
MODULE 5.B
SYNCHRONIZATION

EDAF35: OPERATING SYSTEMS

CHAPTER 7
DEADLOCKS

SYNCHRONIZATION
CONTENTS

• “Critical Section” problem

• Hardware support for synchronization

• Higher-level mechanisms:
mutex, lock, semaphore, monitor, condition variable

• Deadlocks

• Alternative approaches

CHAPTER 6
SYNCHRONIZATION

(OR 5)

RACE CONDITION, CRITICAL SECTION
AN EXAMPLE

while (true) {
 /* produce an item in next produced */

 while (counter == BUFFER_SIZE) ;

 /* do nothing */

 buffer[in] = next_produced;

 in = (in + 1) % BUFFER_SIZE;

 counter++;

}

Producer
while (true) {

 while (counter == 0)

 ; /* do nothing */

 next_consumed = buffer[out];

 out = (out + 1) % BUFFER_SIZE;

 counter--;

 /* consume the item in next consumed */

}

Consumer

CIRCULAR BUFFER

register1 = counter
register1 = register1 + 1
counter = register1

register2 = counter
register2 = register2 - 1
counter = register2

machine code

S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 – 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6 }
S5: consumer execute counter = register2 {counter = 4}

Example execution with “counter = 5” initially

Race Condition:
order decides the result

Critical Section:
if interleaved with another

leads to a race

SYNCHRONIZATION
CRITICAL SECTION PROBLEM

• Various solutions exist:
- sw only vs. hw supported
- kernel vs. user level

• Most common: locks

Typical process (simplified)

1. MUTUAL EXCLUSION

2. PROGRESS

3. BOUNDED WAIT

Solutions must provideacquire lock

release lock

HARDWARE SUPPORT FOR SYNCHRONIZATION IS ESSENTIAL FOR EFFICIENT OPERATION

SYNCHRONIZATION
HARDWARE SUPPORT

• atomic execution (by hardware implementation)
• semantic definitions above (not real implementation)
• building blocks for more complex constructs: mutex locks

boolean test_and_set (boolean *target)
 {
 boolean rv = *target;
 *target = TRUE;
 return rv:
}

Test and Set
int compare_and_swap(int *value, int expected, int new_value)
 {
 int temp = *value;
 if (*value == expected)
 *value = new_value;
 return temp;
 }

Compare and Swap

 do {
 while (test_and_set(&lock))
 ; /* do nothing */

 /* critical section */

 lock = false;

 /* remainder section */

 } while (true);

 do {
 while (compare_and_swap(&lock, 0, 1) != 0)
 ; /* do nothing */

 /* critical section */

 lock = 0;

 /* remainder section */

 } while (true);

BUSY WAIT
(SPINLOCKS)

SYNCHRONIZATION
HIGHER ABSTRACTIONS: SEMAPHORES

wait(S) {
 while (S <= 0)
 ; // busy wait
 S--;
} // P(), take()

signal(S) {
 S++;
} // V(), give()

Semaphore S: integer value

Two atomic operations
+

• Different types:

‣ counting semaphore

‣ binary semaphore (vs. mutex lock)

• Different uses:

‣ used as mutex locks

‣ used for signaling

‣ rendezvous, etc.

OBS: NO TWO PROCESSES SHOULD EXECUTE
WAIT/SIGNAL AT THE SAME TIME

(CRITICAL SECTIONS)

STILL BUSY WAIT WITH SPINLOCKS,
BUT CAN WE DO WITHOUT?

wait(S)

signal(S)

SYNCHRONIZATION
SEMAPHORES WITHOUT BUSY-WAIT

• S gets more complex: also manages a queue of blocked processes

• wait: if needed, P adds itself to semaphore queue and block

• signal: P wakes-up a blocked process and place it in OS ready-queue

CHALLENGES WITH SEMAPHORES

• incorrect use

• deadlock: wait for each other

✓ prevent, avoid, detect, recover

• starvation: indefinite blocking

• priority inversion: lower-priority before higher-priority

✓ priority-inheritance protocol

READ THE WHOLE
CHAPTER 7:
DEADLOCKS

READ THE BOOK
6.7 (OR 5.7)

SYNCHRONIZATION
CLASSIC PROBLEMS

• The Bounded-Buffer Problem

• The Readers-Writers Problem

• The Dining-Philosophers Problem

SYNCHRONIZATION
MONITORS

• encapsulate shared resources/critical sections

• one process active in any of its methods (“mutex”)

• with condition variables: more complex schemes

‣ c.wait(), c.signal() - from monitor methods

‣ similar, but not the same as
the semaphore operations (how?)

“SYNCHRONIZED” METHODS IN
JAVA

“WAIT” AND “NOTIFY” CALLS IN
JAVA

SYNCHRONIZATION
QUICK EXAMPLES

• adaptive mutexes
• condition variables
• readers-writers lock

• disable interrupts (uniproc) or spinlock (multiproc)

• dispatcher objects: mutex, semaphore, events, timers

• events = condition variables

• non-preemptive kernel < v2.6 (fully preemptive)

• semaphores, atomic integers, spinlocks,
reader-writer locks

• OS-independent API

• mutex lock, condition variables

• non-portable extensions:
rw-locks, spinlocks

SYNCHRONIZATION
ALTERNATIVE APPROACHES

• Transactional Memory

• OpenMP

• Functional Languages

• Asynchronous Computation Models

END OF MODULE 5.B

