
MODULE 8
I/O SYSTEMS

EDAF35: OPERATING SYSTEMS

I/O SYSTEMS
CONTENTS

• Input/Output (I/O) hardware

• I/O mechanisms (polling/interrupts/DMA)

• OS I/O organization

• From I/O requests to hardware operations
CHAPTER 13
I/O SYSTEMS

I/O SYSTEMS
I/O HARDWARE IN A COMPUTING SYSTEM

• I/O — essential in computing systems

• many devices doing I or O or both

• greatly different in speed and
functionality

• similar interface towards OS:
device drivers (piece of software)

• port- vs. memory-mapped I/O

A typical PC bus structure
Output

Input

Input/Output ???

I/O

EXAMPLE — I/O SYSTEMS
PC DEVICE I/O PORT LOCATIONS

USE SPECIAL CPU
INSTRUCTIONS:

IN/OUT ADDR, REG
INSB/OUTSB …

INSW/OUTSW …

TO COMMUNICATE
WITH THIS DEVICE

TYPICALLY FOUR REGISTERS: DATA-IN, DATA-OUT, STATUS AND CONTROL REGISTERS

MIXES PORT I/O AND
MEMORY-MAPPED I/O

COM1

CPU DEVICE

I/O SYSTEMS
POLLING

• simple handshaking protocol

• busy waiting

• inefficient for slow I/O

• (often conflated with “programmed I/O”)

READ DEVICE
STATUS

0?

PREPARE
NEXT DATA

SIGNAL CMD
READY

USE OR
PRODUCE

DATA

RESET
CMD & BUSY

SIGNALS

ready

Basic Handshaking - BUSY/CMD
(logical signals - bits@addresses)

SET STATUS
TO BUSY

1!
1?

0!

BUSY

cmd

CMD

I/O SYSTEMS
INTERRUPTS

• eliminates busy wait

• CPU must support interrupts

• maskable vs. non-maskable interrupts

• interrupt vector:
which function handles which device

• interrupts often have different priorities

• chaining:
attach several handlers to one interrupt

MAY CATCH THE CPU
IN KERNEL OR IN USER

SPACE!

…OR MAY DEFER
PROCESSING TO A
REGULAR PROCESS

EXAMPLE — I/O SYSTEMS
INTEL PENTIUM EVENT-VECTOR TABLE

NOTE HOW
EXCEPTIONS (INTERNAL EVENTS) AND

INTERRUPTS (EXTERNAL EVENTS)
ARE MIXED

VECTOR ELEMENTS:
ADDRESSES OF (JUMP INSTR. TO)

INTERRUPT HANDLERS
(FIRST IN A CHAIN)

“CAN BE IGNORED”

I/O SYSTEMS
DIRECT MEMORY ACCESS

• programmed I/O
(CPU transfers data one at a time)
vs.
DMA
(special HW transfers data, bypass CPU)

• DMA ctrl. steals bus cycles for transfer

• Often uses interrupts

• Scatter/gather transfers possible

I/O SYSTEMS
OS I/O INTERFACES

• Only a few device types:
- character vs. block transfer
- sequential vs. random access
- synchronous vs. asynchronous
- sharable vs. dedicated
- speed of operation
- RW, RO, WO

• same interface, new devices

• can bypass kernel I/O subsystem
(standard system calls):
UNIX — see >man ioctl()

Exposes a uniform view

implement
standard

types

expects
standard
interface

I/O SYSTEMS
TYPES OF I/O DEVICES

BLOCK DEVICES

• “disk drives”
• read(), write(), seek()
• raw I/O (direct I/O) or file system based
• base for memory-mapped files
• DMA

CHARACTER DEVICES

• “keyboard, mice, printer”
• character streams
• put(), get()
• sporadic
• base for line-at-the-time libraries, editors

NETWORK DEVICES

• “network sockets”
• select()
• connect to local socket/remote address
• varying implementations

CLOCKS AND TIMERS

• current time
• elapsed time
• set alarm (interrupt)
• ioctl()

I/O SYSTEMS
SYNCHRONIZATION IN I/O

• blocking vs. non-blocking calls
(remember the process states?)

‣ blocking system calls are easier to
understand and program with

• synchronous vs. asynchronous requests

• non-blocking vs. asynchronous ?
(return immediately with partial result) vs.
(initiate and complete in the future)

which is which?

Timeout
> man select

See also Vectored I/O (textbook) — for multiple buffers,
scatter/gather methods

>man readv, writev

KERNEL I/O SUBSYSTEM

• I/O scheduling — reorder access requests (efficiency, priority)

• Buffering — memory area for transfer — cope with:
 1. speed mismatch (see also double-buffering)
 2. data size mismatch: e.g. packets in networking
 3. “copy semantics”: no changes to data before the transfer is done

• Caching — memory holding a copy, for performance (can combine with buffering)

• Spooling — hold output to a device serving one request at a time (e.g. printer)
or use “device reservation”

• Error handling and I/O protection — prevent, handle illegal operations (syscalls)

Sun Enterprise 6000
Device Transfer Rates

I/O SYSTEMS
KERNEL DATA STRUCTURES

• track the state of I/O components:
open files, network connections, device states,…

• many internal data structures tracking:
buffers, memory allocation, requests, …

• object-oriented and modular:
present a unified API to the programmer

Example: UNIX I/O kernel structure

FROM I/O REQUESTS TO
HARDWARE OPERATIONS

• check parameters

• map names/ids to devices

• issue requests to drivers/handle completed I/O

• block/unblock calling process

• manage the memory involved (buffers, cache)

➡ Example:
blocking read from open file descriptor

END OF MODULE 8

