EDAF35: OPERATING SYSTEMS

MODULE 8
/O SYSTEMS

CONTENTS
/O SYSTEMS

Input/Output (I/O) hardware
/O mechanisms (polling/interrupts/DMA)

OS 1/0 organization

From 1/O requests to hardware operations

CHAPTER 13
/O SYSTEMS

Gy SR

: /4
L 374
| . A;" "

/O HARDWARE IN A COMPUTING SYSTEM

/O SYSTEMS
.] disk : : 4
A typical PC bus structure = /O — essential in computing systems
" .
Output E —@
. 3| —{disk many devices doing | or O or both
monitor processor %
/D
cache . :
greatly different in speed and
graphics bridge/memory : >
controller controller b st el fu nctiona | Ity
U LClbus |) similar interface towards OS:
nput : : -
_ P device drivers (piece of software)
IDE disk controller expansion bus keyboard
interface
o - D —) port- vs. memory-mapped I/O
(disk disk parallel serial
ort ort
Input/Outpt . —

%9

USE SPECIAL CPU
INSTRUCTIONS:
IN/OUT ADDR, REG
INSB/OUTSB ...
INSW/OUTSW ...

PC DEVICE I/O PORT LOCATIONS
EXAMPLE — I/O SYSTEMS

TYPICALLY FOUR REGISTERS: DATA-IN, DATA-OUT, STATUS AND CONTROL REGISTERS

I/O address range (hexadecimal) device
000-00F DMA controller
020-021 Interrupt controller
040-043 timer
200—-20F game controller
2F8-2FF serial port (secondary)
320-32F hard-disk controller
378-37F parallel port
3D0-3DF graphics controller
3F0-3F7 diskette-drive controller
3F8-3FF serial port (primary)

TO COMMUNICATE
WITH THIS DEVICE

MIXES PORT /O AND
MEMORY-MAPPED I/0

CPU
READ DEVICE \\0? O! c MEEiEBTUSY
STATUS L/ SIGNALS
ready ' ok /‘\

USE OR
PRODUCE
DATA

PREPARE
NEXT DATA

SIGNAL CMD
READY

SET STATUS
TO BUSY

Basic Handshaking - BUSY/CMD
(logical signals - bits@addresses)

POLLING
/O SYSTEMS

* simple handshaking protocol
* busy waiting
¢ inefficient for slow I/O

» (often conflated with “programmed 1/O")

CPU

device driver initiates I/O

INTERRUPTS
/O SYSTEMS

I/O controller

CPU executing checks for
interrupts between instructions

initiates 1/O

CPU receiving interrupt,
transfers control to
interrupt handler

h 4

| s

Input ready, output
complete, or error
generates interrupt signal

interrupt handler
processes dala,

returns from interrupt

E

CPU resumes
processing of
interrupted task

MAY CATCH THE CPU
IN KERNEL OR IN USER
SPACE!

...OR MAY DEFER

PROCESSING TO A
REGULAR PROCESS

eliminates busy wait

CPU must support interrupts
maskable vs. non-maskable interrupts

Interrupt vector:
which function handles which device

interrupts often have different priorities

chaining:
attach several handlers to one interrupt

INTEL PENTIUM EVENT-VECTOR TABLE

EXAMPLE — I/O SYSTEMS

vector number

description

© O NO O & WON = O

-t bk b ek ek ek ek ek -
0 NO Ok WON = O

19-31
32—-255

divide error

debug exception

null interrupt
breakpoint
INTO-detected overflow
bound range exception
invalid opcode

device not available
double fault
coprocessor segment overrun (reserved)
invalid task state segment

segment not present

stack fault

general protection

page fault

(Intel reserved, do not use)
floating-point error

alignment check

machine check

(Intel reserved, do not use)

maskable interrupts

VECTOR ELEMENTS:
ADDRESSES OF (JUMP INSTR. TO)

INTERRUPT HANDLERS
~ (FIRST IN' A CHAIN)

NOTE HOW

EXCEPTIONS (INTERNAL EVENTS) AND
INTERRUPTS (EXTERNAL EVENTS)
ARE MIXED

“CAN BE IGNORED”

DIRECT MEMORY ACCESS

memory

buffer

1/O SYSTEMS
¢ programmed I/O 1. device driver s told
: to transfer disk data CPU
(CPU transfers data one at a time) to buffer at address X
5. DMA controller 2. device driver tells
VS. transfers bytes to disk controller to
buffer X, increasing transfer C bytes
D MA memory address from disk to buffer cache
: and decreasing C at address X
(special HW transters data, bypass CPU) until C = 0 Ty
0. wment =0, WA interrupt |+ CPU memory bus —
interrupts CPU to signal ST)
« DMA ctrl. steals bus cycles for transfer ek o e
; PCI bus
e Often uses interru pts 3. disk controller initiates
IDE disk DMA transfer
controller | 4 disk controller sends
- each byte to DMA
» Scatter/gather transfers possible ety

software

hardware

Exposes a uniform view

OS 1/O INTERFACES

/O SYSTEMS

kernel
A ——
kernel /O subsystem standard
interface
SCSI keyboard mouse PCI bus floppy ATAPI
device device device oo device device device
driver driver driver driver driver driver
SCSI keyboard = mouse PCI bus floppy ATAPI
device device device oo device device device
controller | controller controller controller | controller | controller
ATAPI
SCS| floppy- | | devices
SO keyboard| | mouse soe PCI bus dd"Sk (dlisks,
rnves tapes,
drives)

implement

standard
types

Only a few device types:

- character vs. block transfer

- sequential vs. random access
- synchronous vs. asynchronous
- sharable vs. dedicated

- speed of operation
- RW, RO, WO

same interface, new devices

can bypass kernel I/O subsystem
(standard system calls):
UNIX — see >man 1ioctl()

TYPES OF I/O DEVICES
1/O SYSTEMS

BLOCK DEVICES NETWORK DEVICES

- “disk drives”
- read(), write(), seek()

* raw |/O (direct 1/O) or file system based

* base for memory-mapped files

- DMA

* “network sockets”
- select()
- connect to local socket/remote address

* varying implementations

CHARACTER DEVICES CLOCKS AND TIMERS

* “keyboard, mice, printer”
» character streams

SPUT@E et ()
» sporadic
* base for line-at-the-time libraries, editors

° current time

* elapsed time

* set alarm (interrupt)
o« Foet ()

* blocking vs.

SYNCHRONIZATION IN 1/O
1/O SYSTEMS

non-blocking calls

(remember the process states?)

» blocking system calls are easier to

understand and program with

* synchronous vs. asynchronous requests

* non-blocking vs. asynchronous ?

(return ilgmediately with partial result) vs.

(initiate an®

complete in the future)

Timeout
> man select

r—

kernel user <
\.
f

requesting process .
waiting i ‘requestmg process ‘
device driver device driver
7
] L
i interrupt handler +rinterrupt handler
i s |
hardware hardware
— (lata transfer — —L - - data transfer —
time » time >

(a)

which is which?

A\

> USer

- kernel

See also Vectored 1/0 (textbook) — for multiple butfers,
scatter/gather methods

>man readv, writev

system bus

KERNEL 1/O SUBSYSTEM | ereroe

PCl Express 2.0((X32)

Infiniband (QDR 12X)

(V)]

erial ATA (SATA-300)

Gigabit Ethernet

* 1/O scheduling — reorder access requests (efficiency, priority) SCslbus

FireWire

hard disk

» Buffering — memory area for transfer — cope with: /7
1. speed mismatch (see also double-butfering) Sun Enterprise 6000
7 - 3 - Device Transfer Rates
2. data S|Ze mlsmatCh: e.g. PaCketS In networklng 0.00001 0.001 0.1 10 1000 100000 10E6
3. “copy semantics”: no changes to data before the transfer is done

» Caching — memory holding a copy, for performance (can combine with buffering)

» Spooling — hold output to a device serving one request at a time (e.g. printer)
or use “device reservation”

* Error handling and I/O protection — prevent, handle illegal operations (syscalls)

KERNEL DATA STRUCTURES
/O SYSTEMS

system-wide open-file table
* track the state of I/O components: S
. . . file-system record table
open files, network connections, device states,... S 3
pointer to read and write functions
’ ; pointer to select function
- many Internal data StrUCtureS traCkIng: per-process fpointerto ioctl function
: file descriptor|-» Open-iile table 4 g pointer to close function
buffers, memory allocation, requests, ... ‘ :
\\\ . | r;etwork-
: 2 4 networking (socket) record information
= : user-process memory table
* object-oriented and modular: ointer to network nfo &
present a unified APl to the programmer pointer to read and write functions
pointer to select function
pointer to ioctl function
pointer to close function

kernel memory

Example: UNIX /O kernel structure

FROM I/O REQUESTS TO
HARDWARE OPERATIONS

» check parameters

* map names/ids to devices

* issue requests to drivers/handle completed I/O
* block/unblock calling process

* manage the memory involved (buffers, cache)

= Example:

blocking read from open file descriptor

request /O

ad can already

user
process

kernal
/0 subsystem

IO completed,
input data available, or
autput completed

R s\atisfy req uestff " yes

>

A -

~
s o

~
l/no

send request to device
driver, block process ff
appropriate

'

process request, issue
commands to controller,

kernel

/O subsystem

&

return from system call

transfer data
(If appropriate) to process,
return completion
or errar code

&

determing which [/O

- device completed, indicate state
configure controller to driver T
block until interrupted SURNgC IRy L
s receive interrupt, store
device-controller commands handlgr data in device-driver buffer
if input, signal to unblock
device driver
interrupt
¥ |
device
monitor device, controller
interrupt when /O He cc;mplteted, "
completed generate interrup
b
time >

END OF MODULE 8

