EDAF35: OPERATING SYSTEMS

MODULE 7
FILE SYSTEMS

Concepts
Function/Operations/Intertace
Visible Structures

Internal Structure

Space Management
Performance/Recovery

Network File Systems

CONTENTS

FILE SYSTEMS

User and
application
programmer’s
view

OS developer’s

view

CHAPTER 10
FILE SYSTEM

» | —
o o L e "
..:.aﬁtv.ﬁ‘ .; ~t £ -
‘g E0N g’.f! ‘I_“
‘ﬁ /¢
/]
; N

Ny

CHAPTER 11
FILE SYSTEM

IMPLEMENTATION

15312518
(other ver.)
N\

CHAPTER 12
MASS STORAGE
STRUCTURE

ATTRIBUTES AND OPERATIONS

FILE SYSTEMS

Operations
(some on directory, some on data)

Attributes: describe a file Disk

> DIRECTORY B m

(some info is on disk, some in memory)

°* nName

» identifier

° size
* protection

* time, date, owner

* type (exe, text, gif,..

)

file type usual extension function
= axacutable exe, com, bin ready-to-run machine-
— I O Cat | O N or none language program
object obj, o compiled, machine o d e | et e/t r u n Cat e

» extended attributes (e.g. checksum)

language, not linked

* create
» write/read (at a location)

* reposition — seek

source code
batch

text
word processor

c, CC, java, pas,
asm. a

bat, sh

txt. doc

wp, tex, rif,
doc

source code in various
languages

commands ta the command
interpratar

textual data. documants

various ward-processar
formats

library

lib, a, so. dll

libraries of routines for
programmers

print or view

archive

ps. pdf, jpg

arc, zip, tar

ASCI| ar binary file in a
format for printing or
viewing

related files grouped into
one file. soameatimas com-

pressed, for archiving
or storage

multimedia

mpag, mov, rm,
mp3, avi

binary file containing
audio or A’V information

» open(f) — search in directory and
bring info in memory

* close(f) — move memory info to
disk and free memory

* locks - shared vs. exclusive,
mandatory vs. advisory

current position

ACCESS METHODS

FILE SYSTEMS

beginning end
= rewind _
— read or write =)
Sequential Access:
read next
write next
: logical record
rewind (reset) last name number
Adams
Arthur
Asher
Smith &

index file

smith, john

social-security

age

relative file

Direct Access: I

position at n (relative)
read k records
write k records

OTHERS

(BUILT ON TOP OF THE MORE BASIC ONES)

Index/Relative Access:
index file (transparent)
relative file (actual content)

ORGANIZATION

FILE SYSTEMS
Need to efficiently...

CREATE/DELETE/RENAME A FILE

LIST DIRECTORY

i directory A i directory A
SEARCH/TRAVERSE THE FILE SYSTEM
artition A < : .

J files - disk 2 Directory

o > disk 1

" | director e

y partition C < | %
files
partition B < , e
files | = o
- disk 3
\ i / y y \
FS occupies a partition F 1 F2 - "
(part of a disk or several disks) = Fn
lHes

DIRECTORY STRUCTURES
FILE SYSTEMS

directory ca] bo] a] fest daa mai] con] he;l recor] root | spell | bin ngfams
stat | mail | dist find | count naorder e mail

Single Level
Issues: naming, grouping

prog | copy | prt exp reorder| list find count
mgis;teecrtglri user 1| user2| user3 user4 \\‘\‘O 6 é (5 J) Ck
. \ \ list spell all last | first
dL|IrS e?:rtcf;lrfl test a da ta a oSt data 6 &) 6 6 é 6
& J,) ClD g J) & & <l> $ Cg (g Tree
Two Level issues: sharing

issues: grouping, sharing

MODERN DIRECTORY STRUCTURES
FILE SYSTEMS

root | dict | spelf ; X
rootl avi ‘ {c ‘ Jim ‘

ffft all w | count count |\words !flst ol A e book mail |unhex| hyp
\/J A
<) Yt/ <) d (lj (5
el gl e ai/f countl unhex‘ hex\“
LA S ¥ b

General Graphs
issues: deletions, search

Acyclic Graphs
issues: deletions

MOUNTING

FILE SYSTEMS

* build a common file system structure out of separate volumes/file systems

mount over
users

users

sue sue jane

(b)

FILE SHARING

FILE SYSTEMS

* multi-user systems: protection — extra file attributes: owner/group
» distributed systems — sharing across a network:
» manually (ftp), automatically (DFS), semi-auto (WWW)

* Distributed FS: client-server approach for mounting remote FS
(see NFS, IPES)

* helpers: distributed information systems (see DNS, NIS, CIFS, LDAP)

» choices: consistency semantics (Unix, session, immutable)

https://en.wikipedia.org/wiki/Network_File_System
https://ipfs.io

PROTECTION

FILE SYSTEMS

* tile owner — decides “who can do what?”
e.g. read, write, delete, execute, append, list,...

UNIX

» user/group/others — read/write/execute

* >man chmod, chgrp, chown

> chmod 644 program.c

> chmod ug+x atool

ArwXrwxr-x
drwxrwx---
-'W-I--I--
-T'WXI-XI-X
drwx--x--x
drwx------
drwXrwxrwx

2 Lo B — = o DO

s se e e ae e e e

08
08
08
08
08
08
08
08

Dg

staff
staff
staff
ent
staff

stud

staft

faculty
staff

staff

5

2

9423
20471
)12
1024
)12

Sep 3 08:30
Jul 8 09.33

Jul 8 09:35

Aug 3 14:13
Feb 24 2003
Feb 24 2003
Jul 31 10:31

Aug 29 06:52

Jul 8 09:35

INtro.ps
private/
doc/
student-proj/
program.c
program

[ib/

mail/

test/

FILE SYSTEMS
IMPLEMENTATION

application programs

v

logical file system

’

file-organization module

v

basic file system

’

/O control

’

devices

LAYERED STRUCTURE
FILE SYSTEM IMPLEMENTATION

 gradual translation from a unified view to
specific device operations

 hides low level details, caches/buftters, timing
 easy to retarget other devices

* allows for several FS and devices in a single
system

SEE ALSO PARTITIONS AND INTERNAL STRUCTURES
MOUNTING IN THE TEXT BOOK
FILE SYSTEMS IMPLEMENTATION

IN MEMORY (VOLATILE)

ON DISK (PERSISTENT)

* Mount table: e Boot control block/volume:
info about mounted volumes how to boot an OS from there
 Directory structure cache * Volume control block/volume:

blocks, free/used, counts, pointers
» System-wide open-file table

 Directory structure/FS:

* Per-process open-file table file names, pointers to FCB
pointer to system entry, position in file

» File control blocks (FCB)/file:
» Buffers/Caches for data file permissions, dates, owner, pointers
(inode)

most common, others are possible

OPEN AND READ OPERATIONS
FILE SYSTEMS IMPLEMENTATION

open (file name) —I_’

directory structure

directory structure

file-control block

user space kernel memory

(a)

secondary storage

Index

/; blocks

\
I T L

read (index)

T

per-process system-wide file-control block
open-file table open-file table

user space kernel memory

(b)

secondary storage

VIRTUAL FILE SYSTEMS
FILE SYSTEMS IMPLEMENTATION

* VFS exposes a generic AP| towards different FS

* local and networked FS supported:
vhode — network wide FCB (inode-like)

* VFS redirects requests to the right FS

file-system interface

|

VFS interface

|

local file system
type 1

|

VFS in Linux:

4 objects — inode, file, superblock, dentry — v
each with their API calls

\

API calls for file — open, close, read, write, mmap

local file system
type 2

|

remote file system
type 1

A4

S

network

DIRECTORY IMPLEMENTATION
FILE SYSTEMS IMPLEMENTATION

* Linear list — of file names, pointer to data block(s)

» variations to speed up search: ordered, trees, etc.

« Hash table — name based hash, as above

e variations to handle collisions: chaining

CONTIGUOUS

directory

DISK BLOCK ALLOCATION
FILE SYSTEMS IMPLEMENTATION

LINKED

file
count
tr
maill
list
f

start length

0
14
19
28

6

2

N A 0O W

count
0 1 2 3
f
4 5 6 7
8 oL (10|11
tr
1211311415
16 (17 (18| _[19
mail
2021 |22 _|23
24| 25| |26] |27
list
EXES] P22 C 1 =) |) 5
\ //

e Each have variations

e Pros and Cons?

i s, directory
- B file start end
jeep 9 25
0 1(1] 2[| 8
4 6 7
8 10(2]11
12 13 _|14{ |15
16 |17 18] |19
20| |21 fZ 23
'S
24| |25|-126| |27
28| 29[|130|_|31
\ //

12

16

20

24

28

INDEXED

i directory
.I"'//
T file index block
== EE
1l 2 13 == 19
A I
5 7 P
910 V11 y
7 9
- - 4 16
13__ 14N /
— N / 1
- (i 10
SZ_18LJ ,)' (19 25
e - —1
21~ 29[23 1 _
N\
\\\\ \ 1
25 28| |27 N
29~ 30[|31 I

EXAMPLE: FILE-ALLOCATION TABLE (FAT)

linked allocation directory entry

test

217

list/pointers separate from name

data blocks
initially 12-bits addresses

cache the FAT for improved
access speed

tic

start block

» 217

339

618

no. of disk blocks —1

618

339

FAT

EXAMPLE: UNIX UFS INODE

combined scheme

4KB blocks,
32-bit addresses

more blocks can be linked
than a 32-bit file pointer
can address!

Exercise: compute the
maximum file size

mode

owners (2)

timestamps (3)

size block count

direct blocks =

single Iindirect

double indirect

triple indirect

data

data

data

data

FREE SPACE MANAGEMENT

FILE SYSTEMS IMPLEMENTATION

LINKED LIST
p o,

N

BT VECTOR OR sTHAP —
BIT VECTOR OR BITMAP free-space list head
o] 10 28l
‘,
QB0 n-1 4L;5‘ 6l | 7L
sl oT[1o[f11]7]
12 i13‘ 14[]15
1 = block[i] free 16| |17 18] |19
bit[/] = .
0 = block][/] occupied 20| |21| |22/ |23| |
* variations: 24| |25 26| |27
- can get big: 256MB for 1TB disk, 4KB blocks grouping. counting. ERR ALY
metaslabs (see ZFS) “~__ =

 variations exist

* pros and cons?

RECOVERY
FILE SYSTEMS IMPLEMENTATIONS

tailures happen!
consistency checking — is the metadata correct? (e.g. UNIX fsck)

manual recovery: back up & restore (on failure)
partial recovery: checksums, duplicates (hw support, RAID arrays)

automated recovery: log-structured file systems (journaling)
- record metadata operations as transactions
- a sequential log besides regular files

- replay log (commit or rollback) on crash or to bring FS up to date

SEE ALSO WAFL
IN THE TEXTBOOK

NETWORK FILE SYSTEM (NFS)
FILE SYSTEMS IMPLEMENTATION

* SUN NFS — specitfication and implementation

for remote files across LAN, WAN client server
system-calls interface
* client-server architecture, using TCP/UDP l
networ k| ng VFS interface — VFS interface
1 S l
« two RPC/XDR-based protOCO|SI other types of | UNIX file NFS NFS UNIX file
: file systems system client server system
mount and file access l .
» stateless servers (incl. NFS v3) . |[RPCNOR| |RRCXOR| ¢
. disk J, '[disk
* no concurrency-control mechanism o network o

(external locks assumed)

EXAMPLE: MOUNTING IN NFS

usr usr
usr usr usr

local local
[ocal shared

dir1

airt

PN
A
g AR,
AR
T (a) (b)
Mounts Cascading mounts
Three networked machines: U, S1, S2 S1:/usr/shared over S2:/usr/dir2 over

U:/usr/local U:/usr/local/dirl

END OF MODULE 7

