
MODULE 6
MEMORY MANAGEMENT

EDAF35: OPERATING SYSTEMS

MEMORY MANAGEMENT
CONTENTS

• Background

• Memory Allocation Strategies

• Demand Paging, Copy-on-Write, Page Replacement

• Frame Allocation and Thrashing

• Memory Mapped Files

• Kernel Memory Allocation

CHAPTER 9
VIRTUAL-MEMORY

MANAGEMENT

CHAPTER 8
MEMORY-

MANAGEMENT
STRATEGIES

Read also: https://www.cs.rutgers.edu/~pxk/416/notes/10-paging.html

https://www.cs.rutgers.edu/~pxk/416/notes/10-paging.html

BACKGROUND
NOTES ON HARDWARE

CPU
(can address)

data
1 clock cycle

data, instructions
N clock cycles

CPU

MEMORY
MANAGEMENT UNIT

(MMU)

MAIN
MEMORY

CACHES

REGISTERS

logical
addresses

physical
addresses

translate +
protect

Example: A simple MMU

REGS

BACKGROUND
ADDRESS BINDING

SYMBOLIC ADDRESSES

ABSOLUTE ADDRESSES

RELOCATABLE
ADDRESSES

• Symbolic addresses:

• e.g. variable names — makes it
easier to program

• Absolute addresses:

• logical — usually fixed at runtime

• physical — may change (move)

STRATEGIES
CONTIGUOUS ALLOCATION

base

limit

OS
PARTITION

USER
PROCESSES

0000
(low)

FFFF
(high)

addr PROC 1

PROC 2

protection scheme

• where to place a new process?
first fit, best fit, worst fit

• external fragmentation
— wasted memory (no process fits there)

STRATEGIES
SEGMENTATION

• split a process in segments
— logical ranges
(also the programmer’s view)

• place segments separately in
memory

1

3

2

4

1

4

2

3

user space physical memory space

Hardware
support

a process

Fragmentation issues?

STRATEGIES
PAGING

• splits the memory in equal size pages

• frames (physical) host pages (logical)

• page table/process — for translation

Hardware
support

d

page size = 2k
 = 512 — 16M bytes

PAGING
IMPLEMENTATION OF PAGE TABLES

• in memory table
+ base register (PTBR)
+ length register (PTLR)

• issue:
one extra memory access
(page#-to-frame# translation)

• solution: cache?
translation look-aside buffer (TLB)

• Effective Access Time (textbook)

PAGING
EXTENSIONS

access bit RW, RO, …

Memory protection (access bits, valid bit,…) Sharing pages (code shared, data private)

PAGING
PAGE TABLE STRUCTURES

• simple arrays for PT can get huge!

• Better structures needed:

‣ Hierarchical page tables

‣ Hashed page tables

‣ Inverted page tables

EXAMPLE: 32 BIT ADDRESSES, PAGE SIZE = 4KB (212)
— PAGE TABLE =1 MILLION ENTRIES (220), 4MB —

PT COVERS 256 CONTIGUOUS PAGES!

PAGING
HIERARCHICAL PAGE TABLES

Two-level Page Table
address translation

• sparse — occupies only used pages

• increases access time with each extra level

• still huge for 64-bits addresses

PAGING
HASHED PAGE TABLE

PAGING
INVERTED PAGE TABLE

• common global structure
(not per process)

• maps a frame# to a process-page#
(inverted!)

• limited by the total number of frames:
uses less memory

• issues:
- performance? (hash-table)
- shared memory? (see book)

i

VIRTUAL MEMORY

FOR EXTRA -MEMORY
SWAPPING

• save/restore process memory in
backing store

• Pros:
- increase level of multiprogramming

• Cons:
- large overhead for full process swap
- not always possible due to pending
I/O operations

VIRTUAL MEMORY
BASIC IDEAS

• keep in memory only needed code/
data, not the whole process
(the rest is on the disk)

• decouple logical from physical
address spaces

• processes see a larger (virtual)
memory than the existing (physical)
one

process
disk

Usually Page 0 covers from address 0 (reverse
this order) — but the principle remains

DEMAND PAGING

• Bring in process pages only when needed
(on demand)

• Advantages vs. whole process swap:

✓ faster I/O (one page only)

✓ faster response time

✓ less memory used

✓ more processes supported Some pages may remain on the disk!

Pager: Like this process Swapper… but lazy!

DEMAND PAGING
HANDLING PAGE FAULTS

• page fault = accessing an invalid address
(va not present in a pa)

• traps into OS

• may bring several pages
(for complex instructions)

• Effective Access Time (EAT) =

memory (m), disk (d), miss ratio (p)

• all worth it only if p is very small!

m * (1 − p) + d * p

PERKS OF PAGING
COPY-ON-WRITE

process 1
writes to
page C

PARENT AND CHILD PROCESSES CAN SHARE PAGES
UNTIL MODIFIED!

Advantages:
- fast fork (response time)
- less memory used

> man fork, vfork, exec

say one forked the other

PAGING
FRAME ALLOCATION AND PAGE REPLACEMENT

• frame allocation:
how many frames to give to each process?

• page replacement:
 make space for a new page =
 swap out/discard the old one, if used

• which page to replace?
“goal: minimize page-faults”

• various algorithms - evaluate them on “reference strings”
= sequences of addresses (page numbers)

Example of a “reference string”: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

PAGING
PAGE FAULTS VS. ALLOCATED FRAMES

Expected shape…

PAGE REPLACEMENT
FIRST-IN FIRST-OUT (FIFO) ALGORITHM

• Reference string: 7,0,1,2,0,3,0,4,2,3,0,3,0,3,2,1,2,0,1,7,0,1

• 3 frames (3 pages can be in memory per process at a time)

• Result can vary with the reference string: 1,2,3,4,1,2,5,1,2,3,4,5

✴Adding frames causes more page faults! Belady’s Anomaly

• How to track ages of pages? (use a FIFO queue)

15 page faultsFIFO replacement:

PAGE REPLACEMENT
OPTIMAL (OPT) ALGORITHM

• “replace the page that will not be used for the longest time in the future”

• needs knowledge of the future - not feasible in practice

• used as a baseline (to compare to other algorithms)

• practical version: use estimates to predict the future

9 page faults

PAGE REPLACEMENT
LEAST RECENTLY USED (LRU) ALGORITHM

• estimate the future: history

• “replace the page not accessed for the longest time in the past”

• generally good performance

• implementation… how?

OPT < 12 faults < FIFO

LRU AND OPT ARE TWO SO CALLED “STACK ALGORITHMS” - DO NOT SUFFER FROM BELADY’S ANOMALY

PAGE REPLACEMENT
MORE ALGORITHMS

• LRU approximations:

• reference bit (LRU count is 1-bit): 1 for referenced, 0 for not

• second chance: FIFO plus reference bit

• …

• other counting algorithms: count accesses

• Least Frequently Used (LFU)

• Most Frequently Used (MFU)

PAGING
ALLOCATING FRAMES

• each processes:
 needs a min number of frames
 (max is the total number of frames)

• how to distribute between processes?

• fixed vs. priority

• relation to page replacement?

• global (all frames) vs. local (own frames)

“SS MOVE” INSTRUCTION ON IBM370: 6 PAGES

(6 BYTES) CAN SPAN OVER 2 PAGES
2 PAGES FOR “FROM”

2 PAGES FOR “TO”

PAGE REPLACEMENT
THRASHING

• “busy only swapping pages in and out”

1. needs a page — page fault

2. replaces a page — immediately needs it back

3. mainly waits for I/O — lower CPU utilization

4. OS brings in more processes (increases the
degree of multiprogramming)

Evil
Circle

SEE BOOK FOR MITIGATION STRATEGIES

PAGING
MEMORY MAPPED FILES

> man mmap, munmap

ALLOCATING KERNEL MEMORY

• treated differently from user memory!

BUDDY SYSTEM ALLOCATOR SLAB ALLOCATOR

LINUX SLAB SLOB SLUB

https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf

MEMORY MANAGEMENT
OTHER CONSIDERATIONS

• Pre-paging

• Page size

• TLB Reach

• Program structure

• I/O interlock
for (i = 0; i <128; i++)
 for (j = 0; j < 128; j++)
 data[i,j] = 0;

128 page faults

for (j = 0; j <128; j++)
 for (i = 0; i < 128; i++)
 data[i,j] = 0;

int data[128, 128];

128x128 =
16,384

page faults

128 frames, page size = 128

END OF MODULE 6

