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Exam 25 October 2013, 8:00–13:00, Sparta:A–B

EDAN55 Advanced Algorithms
The exam consists of 4 large questions; each consisting of a num-

ber of smaller subquestions.

1. The exam is “open book,” so you can bring whatever material
you want, including textbooks, a dictionary, and your own course
notes.

2. You can bring an electronic calculator.

3. We try to minimise the dependencies among subquestions. In
particular, you can solve them in any order. Also, you are free to
use the result of subquestion x to answer subquestion y, even if
you didn’t answer x.

4. Scoring: Answering “I don’t know” (and nothing else) scores
1
4 of a subquestion’s points. An empty or wrong answer scores
0 points.

5. You can answer in Swedish or English.

Some tips:

1. Shorter is better.

2. An example is better than a failed attempt at explaining some-
thing in general.

3. Drawings, pseudocode, and formulas are good. “Wall of text” is
bad.

4. Admit ignorance.

5. Be tidy.

Good luck!
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Question 1, Approximation
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Figure 1: A graph.

In the edge colouring problem, colours are assigned to vertices such that
no vertex is incident on edges of the same colour. Formally:

Name: Edge colouring

Input: A simple, undirected graph G = (V, E) with |V| = n, E =

{e1, e2, . . . , em}.

Output: An integer q and a mapping f : E → {1, 2, . . . , q} such that
f (vw) 6= f (vu) for each pair of edges vw and vu around the same
vertex, with q minimal.

I1a (1 pt.) Find an optimal edge colouring of the graph in fig. 1. 1 1 Your answer is a drawing showing the
colouring. Make it clear what q is.

We consider the greedy algorithm for edge colouring:

Set f to undefined for each v.
For each i from 1 to m,

Let v and w the endpoints of edge ei
Set f (ei) to be the smallest integer ≥ 1 not yet used among the edges around v and w.

Return f and q = maxe∈E f (e).

I1b (1 pt.) Run the algorithm on the graph in fig. 1. 2 2 Your answer is the resulting colouring.
Make clear what q is.

I1c (1 pt.) Give an example of a 4-edge colourable graph where the
greedy algorithm uses 6 colours. 3 3 Your answer is a drawing of a graph,

an optimum solution to that instance
and the solution found by the algo-
rithm.

I1d (3 pts.) Show that the algorithm is guaranteed to find colouring
using no more than twice the optimum. 4

4 Your answer is a short argument. It
includes a lower bound on the solution
found by the algorithm and an upper
bound on the optimum solution.

I1e (2 pts.) Prove that unless P equals NP, there cannot be a polyno-
mial time approximate edge colouring algorithm with guarantee
( 4

3 − ε)OPT for any ε > 0. 5

5 Your answer is a short proof. You can
freely use that it is NP-hard to 3-edge
colour a 3-edge colourable graph.
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Question 2, Parameterized Analysis

We consider the well-known independent set problem restricted to
planar graphs:

Name: Independent set

Input: A planar graph G = (V, E), integer k

Output: A subset of vertices S ⊆ V with |S| ≥ k such that for each
edge vw, at most one of the endpoints belongs to S.

Recall that a simple branching algorithm solves independent set
in time O(1.3803n) in the general case, but in this exercise we look at
parameterized analysis, where the expression involves k as well as n.

I2b (2 pts.) Write a simple exhaustive search (or “brute force”) algo-
rithm and give its running time in terms of n and k. 6 6 Your answer is some lines of pseu-

docode and a running time estimate
using asymptotic notation.We will use that the average degree 2m/n of every planar graph

is strictly less than 6. (This follows from Euler’s formula. The proof
takes a few lines but is not important here.)

I2c (3 pt.) Design an algorithm for independent set in planar
graphs. The running time must be of the form f (k)poly(n). Hint:
My solution is a branching algorithm in time 6k poly(n). There
may be other ways of doing it. 7 7 Your answer is the description of an

algorithm, for instance using pseu-
docode, and a brief analysis of its
running time.

The dependency on k in 2c can be improved using the following
famous result (the proof of which takes up several hundred pages):

Four Colour Theorem. Every planar graph can be 4-coloured.

I2d (2 pts.) Design an algorithm for planar independent set with
running time better than 6k poly(n). Hint: As a first step, consider
the case k < 1

4 n. My solution achieves running time 3.63k poly(n),
but there’s no reason to be so precise in the analysis.

Note that the FPT results is surprising in light of the fact that
Indepenent Set in general (without the restriction to planar graphs) is
hard for W[1].
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Question 3, Exponential Time Algorithms

We consider the 1-in-3-Sat problem

Name: 1-in-3-Sat

Input: A CNF formula in the variables {x1, x2, . . . , xn} with at most 3

literals per clause.

Output: An assignment from {x1, x2, . . . , xn} to {true, false} such that
there is exactly one true literal in each clause.

For instance, the formula

φ = (x1∨ x2∨ x3)∧ (x1∨ x2∨ x4)∧ (x1∨ x2∨ x5)∧ (x3∨ x4∨ x5)∧ (x4∨ x5)

is 1-in-3-satisfied by the assignment x1 = x5 = true, x2 = x3 = x4 =

false.

I3a (1 pt.) Find another 1-in-3-Satisfying assignment for φ.

I3b (2 pt.) Explain very briefly how 1-in-3-Sat can be solved using
exhaustive search (“brute force”) and state the resulting running
time, ignoring polynomial factors.

I3c (3 pts.) Construct a simple branching (“decrease-and-conquer”)
algorithm for 1-in-3-Sat. You running time must be better than 2n.
Be precise about which branching rules you use; for example by
writing the algorithm in some form of pseudocode. Give a recur-
rence relation for the running time of the resulting algorithm and
state the resulting running time. Hint: I get O(3n/3) = O(1.45n).
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Question 4, Randomized Algorithms
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Figure 2: An instance to List colouring,
with each list shown next to its vertex.
For instance, L(v1) = {1, 3}.

We consider the bichromatic list-colouring problem. List colouring is
like standard vertex colouring, except that each vertex has its own list
(or “palette”) of allowed colours.

Name: List-colouring

Input: A simple, undirected graph G = (V, E) with |V| = n, |E| = m
and for each vertex v a set of colours L(v).

Output: A mapping f : V → {1, 2, . . .} such that f (v) 6= f (w) for
each edge vw (so f is a vertex colouring) and f (v) ∈ L(v) for each
vertex v (so each colour is chosen from the palette of that vertex.)

I4a (1 pt.) Find a list-colouring of the instance in figure 2.

I4b (1 pt.) Show that the list colouring problem can be solved in
polynomial time when each L(v) has size at most 2. 8 8 Your answer is a very short descrip-

tion, either in pseudocode or by re-
ferring to some other well-known
algorithm. This is supposed to be easy,
and has little to do with exponential,
parameterized, or randomized algo-
rithms.

From now on you can consider list colouring with |L(v)| = 2 to be
polynomial-time computable, no matter if you solved question 4a.

We turn to the well-known vertex 3-colouring problem.

Name: Vertex 3-colouring

Input: A simple, undirected 3-colourable graph G = (V, E) with
|V| = n, |E| = m.

Output: A mapping f : V → {1, 2, 3} such that f (v) 6= f (w) for each
vw ∈ E.

Consider the following randomized algorithm for this problem:

Algorithm R

1. For each v, choose L(v) to be {1, 2}, {2, 3}, or {1, 3} independently and
uniformly at random.

2. Attempt to solve the resulting list colouring instance in polynomial time.

3. If successful, return the resulting colouring. Otherwise go back to step 1.

I4c (1 pt.) What is the probability that L(v1) = {1, 2}? 9 9 Your answer is a value.
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I4d (1 pt.) What is the probability that 1 does not occur in any of
the L(v)? 10 10 Your answer is an expression and a

very short argument.
I4e (1 pt.) What is the probability that L(v1) = L(v2) = · · · = L(vn)?

11 11 Your answer is an expression and a
very short argument.

I4f (1 pt.) Assume G is 3-colourable and let f be a 3-colouring of G.
What is the probability that ∀v ∈ V : f (v) ∈ L(v)? 12 12 Your answer is an expression and a

very short argument.
I4g (3 pt.) What is the expected running time of the algorithm R? 13

13 Your answer is an expression and an
argument for it.
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