EDAF35: OPERATING SYSTEMS

MODULE 9.A
PROTECTION

Goal and Principles
Models and Abstractions:
 Domains of Protection
* Access Matrix

Implementations

Language-Based Protection

CONTENTS
PROTECTION

CHAPTER 14
PROTECTION

GOAL AND PRINCIPLES
PROTECTION

» "control the access of programs/processes to resources” (= HW, SW objects)
- to prevent violations
- to improve reliability
- to enforce policies

» separate "how?” (mechanism) from “what?” (policy)

* principle of least privilege:
"give no more than enough rights to carry out operation”

* (similar) need-to-know principle:
"allow access only to the information needed for the operation”

DOMAINS OF PROTECTION
MODELS AND ABSTRACTIONS

DOMAIN

SELORACCRSS RIGHTS) USERS/PROCESSES OPERATE IN DOMAINS

AND MAY SWITCH BETWEEN THEM

< O, {read, write} >
< Oy, {read, write} >
< 0,, {execute} >

D;
<

D
<} NG

ACCESS RIGHT:

OBJECT, OPERATIONS

UNIX MULTICS

DOMAIN = USER ID DOMAINS = RING STRUCTURE Vs 4 X
SWITCH DOMAINS = SETUID BIT (RINGO HAS MOST PRIVILEGE) [/ \
ACCESS RIGHTS = [(&T . e
RWX, GROUP USER OTHERS SWITCH DOMAINS = CROSS RINGS |{ |~ \\&2¥)

MAN SU, SUDO NO SUPPORT FOR “NEED-TO-KNOW” | . %

ACCESS MATRIX
MODELS AND ABSTRACTIONS

+ owner, copy rights

R .
object
" ' PN \.\j Fi F f3
* mechanism; allows for different policies domain "
owner .
= execute write
A read™
D, c;?v?%r awher
_— write
objec
F1 F2 F3 Igser D, execute
domain printer
(a)
D, read read
~_ object
. e F; F Fs
02 print omain "
owner =
D; execule Nrite
D, read |execute owner read*
D, read™ owher
D read read write™ write
* erte erte D:3 write write

IMPLEMENTATIONS OF THE ACCESS MATRIX

1 EULL TABLE 2. ACCESS LISTS
object | column-wise: which domain
S : F2 Fs L can access this object and
how
D, read read
D, print
3. CAPABILITY LISTS
D5 read M Execute 4 LOCK & KEY
row-wise: which object can G o
be accessed and how by Dy write write bit patterns: match a “key”

this domain

with a “lock” for certain
operations on an object

WHICH TO CHOOSE? DEPENDS:
REVOCATION OF RIGHTS FOR AN OBJECT IS TRICKY IN 3, EASY IN 2

COMBINATIONS EXIST
(E.G. UNIX 2,3 - FILES, OPEN, DESCRIPTORS)

LANGUAGE-BASED PROTECTION

» application developers to implement own policies based on existing mechanisms =
allows for finer access control, specific policies:

 declare and distribute capabilities, access rights, and even order of operations

 partly already there: types, objects, references, ownership, mutability (in some)

JAVA

stack inspection
(how did we get here?)

take responsibility via
doPrivileged(), checkPermission()

trusted/untrusted resources in same VM

protection
domain:

socket
permission:

class:

ggglueited URL loader networking
none * lucent.com:80, connect any
gui: get(URL u): open(Addr a):
éét.(url); c.ic-)I.DriviIeged { t;r;éckPermission
open(‘proxy.lucent.com:80’); (a, connect);

open(addr);

}

<request u from proxy=

connect (a);

END OF MODULE 9.A

