce an item in next produced */

while (counter == BUFFER_SIZE) ;

Consumer
while (true) {
while (counter == 0)

; /* do nothing */
next_consumed = buffer[out];
out = (out + 1) % BUFFER_SIZE;

counter--;

CIRCULAR BUFFER

/* consume the item in next consumed */

}
= counter . register2 = counter
= registerl + 1 machine code register2 = register2 - 1
registerl counter = register2

Example execution with “counter = 5" initially

SO: producer execute registerl = counter {reqgister1 = 5}

S1: producer execute registerl = registerl + 1 {register1 = 6} Cl‘ltlcal Section:

S2: consumer execute register2 = counter {reqgister2 = 5} P :

S3: consumer execute register2 = register2 - 1 {reqister2 =4} it interleaved with another
S4: producer execute counter = registerl {counter =6 } leads to a race

S5: consumer execute counter = register2 {counter = 4}

CRITICAL SECTION PROBLEM
SYNCHRONIZATION

Typical process (simplified) « Various solutions exist:
do { - sw only vs. hw supported

Solutions must provide

critic!\ ctio

- kernel vs. user level

MUTUAL EXCLUSION

release lock * Most common: |OC|(S
: PROGRESS

remainder s&ction

BOUNDED WAIT
} while (true);

HARDWARE SUPPORT FOR SYNCHRONIZATION IS ESSENTIAL FOR EFFICIENT OPERATION

HARDWARE SUPPORT
SYNCHRONIZATION

Test and Set

boolean test_and_set (boolean *target)

{

Compare and Swap

int compare_and_swap(int *value, int expected, int new_value)

{

int temp = *value;
1T (*value == expected)
*value = new_value;

return temp;

}

» atomic execution (by hardware implementation)

» semantic definitions above (not real implementation)

* building blocks for more complex constructs: mutex locks

boolean rv = *target;
*target = TRUE;
return rv:
¥
do {

while (test_and_set(&lock))
; /* do nothing *A<,
/* critical section */

lock = false;

/* remainder section */
} while (true);

BUSY WAIT

(SPINLOCKS)

do
{ while (compare_and_swap (&lock, 0, 1) != 0)
:>; /* do nothing */
/* critical section */
lock = 0;
/* remainder section */

} while (true);

HIGHER ABSTRACTIONS: SEMAPHORES
SYNCHRONIZATION

Semaphore S: integer value o Different types:

+

Two atomic operations

» counting semaphore

wait(S) {

e s oot » binary semaphore (vs. mutex lock)
; // busy wait S++;
S } /1 VO, give()

Yy /1 PQO), take()

e Different uses:

do {

»
OBS: NO TWO PROCESSES SHOULD EXECUTE used as mutex locks wait(S)

WAIT/SIGNAL AT THE SAME TIME
(CRITICAL SECTIONS)

critical section

» used for signaling

remainder section

STILL BUSY WAIT WITH SPINLOCKS,

} while (true);

SEMAPHORES WITHOUT BUSY-WAIT
SYNCHRONIZATION

0 admitted interrupt exit

. - \ -

17O or event completion e e Gl el /0 or event wait

* S gets more complex: also manages a queue of blocked processes

* wait: if needed, P adds itself to semaphore queue and bloc

signal: P wakes-up a blocked process and place it in OS ready-queue

CHALLENGES WITH SEMAPHORES

incorrect use

deadlock: wait for each other
v prevent, avoid, detect, recover

starvation: indefinite blocking

priority inversion: lower-priority before higher-priority

v priority-inheritance protocol

READ THE WHOLE
CHAPTER 7:
DEADLOCKS

CLASSIC PROBLEMS
SYNCHRONIZATION

e The Bounded-Buffer Problem
e The Readers-Writers Problem

* The Dining-Philosophers Problem

READ THE BOOK
6.7 (OR 5.7)

MONITORS

Y
entry quaua ?:.{""»..."‘ i =
e | f’&rx\, SYN C H RO N |ZAT| O N SYNCHRONIZED” METHODS IN
/ shared data \/{/}:A” JAVA
f/ \\\
;‘/ \'. () ® ()
1\ * encapsulate shared resources/criticg¥sections
|, o 3% |
| f * one process active in any of its methods (“mutex”)
\ !
K\\‘ ope ;tims //"; < y
Y ; entry queue {’/3("{-‘/)

74
\ initialization - - ("\'ﬂ)
— 4 e ("}\,&’\e
;- / shared data \.(\,,/

gqueues associated with {’ X—fbl = \
Y it Y

X, yconditions ‘.

» with condition variables: more complex schemes , \

» c.wait(), c.signal() - from monitor methods ‘\ |
\ /
\ : 7 o
» similar, but not the same as L AND R IR LA T \ operations
JAVA \ /
the semaphore operations (how? nitializati
P P () \\ ini lgcl).czjaelon /

QUICK EXAMPLES
SYNCHRONIZATION

Wiy
A A - ml |\,
soLaris am VVindows
* adaptive mutexes » disable interrupts (uniproc) or spinlock (multiproc)

* condition variables dispatcher objects: mutex, semaphore, events, timers

e readers-writers lock

e events = condition variables

—==("))
Pt * OS-independent API ~-

* non-preemptive kernel < v2.6 (fully preemptive)

R : mutex lock, condition variables
* semaphores, atomic integers, spinlocks,

reader-writer locks

* non-portable extensions:
rw-locks, spinlocks

ALTERNATIVE APPROACHES
SYNCHRONIZATION

» Transactional Memory
* OpenMP

* Functional Languages

* Asynchronous Computation Models

END OF MODULE 5.B

