
MODULE 7
FILE SYSTEMS

EDAF35: OPERATING SYSTEMS

FILE SYSTEMS
CONTENTS

• Concepts

• Function/Operations/Interface

• Visible Structures

• Internal Structure

• Space Management

• Performance/Recovery

• Network File Systems

CHAPTER 11
FILE SYSTEM

IMPLEMENTATION

CHAPTER 10
FILE SYSTEM

CHAPTER 12
MASS STORAGE

STRUCTURE

11, 12, 10
(other ver.)

User and
application

programmer’s
view

OS developer’s
view

DIRECTORY

Disk
DATA

FILE SYSTEMS
ATTRIBUTES AND OPERATIONS

• name
• identifier
• type (exe, text, gif,…)
• location
• size
• protection
• time, date, owner
• extended attributes (e.g. checksum)

Attributes: describe a file

• create

• write/read (at a location)

• reposition — seek

• delete/truncate

• open(f) — search in directory and
bring info in memory

• close(f) — move memory info to
disk and free memory

• locks - shared vs. exclusive,
mandatory vs. advisory

Operations
(some on directory, some on data)

(some info is on disk, some in memory)

FILE SYSTEMS
ACCESS METHODS

Sequential Access:
read next
write next

rewind (reset)

Direct Access:
position at n (relative)

read k records
write k records

0 N N+K… …

Index/Relative Access:
index file (transparent)

relative file (actual content)

OTHERS
(BUILT ON TOP OF THE MORE BASIC ONES)

FILE SYSTEMS
ORGANIZATION

FS occupies a partition
(part of a disk or several disks)

F 1 F 2
F 3

F 4

F n

Directory

Files

CREATE/DELETE/RENAME A FILE

LIST DIRECTORY

SEARCH/TRAVERSE THE FILE SYSTEM

Need to efficiently…

FILE SYSTEMS
DIRECTORY STRUCTURES

Single Level
issues: naming, grouping

Two Level
issues: grouping, sharing

Tree
issues: sharing

FILE SYSTEMS
MODERN DIRECTORY STRUCTURES

Acyclic Graphs
issues: deletions

General Graphs
issues: deletions, search

FILE SYSTEMS
MOUNTING

• build a common file system structure out of separate volumes/file systems

>man mount, umount

mount over
users

FILE SYSTEMS
FILE SHARING

• multi-user systems: protection — extra file attributes: owner/group

• distributed systems — sharing across a network:

• manually (ftp), automatically (DFS), semi-auto (WWW)

• Distributed FS: client-server approach for mounting remote FS
(see NFS, IPFS)

• helpers: distributed information systems (see DNS, NIS, CIFS, LDAP)

• choices: consistency semantics (Unix, session, immutable)

https://en.wikipedia.org/wiki/Network_File_System
https://ipfs.io

FILE SYSTEMS
PROTECTION

• file owner — decides “who can do what?”
e.g. read, write, delete, execute, append, list,…

• UNIX

• user/group/others — read/write/execute

• >man chmod, chgrp, chown

>ls -al

> chmod 644 program.c
> chmod ug+x atool

FILE SYSTEMS
IMPLEMENTATION

FILE SYSTEM IMPLEMENTATION
LAYERED STRUCTURE

• gradual translation from a unified view to
specific device operations

• hides low level details, caches/buffers, timing

• easy to retarget other devices

• allows for several FS and devices in a single
system

FILE SYSTEMS IMPLEMENTATION
INTERNAL STRUCTURES

• Boot control block/volume:
how to boot an OS from there

• Volume control block/volume:
blocks, free/used, counts, pointers

• Directory structure/FS:
file names, pointers to FCB

• File control blocks (FCB)/file:
file permissions, dates, owner, pointers
(inode)

ON DISK (PERSISTENT)IN MEMORY (VOLATILE)

most common, others are possible

• Mount table:
info about mounted volumes

• Directory structure cache

• System-wide open-file table

• Per-process open-file table
pointer to system entry, position in file

• Buffers/Caches for data

SEE ALSO PARTITIONS AND
MOUNTING IN THE TEXT BOOK

FILE SYSTEMS IMPLEMENTATION
OPEN AND READ OPERATIONS

FILE SYSTEMS IMPLEMENTATION
VIRTUAL FILE SYSTEMS

• VFS exposes a generic API towards different FS

• local and networked FS supported:
vnode — network wide FCB (inode-like)

• VFS redirects requests to the right FS

VFS in Linux:

4 objects — inode, file, superblock, dentry —
each with their API calls

API calls for file — open, close, read, write, mmap

FILE SYSTEMS IMPLEMENTATION
DIRECTORY IMPLEMENTATION

• Linear list — of file names, pointer to data block(s)

• variations to speed up search: ordered, trees, etc.

• Hash table — name based hash, as above

• variations to handle collisions: chaining

FILE SYSTEMS IMPLEMENTATION
DISK BLOCK ALLOCATION

• Each have variations

• Pros and Cons?

CONTIGUOUS LINKED INDEXED

EXAMPLE: FILE-ALLOCATION TABLE (FAT)

• linked allocation

• list/pointers separate from
data blocks

• initially 12-bits addresses

• cache the FAT for improved
access speed

EXAMPLE: UNIX UFS INODE

• combined scheme

• 4KB blocks,
32-bit addresses

• more blocks can be linked
than a 32-bit file pointer
can address!

• Exercise: compute the
maximum file size

FILE SYSTEMS IMPLEMENTATION
FREE SPACE MANAGEMENT

• can get big: 256MB for 1TB disk, 4KB blocks

• variations exist

…

0 1 2 n-1

bit[i] =
1 ⇒ block[i] free

0 ⇒ block[i] occupied

BIT VECTOR OR BITMAP

LINKED LIST

• variations:
grouping, counting,
metaslabs (see ZFS)

• pros and cons?

FILE SYSTEMS IMPLEMENTATIONS
RECOVERY

• failures happen!
consistency checking — is the metadata correct? (e.g. UNIX fsck)

• manual recovery: back up & restore (on failure)

• partial recovery: checksums, duplicates (hw support, RAID arrays)

• automated recovery: log-structured file systems (journaling)
- record metadata operations as transactions
- a sequential log besides regular files
- replay log (commit or rollback) on crash or to bring FS up to date SEE ALSO WAFL

IN THE TEXTBOOK

FILE SYSTEMS IMPLEMENTATION
NETWORK FILE SYSTEM (NFS)

• SUN NFS — specification and implementation
for remote files across LAN, WAN

• client-server architecture, using TCP/UDP
networking

• two RPC/XDR-based protocols:
mount and file access

• stateless servers (incl. NFS v3)

• no concurrency-control mechanism
(external locks assumed)

EXAMPLE: MOUNTING IN NFS

Mounts 
S1:/usr/shared over

U:/usr/local

Cascading mounts 
S2:/usr/dir2 over
U:/usr/local/dir1

Three networked machines: U, S1, S2

END OF MODULE 7

