
T H O R E H U S F E L D T

N O T E S F O R E D A N 5 5

notes for edan 55 2

These notes are supplementary material for my course on ad-
vanced algorithms, EDAN55 at Lund University. The material works
best as an extension to the textbook of Kleinberg and Tardos, Algo-
rithms Design, even though it has been collected from various sources
and does not present itself with any consistency in prose, depth, or
ambition.

Chapter 10

This note extends the presentation in Kleinberg and Tardos, chap-
ter 10 with a case study of finding a k-path in a graph. In particular,
it introduces Bodleander’s algorithm. This algorithm provides a good
example of dynamic programming over a tree decomposition, but,
more importantly, finds a (not necessarily optimal) tree decomposition
in a natural way. Moreover, we see the classical colour coding tech-
nique. That section makes sense after an introduction to randomized
algorithms, such as chapter 13 ibid. Section 10.7 makes sense after an
introduction to exponential time algorithms, such as Chapter 107 in the
present set of notes.

10.6 Case study: k-path

A k-path in a graph is a simple path of length k, i.e., a sequence of
distinct vertices (v1, . . . , vk) such that vivi+1 ∈ E for 1 ≤ i < k.

The k-path problem is given a connected graph G = (V, E) and
integer k, determine if G has a k-path. The problem makes sense for
both directed and undirected graphs. Setting k = |V| the problem
is known as the Hamiltonian path problem, which is well known to
be NP-hard. In particular, there is little hope of solving the k-path
problem in time polynomial in n and k.

First attempts

The brute force attempt is to check every subset of k vertices and see
if they form a simple path in G by considering all of their orderings.
The running time is within a polynomial factor of O((n

k)k!k).
We can use decrease-and-conquer from each starting vertex v ∈ V

and iterate over all neighbours. Indeed, if we let Pi(v1) denote the set
of sequences v1, . . . , vi of neighbouring vertices in G (not necessarily
simple), then

Pi(v1) =
⋃

v2 : v1v2∈E
{ v1 · α : α ∈ Pi−1(v2), v1 /∈ α } , (1)

where · denotes concatenation.1 This produces all sequences of 1 Maybe give as pseudocode instead.

distinct neighbouring vertices of length k in G, their number is

notes for edan 55 4

n(n − 1) · · · (n − k − 1), the falling factorial nk = O(nk). We need
to check each of them to see that it is simple; the total time is within
a polynomial factor of O(nkk).

FPT for regular graphs

Assume that G is regular, i.e., all vertices u ∈ V have the same degree
deg(u) = δ. In this case it is easy to see that the k-path problem is
FPT.

If k ≤ δ then the k-path problem can be solved by depth first
search: Start at an arbitary vertex, mark it, and go to an unmarked
neighbour, until k vertices are marked. At no intermediate stage can
you find yourself surrounded by k marked vertices, so there is always
an unmarked neighbour. The running time is O(kδ) = O(kn).

If k > δ then the decrease-and-conquer approach works. The
number of neighbours considered at each step in (1) is δ, so the total
number of sequences constructed can be bounded by δk, and the total
running time becomes O(kk).

Bodlaender’s algorithm

Many of the algorithmic tools for algorithms on tree decompositions
were developed by Hans Bodlaender. In particular, an early paper2 2 Hans L. Bodlaender. On linear time

minor tests with depth-first search. J. Algo-
rithms, 14(1):1–23, 1993.

develops an FPT algorithm for k-path for general graphs.

4

51

3

2

4

5

1

3

2

Figure 1: The Bull graph and a DFS
traversal starting at vertex 4.

Perform a depth first search (DFS) from an arbitrary vertex r,
constructing a DFS tree T rooted at r. If the depth of T is at least k,
then the corresponding path from root to leaf is a k-path, and we’re
done.

Otherwise, the root-leaf paths (all of which have length less than
k) form the pieces of a tree-decomposition of size k. To be precise,
for every node t of T, let Vt consist of the vertices on the unique path
from t to r in T.

4

5

1

3

2

T

V1

V3

V4

V2

V5

Figure 2: A tree decomposition for the
Bull graph with Vt shown for every
t ∈ T.

We claim that (T, {Vt : t ∈ T}) is tree decomposition of G of tree-
width k.

notes for edan 55 5

Node coverage. Node coverage is easily established in this tree decom-
posion, because every vertex in v is also a node in T. In particular,
v belongs to Vv. (In general, the tree T in a tree decomposition can
have completely different nodes than G.)

Edge coverage. A fundamental property of DFS trees is that they have
no “crossing edges:” every edge in the graph goes from a vertex
in the DFS tree to its ancestor, cf. (3.7) in [KT, p. 85]. Therefore
every graph edge is fully contained in some piece. (For instance,
the graph edge uv ∈ E is fully contained in Vt for every t in the
subtree of T rooted at u.)

Coherence. Let t1, t2, t3 be three nodes of T such that t2 lies on the
path from t1 to t3. Let v ∈ V belong to both Vt1 and Vt3 . Since both
Vt1 and Vt3 contain the vertex v, it must lie on both the path from
t1 to r and from t3 to r in T. In particular, v is a common ancestor
in T of t1 and t3. If t2 lies on the path from t2 and t3 then v must
be an ancestor of t2.3 But then v lies on the path from t2 to r, in 3 True, but probably needs a case

analysis. Note to self: work this out.particular it belongs to Vt2 .

Tree-width. Every piece contains at most k− 1 elements, because the
distance in T from t to r is less than k.

We solve the k-path problem using dynamic programming over
the tree decomposition (T, {Vt : t ∈ T}) in same the fashion of the
maximum independent set algorithm of section 10.4.

Modifying the tree-decomposition. We will exploit the fact that the
tree decomposition defined above has very special structure, namely
that if t1 is a parent of t2 in the tree decomposition thne Vt1 ⊆ Vt2 .
In fact, we have Vt1 = Vt2 − {t2}. This makes our constructions
slightly simpler than for a general tree decomposition. However, our
assumption is not crucial: an algorithm for finding a longest path in
graph of tree-width k using a general tree decomposition can also be
given, and within the same time bounds.

t

t1 t2 t3 t4 t5

t

t1 t′2

t2 t′3

t3 t′4

t4 t5

Figure 3: Transformation of a node
t ∈ T with more than 2 children.

However, there is a further simplification of the tree decomposition
that we want to perform before moving on. Unlike the example in
fig. ??, the DFS tree T can have high degree, so we transform T into
a binary tree using a straightforward modification. Suppose that
node t has children t1, . . . , td with d > 2. Remove the edges (ti, t) for
i = 2, . . . , d and introduce fresh nodes t′i for each i = 2, . . . , d − 1.
Then connect these nodes into a binary tree by adding the edges
(ti, t′i) for i = 2, . . . , d− 1, the edge (t′i, t′i−1) for i = 3, . . . , d− 1, and
finally the edges (t′2, t) and (td, t′d−1). See figure 3.

This results in a new, binary tree T′. We complete the tree decom-
position by specifying the pieces associated with the new nodes t′i by

notes for edan 55 6

setting Vt′i
= Vt for all i = 2, . . . , d. In other words, every fresh node is

associated with the piece of the original parent t. It is straightforward
to check that this is still a tree-composition of tree-width k. We will
abuse notation and continue using the letter T for the transformed
tree T′.

Defining the subproblems. As in section 10.4, let Tt denote the subtree
of T rooted at t, let Vt be the vertices associated with t ∈ T, and let
Gt denote the subgraph of G induced by the vertices in the pieces
associated with the nodes of Tt.

We define the subproblems of our dynamic programming solution
for each subtree Tt as follows. Let w = w1, . . . , wr be a sequence of
vertices from Vt without repetitions, and set W = w1, . . . , wr. Then
the subproblem f (w) is defined as the length of a longest simple path
in Gt that is consistent with the ordering w1, . . . , wr. By consistent we
mean that the path visits the vertices from W in the order given by w;
the path can visit other vertices in Gt \ Vt in between, but no vertices
in Vt \W. If no such path exists, the we set f (w) = 0.

4

1

3

V1

w f (w)

1 0

3 0

4 0

1, 3 1

3, 1 1

1, 4 0

4, 1 0

3, 4 1

4, 3 1

1, 3, 4 2

1, 4, 3 0

3, 1, 4 0

3, 4, 1 0

4, 1, 3 0

4, 3, 1 2

Figure 4: The subproblems at V1.

The number of subproblems at node t is ∑k
r=0 (

k
r)r! ≤ k!2k.

Building Up Solutions. We proceed to show how solutions to sub-
problems are constructed.

For a leaf t, the subgraph Gt is just the graph induced by Vt. We
will solve this suproblem by exhaustive search. To be precise, to
compute the subproblem f at a leaf node t we iterate over all choices
of W ⊆ Vt, and all r! orderings w1, . . . , wr of the r = |W| vertices in
W, and check that the sequence of vertices w1, . . . , wr defines a simple
path, i.e., we check that that wiwi+1 ∈ E for 1 ≤ i < r. If so, we set
f (w) = r− 1, otherwise 0.

Suppose node t′ is a child of node t in T. Let w′ = w′1, . . . , w′r
denote a subproblem associated with t′ and let w = w1, . . . , wr denote
a subproblem associated with t. We say that w′ is compatible with w if
the two sequences contain the same vertices in the same order, except
for possibly t′ itself as a detour. Formally, either w′ = w or there is
some j such that w′ = w1, . . . , wj, t′, wj+1, . . . , wr with wjt′ ∈ E and
t′wj+1 ∈ E.

Now consider a node t with two children t1 and t2 and assume we
already computed the optimum solutions f1 and f2 for all subprob-
lems associated with the children. Then for subproblem w of length r
set

f (w) = max
w1,w2
{ f1(w1), f2(w2), f1(w1) + f2(w2)− (r− 1)} ,

where the maximum is taken over all subproblems wi associated
with ti for i = 1, 2 that are compatible with w. Note that these sub-

notes for edan 55 7

problems encode all ways of traversing Gt because there is no edge
between t1 and t2 in G.

4

1

3

V1 = G1

w1 f1(w1)

1, 3 1
3, 1 1
3, 4 1
4, 3 1

1, 3, 4 2
4, 3, 1 2

V2 = G2

43

2

w2 f2(w2)

2, 3 1
2, 4 1
3, 2 1
3, 4 1
4, 2 1
4, 3 1

2, 3, 4 2
2, 4, 3 2
3, 2, 4 2
3, 4, 2 2
4, 2, 3 2
4, 3, 2 2

1

3

2

T

4

1

3

2

G3

43

V3 w3 f (w3)

3, 4 3
4, 3 3

Figure 5: Computation of the sub-
problems associated with subtree
T3 in the Bull graph example. The
value f3(3, 4) at T3 is computed as
follows. At the left subproblem T1,
the sequence 1, 3, 4 is consistent with
3, 4. (The value f1(1, 3, 4) = 2 cor-
responds to the path 1, 3, 4 in G1.)
At the right subproblem T2, the se-
quence 3, 2, 4 is consistent with 3, 4.
(The value f2(3, 2, 4) = 2 corresponds
to the path 3, 2, 4 in G2.) The value
f3(3, 4) = f1(1, 3, 4) + f2(3, 2, 4)− 1 = 3
is then the the longest simple path in
G3 that visits the vertices 3 and 4 in the
order 3, 4. (It corresponds to the path
1, 3, 2, 4 in G3.)

Nodes with only one child are handled in a similar fashion.
The time for the computation of ft(w) is O(k2), so ft is computed

for all subproblems in time O(k!2kk2). Finally, the total time for the
entire computation becomes O(k!2kk2 ·m). This is of the desired form
f (k)nO(1).

Colour coding

A famous randomized algorithm by Alon, Yuster, and Zwick im-
proves Bodlaender’s algorithm both in running time and simplicity
of exposition.

1. Give each vertex v ∈ V a random value χ(v) ∈ {1, 2, . . . , k}, called
a colour.

2. Find a rainbow coloured k-path, i.e., a k-path on which every colour
appears. (And therefore appears exactly once.)

Note that the colouring is not “proper” in the sense of vertex
colouring, so edges uv with χ(u) = χ(v) can occur.

Consider a k-path P in the given graph. The vertices of P admit
kk different colourings, of which k! are rainbow colourings. Thus the

notes for edan 55 8

event R that P is rainbow coloured happens with probability

Pr(R) =
k!
kk ≥

√
2πk

1
ek .

using Stirling’s formula, r! ≥
√

2πr
(r

e
)r. The remarkable thing is that

Pr(R) is merely exponential in k, instead of 1/k!.
Determining if a coloured graph contains a rainbow k-path can

be accomplished using dynamic programming. For every subset
X ⊆ {1, . . . , k} of colours and vertex u ∈ V, let P(X, u) be true if there
is a path of length |X| starting in u that uses exactly the colours in X.
(In particular, such paths are simple.) Then

P(X, u) =
∧

uv∈E
P(X− χ(u), v) for χ(v) ∈ X, |X| > 1 ,

and P({r}, u) true if and only if r = χ(u). The graph G has a rain-
bow coloured k-path if and only if P({1, . . . , k}, u) holds for some
u. Using dynamic programming, the values P({1, . . . , k}, u) can be
computed in time O(2kn) for every u, so the rainbow coloured P can
be detected in time O(2kn2). The algorithm takes O(2kn) space.

By repeating the procedure t = 1/ Pr(R) times, the path P be-
comes rainbow coloured (and is therefore detected) with constant
nonzero probability (

1− Pr(R))1/ Pr(R) ≥ 1
4

in FPT time

O(2kn2 Pr(R)−1) = O(2kn2ek) = O(5.44kn2) .

10.7 Exponential time and parameterized complexity

FPT

The class FPT contains the class of parameterized decision problems
that are tractable in the following sense: If the problem is parameter-
ized by n (say, the size of the vertex set of a graph) and k (say, the
size of the solution) then we say that the problem is FPT if it admits
an algorithm with running time f (k)nO(1) for some function k.

Think of the function f as a singly- or doubly exponential func-
tion, typically f (k) = exp(O(k)) or f (k) = O(k!) or f (k) = 22k

. In
general, f can be much crazier, famous examples include towers of
exponents. For a rigorous presentation (which does not interest us
here), we need to require f to be computable.

The canonical example of such a problem is k-Vertex Cover, the
problem considered in [KT, sec. 10.1], which admits an algorithm

notes for edan 55 9

with running time O(2kkn). (Every parameterised problem in P also
admits such an algorithm.)

Counterexamples are:

1. The k-Clique problem. Here, the naive algorithm takes time O(nk)

(by iterating over all (n
k) subsets), and we do not know how to

disentagle the dependencies on n and k.

2. The k-Colouring problem. Here, the best algorithm takes time
O(2nn2), so k does not even seem to appear in the running time.

We are pretty confident about the second point. If k-Colouring
were FPT then there would be an algorithm that solved the special
case k = 3 in polynomial time. (Because f (3) is just a constant, no
matter what f is.) So an FPT algorithm for k-Colouring would imply
that P and NP collapse.

We return to an argument for the first point shortly.

Exponential Time Hypotheses

We have seen a bunch of algorithms that solve the 3-Sat problem
faster than mindlessly checking all 2n assignments. The resulting
running times were all of the form (1 + ε)nnO(1) for smaller and
smaller ε. At the time of writing, the best algorithm is O(1.31n). Can
this process continue? If yes, how far? Is there a O(2n/ log log log n)

algorithm? O(2
√

n)?
Many people think not. To formalise this intuition, computational

complexity theorists have introduced the Exponential Time Hypothesis
(ETH) Here are some formulations of this idea:

• There is no exp(o(n)) algorithm for 3-Sat, where n is the number
of variables.

• There is no exp(o(k)) algorithm for 3-Sat, where k is the number of
clauses.

• There exists a constant δ > 0 for which there is no O((1 + δ)n)

algorithm for 3-Sat.

It turns out that the first two formulations are equivalent; this is the
“Sparsification Lemma,” which is not trivial to prove. Less interest-
ingly, the third formulation is not equivalent (and slighly stronger),
but these details need not concern us here.

For completeness, we note that ETH is a (much) stronger hypothe-
sis than P 6= NP.

notes for edan 55 10

Independent Set. We can use reductions to argue “under ETH” much
like we use them to argue “under P 6= NP.” For instance, return to
the lower bound for independent set in [KT, (8.8)]. (Recall that we
have an algorithm with running time O(1.3808n) in chapter 210.)
The 3-Sat instance with k clauses was transformed into an Indepen-
dent Set instance with O(k) vertices. If there was an exp(o(|V(G)|))
algorithm for Minimum Independent Set then there would be an
exp(o(n)) algorithm for 3-Sat. We conclude that under ETH, Inde-
pendent Set requires O((1 + δ)n) time for some δ > 0. This result
implies the same lower bound for Maximum Clique.

3-Colouring. The current best bound for 3-colouring is O(1.3289n).
But we can argue as above, using the reduction in [KT, Sec. 8.7] that
no exp(O(n)) algorithm exists.

Dependency on m. Here’s something more surprising:
Consider the Maximum Clique problem. It admits and algorithm

in time exp(o(m)). Let us look for k-cliques of size k = 1, 2, . . ., until
the answer is no. If m < (k

2) we can quickly answer ‘no,’ because a
k-clique needs at least (k

2) edges. Otherwise, we check all (n
k) subsets

by brute force. The running time within a polynomial factor of(
n
k

)
≤ nk = 2k log n ≤ 2O(

√
m log m)

where the last inequality uses that m ≥ (k
2) = 1

2 k(k − 1). This, very
much unlike 3-Sat, there is an algorithm for Maximum Clique that is
subexponential in the instance size.

Even more surprising is the observation that this argument does
not work for Independent Set. Let’s try to prove that. First, a failed
attempt: Redo the proof of [KT, (8.8)] and note that that gadget con-
struction does not give us such a result (because the number of edges
in the resulting graph is not linear in k). But a simple trick fixes this.
(Introduce 2n new vertices, pairwise neighbouring, one for each vari-
able. Connect them to the triangle gadgets and remove the ‘old’ Con-
flict edges. The resulting construction has 3k + 2n vertices and O(k)
edges.) We conclude that under ETH, ther is no exp(o(m)) algorithm
for independent set.

ETH and FPT

We are finally able to connect the various complexity theories. We
return first to our open mystery about k-Clique from two subsections
ago.

Assume that k-Clique were in FPT, so that there exists an algo-
rithm with running time f (k)nr for some increasing f and constant r.

notes for edan 55 11

Given an instance G to 3-colouring of n vertices. Choose k maximal
such that f (k) ≤ n, and not for later reference that k is a growing
function of n. (For instance, if f (k) = 22k

then k is Ω(log log n).)
Construct an instance H to k-clique as follows. Split the vertex set

of G into k equal sized sets V1, . . . , Vk. The graph H is k-partite with
partition U1, . . . , Uk. Each vertex c ∈ Ui corresponds to a proper 3-
colouring of Vi. Thus, the size of Ui is bounded by roughly 3n/k. An
edge joins c and c′ in different parts of H if the two colourings are
consistent. (In the following sense: if uv is an edge in G with u and v
in different parts, then c maps u to a different colour than c′ maps v.)
Then H contains a k-clique if and only G can be 3-coloured.

The running time of this algorithm would be f (k)(3n/k)r. By our
choice of k, the first factor is bounded by n, and the second factor is
exp(o(n)), violating the Exponential Time Hypothesis.

In particular, we conclude that k-Clique does not allow an FPT
algorithm unless ETH fails.

FPT and Approximation

Assume that P is an optimisation problem and let k denote the so-
lution size. For concreteness, assume P is a maximisation problem.
(Think of P as the k-clique problem, for instance.)

We will show that if P admits an FPTAS then P, parameterised by
k, is an FPT problem.

Assume P can be solved with error ε in time f (ε)nO(1) by algo-
rithm A.4 4 This is a weaker assumption than

FPTAS, where f would be a polyno-
mial. So we’re proving a much stronger
results.

We will design an FPT algorithm for P. Set ε = 1
2k and run A. If the

result is at least k, return ‘yes’, else return ‘no.’
The running time is f (2k)nO(1), clearly FPT. It remains to check

correctness. If the optimum solution size is at most k − 1 then by
assumption, the approximation algorithm can’t find a larger solution
either, so it returns at most k− 1 and the FPT algorithm returns ‘no.’
If the optimum solution is at least k, the the approximation algorithm
finds a solution of size at least

k
1− 1/(2k)

= k− 1
2 ,

so that the FPT algorithm is able to distinguish the two cases. In
particular, the algorithm distinguishes the two cases, so it works as a
decision algorithm for P.

Chapter 11

This note extends the presentation in Kleinberg and Tardos, chapter 11

with some inapproximability results, making plausible that the tools
from computational complexity (from chapter 8) can be used to argue
about approximation quality.

11.9 Inapproximability

No FPTAS for Max 3-Sat

In [KT, 11.8] we saw that there is an algorithm for the Knapsack
problem that given any ε > 0 computed a feasible solution to an
instance of size n in time O(n3ε−1) that is at most a factor (1 + ε)

below the maximum possible.
Such an algorithm is called a fully polynomial time approximation

scheme.
Such an algorithm cannot exist for Max 3-Sat, the problem consid-

ered in [KT 13.4].

Theorem 1 There is no FPTAS for for Max 3-Sat unless P = NP.

Proof. Assume there was such an FPTAS. Let φ be an instance to the
decision problem 3-Sat with m clauses. (The total size of φ is O(m).)
Set ε = 1

2m and run the FPTAS.
If φ is satisifiable, all m =: OPT clauses can be satisfied, so the

FPTAS returns a solution of size at least (1− ε)m = m − 1
2 . Since

the solution size is an integer, the solution size is equal to m, so the
FPTAS has solved the decision problem.

The running time of the FPTAS is polynomial in the input size m
and inverse polynomial in the approximation guarantee 1

2m , so the
algorithm runs in polynomial time. �

It is known (but far beyond the scope of these notes) that for any
ε > 0 there is no polynomial-time algorithm for 3-Sat that satisfies
more than 7

8 + ε of the clauses, unless P = NP.5. This is a tight bound 5 Johan Håstad, Some optimal inapprox-
imability results, Journal of the ACM
(ACM) 48: 798–859, 2011.

for Johnson’s algorithm from [KT 13.4], so this particular problem is
fully understood.

notes for edan 55 14

TSP

We first present a simple approximation algorithm for the Traveling
Salesman Problem in metric graphs, i.e., the distance function satisfies
the triangle inequality d(u, w) ≤ d(u, v) + d(v, w) for all vertices
u, v, w.

Theorem 2 If the distances in an instance to TSP satisfy the triangle
inequality then there is a polynomial-time 2-approximation algorithm.

Proof.

1. Find a minimum spanning tree T of the given graph G.

2. Perform a depth-first search of T from vertex 1.

3. Visit the vertices of the given graph in the depth first search order,
and finally return to 1.

To see that this works, let OPT denote the length of an optimal TSP
tour in G. Note that the total weight |T| is at most OPT, because
removing any edge from a tour makes the tour a spanning tree, and
T is the minimum spanning tree in G. Consider now the nonsimple
tour T′ given by a traversal of T. This tour has length 2|T|, because
it travels along every edge of T exactly twice. Note that the depth
first search order is a subsequence of T′, so it can be viewed as the
result of a successive application of operations that replace sequences
u, v, w by the sequence u, w. If the distances in G satisfy the triangle
inequality, none of these operations can increase the length of the
tour. In particular, the resulting tour has length at most 2OPT. �

A simple modification of this algorithm reduces the approximation
factor from 2 to 3

2 ; this is a classical result.6 With even more restric- 6 N. Christofides, Worst-case analysis of
a new heuristic for the travelling salesman
problem, Technical Report 388, Graduate
School of Industrial Administration,
Carnegie-Mellon University, Pittsburgh,
1976.

tions on the distance measure, much faster algorithms are possible: If
the require that the distance function is Euclidian then TSP can be ap-
proximated within a factor (1 + ε) in polynomial time for any given
ε > 0.7

7 Sanjeev Arora. Polynomial Time Approx-
imation Schemes for Euclidean Traveling
Salesman and other Geometric Problems.
Journal of the ACM, Vol.45, Issue 5,
pp.753–782, 1998. J.S.B. Mitchell, Guil-
lotine subdivisions approximate polygonal
subdivisions: A simple polynomial-time
approximation scheme for geometric TSP, k-
MST, and related problems, SIAM Journal
on Computing 28 (4): 1298–1309, 1999.

Is the assumption about the triangle inequality crucial? It turns
out that the answer is yes.

Theorem 3 There can be no polynomial-time 2-approximation algorithm
for TSP unless P = NP.

Proof. We reduce from Hamiltonian Cycle, which is known to be NP-
hard. Given an instance G = (V, E) to Hamiltonian Cycle, build an
instance K = (V, E′) to TSP as follows. The edge set is the complete
set E′ = { {u, v} : u ∈ V, v ∈ V }, and the distances are given by

c(e) =

1 , e ∈ E ;

|V|+ 2 , e /∈ E .

notes for edan 55 15

If G is a yes-instance, the shortest TSP tour has length |V|, so the
hypothetical 2-approximation algorithm would return a solution of
value at most 2|V|.

If G is a no-instance, the shortest TSP tour must include at least
one edge from E′ − E, so the optimal tour has length at least (|V|+
2) + |V| − 1 = 2|V|+ 1.

In particular, the approximation algorithm distinguishes yes- and
no-instances to the Hamiltonian Cycle problem in polynomial time.
�

The same proof rules out much less impressive approximation
factors as well, such as ρ = 10 or ρ = 1010. To show that TSP admits
no polynomial-time ρ-approximation algorithm, the cost function in
the proof has to be set to

c(e) =

1 , e ∈ E ;

(ρ− 1)|V|+ 2 , e /∈ E .

In fact, the proof works even for nonconstant approximation fac-
tors, and even superpolynomial ones. To prove that TSP cannot be
approximated within exp(Ω(|V|1/3)), set

c(e) =

1 , e ∈ E ;

2|V||V|+ 1 , e /∈ E .

This is as far as we can push this proof, because the space needed to
store the values on the edges start to dominate the instance size.

Approximation-preserving reductions

The examples so far established approximation hardness by reducing
directly from a decision problem. However, there is a rich theory
about reducibility among approximation problems as well.

For a simple example, consider the well-known reduction from
3-Sat to Independent Set in [KT, (8.8)]. There, it was given as a reduc-
tion between two decision problems. But he same construction can
be used to reason about interdependencies with respect to approxi-
mation quality instead. These are called approximation-preserving
reductions. A completely formal treatment of these notions is beyond
the scope of these notes.

Theorem 4 If Independent Set can be approximated within a factor (1 + ε)

in polynomial time then so can Max 3-Sat.

Proof. Given an instance φ to Max 3-Sat with m clauses, follow the
reduction in [KT, (8.8)] to build an instance G of Independent Set.

notes for edan 55 16

The graph G contains 3m vertices. We note from the reduction that if
the maximum number of satisfiable clauses φ is OPT then the largest
independent set in G has size OPT as well. Conversely, every indpen-
dent set of size k in G corresponds to an assignment in φ that satisfies
at least k clauses.

Thus, a (1 + ε)-approximation algorithm for Independent Set
would achieve the same approximation guarantee for Max 3-Sat. �

In particular, we can use this reduction and the result of Håstad
mentioned earlier to establish that no polynomial-time algorithm
can approximate the size of a maximum independent set in a graph
better than 7

8 + ε. However, unlike the case for Max 3-Sat, this is far
from optimal. It is known (but far beyond the scope of these notes)
that Independent Set cannot be approximated in polynomial time
within a factor n1−ε for every ε > 0, unless P = NP.8 8 David Zuckerman, Linear degree

extractors and the inapproximability of max
clique and chromatic number, Proc. 38th
ACM Symp. Theory of Computing, pp.
681–690, 2006.

Chapter 210

Exponential Time Algorithms

These lecture notes were originally prepared for the AGAPE 2009

Spring School on Fixed Parameter and Exact Algorithms, May 25-29

2009, Lozari, Corsica (France).

This document attempts to survey techniques that appear in exact,
exponential-time algorithmics using the taxonomy developed by Lev-
itin. The purpose is to force the exposition to adopt an alternative per-
spective over previous surveys, and to form an opinion of the flexibility
of the taxonomic framework of Levitin.9 9 Levitin, Introduction to the Design &

Analysis of Algorithms, Addison–Wesley,
2003.

I have made no attempt to be comprehensive. A recent textbook by
Fomin and Kratsch covers the material in much more depth.10

10 Fedor Fomin and Dieter Kratsch,
Exact Exponential Algorithms, Springer,
2010.Brute force

A brute force algorithm simply evaluates the definition, typically leading to
exponential running times.

Some representative problems

TSP. Our first example is the Traveling Salesman Problem. Given a
weighted graph like

G =
1 2

3

4

5

6 7

8

9

4

5

2

with n vertices V = {v1, . . . , vn} (sometimes called “cities”) the
traveling salesman problem is to find a shortest Hamiltonian path from
the first to the last city, i.e., a path that starts at s = v1, ends at t = vn,
includes every other vertex exactly once, and travels along edges
whose total weight is minimal. Formally, we want to find

min
π

n−1

∑
i=1

w(π(i), π(i + 1)) ,

notes for edan 55 18

where the sum is over all permutations π of {1, 2, . . . , n} that fix 1
and n. When the weights are uniformly 1, the problem reduces to
deciding if a Hamiltonian path at all.

This above expression can be evaluated within a polynomial fac-
tor of n! operations. In fact, because of certain symmetries it suffices
to examine (n − 2)! permutations, and each of these requires take
O(n) products and sums. On the other hand, it’s not trivial to iterate
over precise these permutations in time O((n − 2)!). We will nor-
mally want to avoid these considerations, since they only contribute
a polynomial factor, and write somewhat imprecisely O∗(n!), where
O∗(f (n)) means O(nc f (n)) for some constant c.

Independent set. An independent set in an n-vertex graph G = (V, E)
is a subset of vertices U ⊆ V where no edge from E has both its
enpoints in U. Such a set can be found by considering all subsets
(and checking independence of each), in time O∗(2n).

Satisfiability. The 3-Satisfiability problem is given by a Boolean for-
mula φ on variables x1, . . . , xn is on 3-conjunctive normal form if it
conists of a conjunction of m clauses, each of the form (a ∨ b ∨ c),
where each of the literals a, b, c is a single variable or the negation of
a single variable. The satisfiability problem for this class of formulas
is to decide if φ admits a satisfying assignment. This can be decided
by considering all assignments, in time O∗(2n). (Note that m can be
assumed to be polynomial in n, otherwise φ would include duplicate
clauses.)

Counting perfect matchings. A perfect matching in a graph G = (V, E)
is an edge subset M ⊆ E that includes every vertex as an endpoint
exactly once; in other words

|M| = 1
2 |V|

⋃
M = V.

In fact, famously, a matching can be found in polynomial time, so
we are interested in the counting version of this problem: how many
perfect matchings does G admit? From the definition, this still takes
O∗(2m) time. Figure 6: A bipartite graph and 2 of its

3 perfect matchings.We will look at this problem for bipartite graphs as well as for
general graphs.

The problems above are all difficult problems, hard for
complexity classes such as NP or #P, so we cannot expect to devise
algorithms that run in polynomial time. Instead, we will improve
the exponential running time. For example, for some problems we
will find vertex-exponential time algorithms, i.e., algorithms with

notes for edan 55 19

running time exp(O(n)) instead of exp(O(m)) or O∗(n!) O∗(nn).
Other algorithms will improve the base of the exponent, for example
from O∗(2n) to O(1.732n).

Generating permutations and combinations

It is not completely straightforward to iterate over all subsets, k-
subsets or permutations of [n] = {1, . . . , n}. Knuth devotes over 300

pages to these questions.11 11 Donald E. Knuth, The Art of Computer
Programming, Vol. 4: Combinatorial
Algoriths, sec. 7.2.1.1–7.2.1.4. Addison–
Wesley, 2011.Subsets. If n is smaller than the number of bits in a machine word,

we can use the simple correspondance between binary numbers and
incidence vectors of subsets. The set S ⊆ [n] then corresponds to the
bit string with bi = [i ∈ S]. We can then generate all subsets of [n]
using machine arithmetic, counting from 0 to 2n. For larger n one
needs to simulate the “binary counter” logic: starting from the right,
find the first 0, flip it. If its left neighbour is a 1, proceed 0ing it and
continue to the left.

Permutations. Let (a1, . . . , an) be a permutation of [n]. Then the lexi-
cographically next permutation is given by the following procedure:

1. find the largest index i such that ai < ai+1

2. switch ai with the smallest value in (ai+1, . . . , an) larger than ai.

3. sort (ai+1, . . . , an)

Combinations. Let (a, . . . , ak) denote a k-subset of [n] in sorted order.
Starting with (1, 2, . . . , k), and ending in (n− k + 1, n− k + 2, . . . , n),
the next k-subset is given by the following procedure:

1. find the largest index i such that ai 6= n− k + i

2. increase ai by 1

3. for j = i + 1tok, set aj = ai + j− i

Greedy

A greedy algorithm does “the obvious thing” for a given ordering,
the hard part is figuring out which ordering. A canonical example is
interval scheduling.

In exponential time, we can consider all orderings. This leads to
running times around n! and is seldom better than brute force, so this
class of algorithms does not seem to play a role in exponential time
algorithmics. An important exception is given as an exercise.

notes for edan 55 20

Recursion

Recurrences express the solution to the problem in terms of solu-
tions of subproblems. Recursive algorithms compute the solution by
applying the recurrence until the problem instance is trivial.

Decrease and conquer

Decrease and conquer reduces the instance size by a constant, or a
constant factor. Canonical examples include binary search in a sorted
list, graph traversal, or Euclid’s algorithm.

In exponential time, we produce several smaller instances (in-
stead of just one), which we can use this to exhaust the search space.
Maybe “exhaustive decrease and conquer” is a good name for this
variant—this way, the technique becomes an umbrella of exhaustive
search techniques such as branch-and-bound.

Q, size < n

problem P, size n

Solution to Q

Solution to P

Figure 7: Decrease and conquer with
one (left) and many (right) subprob-
lems.

3-Satisfiability. An instance to 3-Satisfiability includes at least one
clause with 3 literals. (Otherwise it’s an instance of 2-Satisfiability,
which can be solved in polynomial time.) Pick such a clause and
construct three new instances:

T?? set the first literal to true,

FT? set the first literal to false and the second to true,

FFT set the first two literals to false and the third to true,

These three possibilites are disjoint and exhaust the satisfying assign-
ments. (In particular, FFF is not a satisfying assignment.)

Each of these assignments resolves the clause under consideration,
and maybe more, so some cleanup is required. In any case, the num-
ber of free variables is decreased by at least 1, 2, or 3, respectively. We
can recurse on the three resulting three instances, so the running time

notes for edan 55 21

satisfies

T(n) = T(n− 1) + T(n− 2) + T(n− 3) + O(n + m) .

The solution to this recurrence is O(1.8393n). (The analysis of this
type of algorithm is one of the most actively researched topics in
exact exponential-time algorithmics and very rich.)

Independent set. Let v be a vertex of with at least three neighbours.
(If no such vertex exists, the independent set problem is easy.) Con-
struct two new instances to independent set:

G[V − v] the input graph with v removed. If I 63 v is an independent
set in G then it is also an independent set in G[V − v].

G[V − N(v)] the input graph with v and its neighbours removed.
If I 3 v is an independent set in G, then none of v’s neighbours
belong to I, so that I − {v} is an independent set in G[V − N(v)].

These two possibilities are disjoint and exhaust the independent sets.
We recurse on the two resulting instances, so the running time is

no worse than

T(n) = T(n− 1) + T(n− 4) + O(n + m) .

The solution to this recurrence is O(1.3803n).

TSP. Galvanized by our successes we turn to TSP.
For each T ⊆ V and v ∈ T, denote by OPT(T, v) the minimum

weight of a path from s to v that consists of exactly the vertices in T.
To construct OPT(T, v) for all s ∈ T ⊆ V and all v ∈ T, the algorithm
starts with OPT({s}, s) = 0, and evaluates the recurrence

OPT(T, v) = min
u∈T\{v}

OPT(T \ {v}, u) + w(u, v) . (2)

While this is correct, there is no improvement over brute force: the
running time is given by

T(n) = n · T(n− 1)

which solves to O(n!). However, we will revisit this recurrence later.

Divide and conquer

The divide and conquer idea partitions the instance into two smaller
instances of roughly half the original size and solves them recur-
sively. Mergesort is a canonical example.

notes for edan 55 22

An essential question is how to partition the instance into smaller
instances. In exponential time, we simply consider all such partitions.
This leads to running times of the form

T(n) = 2nnO(1)T
(1

2 n
)
,

which is O(cn), and the space is polynomial in n. Maybe “exponen-
tial divide and conquer” is a good name for this idea.

problem P, size n

Q, size n/2 R, size n/2

Solution to Q Solution to R

Solution to P

problem P, size n

Solution to P

...

...

Figure 8: Divide and conquer with
one division (top) and an exponential
number of divisions (bottom).

TSP. Let OPT(U, s, t) denote the shortest path from s to t that uses
exactly the vertives in U. Then we have the recurrence

OPT(U, s, t) = min
m,S,T

OPT(S, s, m) + OPT(T, m, t) , (3)

where the minimum is over all subsets S, T ⊆ U and vertices m ∈ U
such that s ∈ S, t ∈ T, S ∪ T = U, S ∩ T = {m}, and |S| = b 1

2 nc+ 1,
|T| = n− |S|+ 1.

The divide and conquer solution continues using this recurrence
until the sets U become trivial. At each level of the recursion, the
algorithm considers (n− 2)(n−2

d(n−2)/2e) partitions and recurses on two

instances with fewer than 1
2 n + 1 cities. Thus, the running time is

T(n) = (n− 2) ·
(

n− 2
d(n− 2)/2e

)
· 2 · T(n/2 + 1) ,

which solves to O(4nnlog n).
The space required on each recursion level to enumerate all par-

titionings is polynomial. Since the recursion depth is polynomial (in
fact, logarithmic) in n, the algorithm uses polynomial space.

notes for edan 55 23

Transformation

Transformations compute a problem by computing a different prob-
lem in its stead. This can be called transform-and-conquer or reduc-
tion.

For exponential time algorithms, the reductions can involve the
construction of an exponential number of instances (as in Moebius
inversion), or be of exponential size (as in finding triangles).

Perfect matchings in bipartite graphs

Consider a bipartite graph on the disjoint vertex sets L and R, where
|L| = |R|. Let A denote the biadjacency matrix of G defined as

aij =

1 , if ij is an edge ;

0 , otherwise .

Then the number of perfect matchings in G is given by the expression

∑
f : L→R

|R|

∏
i=1

ai f (i) ,

where the sum is over all bijections f from L to R. This does not give
us an interesting algorithm, because there are |R|! such bijections.

We now construct a suprising reformulation of the above expres-
sion that can be evaluated much faster.

With foresight, for S ⊆ R let h(S) denote the number of ways to
pick a neighbour in S for each vertex in L, such that each vertex in S
is chosen at least once. (Algebraically, h(S) can be given as

h(S) = ∑
f : L→S

|R|

∏
i=1

ai f (i) ,

where the sum is over all surjective mappings from L to S.) The
number of perfect matchings is h(R). We have

∑
X⊆R

(−1)|R|−|X| ∑
S⊆X

h(S) = ∑
X⊆R

∑
S⊆X

(−1)|R|−|X|h(S)

= ∑
S⊆R

∑
X : S⊆X⊆R

(−1)|R|−|X|h(S)

= ∑
S⊆R

h(S) ∑
X : S⊆X⊆R

(−1)|R|−|X| = h(R) .

The surprising step is the last. It holds because the inner alternating
sum collapses to almost nothing:

∑
X : S⊆X⊆R

(−1)|R|−|X| =

1 , if S = R ;

0 , if S 6= R .

notes for edan 55 24

The first case is easy to see. The second case follows from a sim-
ple combinatorial fact, sometimes called the principle of inclusion–
exclusion:

Lemma 1 Let S and R be distinct sets with S ⊂ R. There are an equal
number of odd-sized and even sized sets X with S ⊆ X ⊆ R.

Proof. Let i ∈ R \ S. The mapping

X 7→ X⊕ {i}

establishes a bijection between the odd-sized and even-sized sets X
with S ⊆ X ⊆ R. �

We have
h(R) = ∑

X⊆R
(−1)|R|−|X| ∑

S⊆X
h(S) ,

which looks like no progress at all! The outer sum is over 2|R| terms
and the inner sum is over 2k terms, where k = |X|. Worse, each term
h(S) is defined as a sum over all surjective mappings between two
sets, which looks at least as hard to compute as the original problem.

But we can do much better, because the inner sum has a natural
combinatorial interpretation: it is the number of way in which each
vertex in L can pick a neighbour in X (withouth necessarily all neigh-
bours in X getting picked.) Thus,

∑
S⊆X

h(S) =
|R|

∏
i=1

∑
j∈X

aij .

Thus we have established Ryser’s formula, that the number of perfect
matchings is given by

∑
X⊆R

(−1)|R|−|X|
|R|

∏
i=1

∑
j∈X

aij ,

and therefore computable in time O(2|R||R|2).
For more applications of this idea, see my survey.12 12 T. Husfeldt, Invitation to Algorith-

mic Uses of Inclusion–Exclusion, 2011,
arXiv:1105.2942.

Finding triangles

The number of triangles of undirected d-vertex graph T is given by

1
6 tr A3 ,

where A denotes the adjacency matrix of T and tr, the trace, is the
sum of the diagonal entries. To see this, observe that the ith diagonal
entry counts the number of paths of length 3 from the ith vertex to

notes for edan 55 25

itself, and each triangle contributes six-fold to such entries (once for
every corner, and once for every direction).

To compute A3 = A · A · A we need two matrix multiplications,
which takes time O(dω) for some ω < 3, the best current bound is
ω < 2.374.

Independent set. We want to find an independent set of size k in
G = (V, E), and now we assume for simplicity that 3 divides k.

Construct G′ = (V′, E′), where each vertex v ∈ V′ corresponds
to an independent set in G of size 1

3 k. Two vertices are joined by an
edge uv ∈ E′ if their corresponding sets form an independent set of
size 2

3 k. The crucial feature is that a triangle in G′ corresponds to an
independent set of size k in G. The graph G′ has (n

k/3) ≤ nk/3 vertices,
so the whole algorithm takes time O∗(nωk/3), rather than the obvious
(n

k).

Perfect matching The next example, for Perfect Matchings, is some-
what more intricate, and uses both transformations from this section.

We return to perfect matchings, but now in regular graphs. Let
G[n = r; m = k] denote the number of induced subgraphs of G with
r vertices and k edges. For such a graph, the number of ways to pick
1
2 n edges is kn/2, so we can rewrite

f (V) = ∑
Y⊆V

(−1)|V\Y|g(Y) =
m

∑
k=1

n

∑
r=2

(−1)rG[n = r; m = k]kn/2 .

Thus, we have reduced the problem to computing G[n = r; m = k]
for given r and k, and we’ll now do this faster than in the obvious 2n

iterations.
We are tempted to do the following: Construct a graph T where

every vertex corresponds to a subgraph of G induced by a vertex sub-
set U ⊆ V with 1

3 r vertices and 1
6 k edges. Two vertices in T are joined

by an edge if there are 1
6 k edges between their corresponding vertex

subsets. Then we would like to argue that every triangle in T corre-
sponds to an induced subgraph of G with r edges and k edges. This,
of course, doesn’t quite work because (1) the three vertex subsets
might overlap and (2) the edges do not necessarily partition into such
six equal-sized families. Once identified, these problems are easily
adressed.

The construction is as follows. Partition the vertices of G into three
sets V0, V1, and V2 of equal size, assuming 3 divides n for readability.
Our plan is to build a large tripartite graph T whose vertices corre-
spond to induced subgraphs of G that are entirely contained in one
the Vi.

notes for edan 55 26

Some notation: An induced subraph of G has r1 vertices in V1, k1

edges with both endpoints in V1, and k12 edges between V1 and V2.
Define r2, r3, k2 , k3, k23, and k13 similarly. We will solve the problem
of computing G[n = r; m = k] separately for each choice of these
parameters such that r1 + r2 + r3 = r and k1 + k2 + k3 + k12 + k23 +

k13 = k. We can crudely bound the number of such new problems by
n3 + m6, i.e., a polynomial in the input size.

The tripartite graph T is now defined as follows: There is a ver-
tex for every induced subgraph G[U], provided that U is entirely
contained in one of the Vi, and contains exactly ri vertices and ki

edges. An edge joins the vertices corresponding to Ui ⊆ Vi and
Uj ⊆ Vj if i 6= j and there are exactly kij edges between Ui and Uj

in G. The graph T has at most 3 · 2n/3 vertices and 3 · 22n/3 edges.
Every triangle in T uniquely corresponds to an induced subgraph
G[U1 ∪U2 ∪U3] in G with the parameters described in the previous
paragraph.

The total running time is O∗(nωk/3) = (1.732n).

Iterative improvement

Iterative improvement plays a vital role in efficient algorithms and in-
cludes important ideas such as the augmentating algorithms used to
solve maximum flow and bipartite matching algorithms, the Simplex
method, and local search heuristics. So far, very few of these ideas
have been explored in exponential time algorithmics. An important
exception is a local search procedure for satisfiability.

Local search

We consider 3-Satisfiability. Start with a random assignment to the
variables. If all clauses are satisfied, we’re done. Otherwise, pick a
falsified clause uniformly at random, pick one of its literals unformly
at random, and negate it. Repeat this local search step 3n times. After
that, start over with a fresh random assignment. This proces finds
a satisfying assignment (if there is one) in time O∗

(
(4

3)
n) with high

probability.
The analysis considers the number d of differences between the

current assignment A and a particular satisfying assignment A∗ (the
Hamming distance). In the local search steps, the probability that
the distance is decreased by 1 is at least 1

3 (namely, when we pick
exactly the literal where A and A∗ differ), and the probability that
the distance is increased by 1 is at most 2

3 . So we can pessimistically
estimate the probability p(d) of reducing the distance to 0 when we
start at distance d (0 ≤ d ≤ n) by standard methods from the analysis

notes for edan 55 27

of random walks in probability theory to

p(d) = 2−d.

(Under the rug one finds an argument that we can safely terminate
this random walk after 3n steps without messing up the analysis too
much.)

The probability that a ‘fresh’ random assignment has distance d to
A∗ is (

n
d

)
2−n,

so the total probabilty that the algorithm reaches A∗ from a random
assignment is at least

n

∑
d=0

(
n
d

)
2−n−d =

1
2n

n

∑
d=0

(
n
d

)
2−d =

1
2n (1 +

1
2)

n = (3
4)

n.

Especially, in expectation, we can repeat this proces and arrive at A∗

or some other satisfying assignment after (4
3)

n trails.

Time–Space tradeoffs

Time–space tradeoffs avoid redundant computation, typically “re-
computation,” by storing values in large tables. In particular, this
inludes dynamic programming.

Dynamic programming over the subsets

Dynamic programming consists of describing the problem (or a more
general form of it) recursively in an expression that involves only few
varying parameters, and then compute the answer for each possible
value of these parameters, using a table to avoid redundant computa-
tion. A canonical example is Knapsack.

In exponential time, the dynamic programme can consider all
subsets (of vertices, for example). This is, in fact, one of the earliest
applications of dynamic programming, dating back to Bellman’s
original work in the early 1960s.

TSP. We turn to the Traveling Salesman Problem and show how to
solve it in O(2nn2). We go back to the decrease and conquer recur-
rence

OPT(T, v) = min
u∈T\{v}

OPT(T \ {v}, u) + w(u, v) .

The usual dynamic programming trick kicks in: The values OPT(T, v)
are stored a table when they are computed to avoid redundant re-
computation, an idea sometimes called memoisation. The space and

notes for edan 55 28

time requirements are within a polynomial factor of 2n, the number
of subsets T ⊆ V. Figure 9 shows the first few steps.

0 4 9 4 2 9

5 7 12 11 17 9

10 9 9 10 7 10

14 7 11 12 9

Figure 9: The first few steps of filling
out a table for OPT(T, v) for the ex-
ample graph. The starting vertex s is
at the top, v is circled, and T consists
of the black vertices. At this stage,
the values of OPT(T, v) have been
computed for all |T| ≤ 3, and we just
computed the value 9 at the bottom
right by inspecting the two underlined
cases. The “new” black vertex has been
reached either via a weight 2 edge, for a
total weight of 2 + 7, or via a weight 1

edge for a total weight of 12 + 1. The
optimum value for this subproblem is 9.

It is instructive to see what happens if we start with the divide and
conquer recurrence instead:

OPT(U, s, t) = min
m,S,T

OPT(S, s, m) + OPT(T, m, t) ;

recall that S and T are a balanced vertex partition of U. We build a
large table containing the value of OPT(X, u, v) for all vertex subsets
X ⊆ V and all pairs of vertives u, v. This table has size 2nn2, and
the entry corresponding to a subset X of size k can be computed by
accessing 2k other table entries corresponding to smaller sets. Thus,
the total running time is within a polynomial factor of

n

∑
k=0

(
n
k

)
2k = (2 + 1)n = 3n.

We observe that the benefit from memoisation is smaller compared to
the decrease and conquer recurrence, which spent more time in the
recursion (“dividing”) and less time assembling solutions (“conquer-
ing”).

Dynamic programming over a tree decomposition

The second major application of dynamic programming is over the
tree decomposition of a graph. See, e.g., chapter 11 in the textbook by
Kleinberg and Tardos.

notes for edan 55 29

Meet in the middle

Consider again the Traveling Salesman Problem. If the input graph
is 4-regular (i.e., every vertex has exactly 4 neighbours), it makes
sense to enumerate the different Hamiltonian paths by making one
of three choices at every vertex, for a total of at most O∗(3n) paths,
instead of considering the O∗(n!) different permutations. Of course,
the dynamic programming solution is still faster, but we can do even
better using a different time–space trade-off.

We turn again to the “divide and conquer” recurrence,

OPT(U, s, t) = min
m,S,T

OPT(S, s, m) + OPT(T, m, t) .

This time we evaluate it by building a table for all choices of m, t-
paths of length l = n − b 1

2 nc. To be precise, for each choice of
m ∈ V(G) − {s}, and each of the 3l paths Q from m to t, we store
the length of V(Q) in the entry indexed by (m, V(Q)) in a table (say,
a dictionary). No recursion is involved, we brutally check all paths
from m to t of length |T|, in time O∗(3n/2). After this table is com-
pleted, we iterate over all s, m-paths of length n− l. For each path P,
we look up the table entry at (m, V −V(Q) ∪ {m}).

It is instructive to compare this idea to the dynamic programming
approach. There, we used the recurrence relation at every level. Here,
we use it only at the top. In particular, the meet-in-the-middle idea is
qualitatively different from the concept of using memoisation to save
some overlapping recursive invocations.

Exercises

A graph can be k-coloured if each vertex can be coloured with one of
k different colours such that no edge connects vertices of the same
colour.

This set of exercises asks you do solve the k-colouring problem in
various ways for a graph with n vertices and m edges

Exercise 1. Using brute force, in time O∗(kn).

Exercise 2. Using a greedy algorithm, in time O∗(n!).

Exercise 3. Using decrease-and-conquer, in time in time O∗(((1 +√
5)/2)n+m). Hint: That’s the solution to the “Finonacci” recurrence

T(s) = T(s− 1) + T(s− 2).

Exercise 4. Using divide-and-conquer, in time O∗(9n).

Exercise 5. Using Moebius inversion, in time O∗(3n). Hint: ∑n
i=0 (

n
i)2

i =

(2 + 1)n.

notes for edan 55 30

Exercise 6. Using dynamic programming over the subsets, in time
O∗(3n).

Exercise 7. Using Yates’s algorithm and Moebius inversion, in time
O∗(2n).

Exercise 8. Using a transformation to counting triangles, count the
nuber of 2-colourings in time O∗(2ωn/3).

	Brute force
	Greedy
	Recursion
	Transformation
	Iterative improvement
	Time–Space tradeoffs
	Exercises

