
1

Exam 9 January 2013, 8:00–13:00, Sparta:C

EDAN55 Advanced Algorithms
The exam consists of 4 large questions; each consisting of a num-

ber of smaller subquestions.

1. The exam is “open book,” so you can bring whatever material
you want, including textbooks, a dictionary, and your own course
notes.

2. You can bring an electronic calculator.

3. We try to minimise the dependencies among subquestions. In
particular, you can solve them in any order. Also, you are free to
use the result of subquestion x to answer subquestion y, even if
you didn’t answer x.

4. Scoring: Answering “I don’t know” (and nothing else) scores
1
4 of a subquestion’s points. An empty or wrong answer scores
0 points.

5. You can answer in Swedish or English.

Some tips:

1. Shorter is better.

2. An example is better than a failed attempt at explaining some-
thing in general.

3. Drawings, pseudocode, and formulas are good. “Wall of text” is
bad.

4. Admit ignorance.

5. Be tidy.

Good luck!

2

Question 1, Approximation
12 3

4

56

7

Figure 1: An instance to Independent
set.

Recall that an independent set in an undirected graph G = (V, E) is
a subset W of vertices such what no edge in E has both endpoints in
W. The independent set problem is to find a maximum size indepen-
dent set in a given graph. We assume that the graph has maximum
degree ∆ = 3, i.e., every vertex has at most 3 neighbours.

I1a (1 pt.) Find a maximum independent set in the graph in fig. 1.1 1 Your answer is a drawing showing the
indpendent set and an integer (the size
of your solution).Consider the following algorithm:

Initially, set W = ∅.
while V is not empty,

pick a v ∈ V (say, the lowest numbered vertex, just to be precise)
add v to W
remove v and all its neighbours {x : xv ∈ E} from V

I1b (1 pt.) Run the algorithm on the graph in fig. 1. 2 2 Your answer is the resulting solution
and the solution size.

I1c (1 pt.) Give an example where the algorithm finds an indepen-
dent set of size only 1

3 OPT on a degree-3 graph. 3 3 Your answer is a concrete graph, an
optimum solution to that instance and
the solution found by the algorithm.I1d (3 pts.) Show that the algorithm is guaranteed to find an inde-

pendent set of size at least 1
3 OPT of the optimum for any degree-3

graph. 4 4 Your answer is a short proof.

I1e (2 pts.) Prove that unless P equals NP, there cannot be an algo-
rithm for the Independet Set Problem whose solution is at most
a factor (1 + ε) below OPT and that runs in polynomial time for
any choice of ε > 0. You can freely use that Independent set is
NP-hard.5 5 Your answer is a short proof. In

particular, be precise about how you
choose ε.I1f (1 pt.) What is the approximation factor if we run the algorithm

on graphs of maximum degree ∆ = 4? And ∆ = 17?

3

Question 2, Parameterized Analysis
1

2 3

4 5

6
7

Figure 2: A clean 7-vertex graph (it
consist of 3 disjoint cliques, of size 1, 2,
and 4, respectively.)

In this exercise, we call a graph clean if it consists of a disjoint union
of cliques. (Recall that a clique is a complete subgraph, i.e., a vertex
subset C ⊆ V such that uv ∈ E for all u, v ∈ C with u 6= v.)

I2a (1 pt.) Describe a simple algorithm to determine if an input
graph is clean. 6 6 Your answer is some lines of pseu-

docode and a running time estimate
using asymptotic notation. It’s easily
doable in polynomial time, but even an
exponential time algorithm will suffice.

I2b (1 pt.) Which of the following 4 patterns on 3 vertices can not
appear as an induced subgraph in a clean graph?

I2c (1 pt.) How fast can such a “forbidden” 3-vertex pattern be
detected in a given graph? 7 7 Your answer is an asymptotic running

time expression, polynomial in n.

1

2 3

4 5

6
7

Figure 3: A 2-dirty graph. It can be
cleaned by removing the edge between
1 and 7, and adding an edge between 2

and 4.

A graph is k-dirty if it can be turned into a clean graph by adding
or removing at most k edges. (Thus, a 0-dirty graph is clean.) The
k-cleaning problem is, given an undirected graph G = (V, E) and an
integer k, to add or remove k edges such that the resulting graph is
clean.

Name: k-cleaning.

Input: A graph G = (V, E). Integer k.

Output: A set R ⊆ E and a set A ⊆ E such that the graph G′ =
(V, E ∪ A − R) is clean and |A| + |R| ≤ k, or “impossible” if no
such sets exists.

I2d (1 pt.) Solve the k-cleaning problem for the following 9-vertex
graph:

0
1

2 3

4 5

6

7

8

for k = 3. What is the answer for k = 2?

I2e (2 pts.) Write a simple exhaustive search (or “brute force”) algo-
rithm for k-cleaning and give its running time. 8 8 Your answer is some lines of pseu-

docode and a running time estimate
using asymptotic notation.I2f (1 pt.) Assume G is k-dirty for some k ≥ 1, so it contains at least

one occurence of the “forbidden” subgraph(s) that we identified
in 2b. Let u, v, w denote the corresponding vertex names in G.
Edit the following sentence in order to make it true “If we add or
remove [any / a particular / a random / all / some] of the edges
uv, vw, or wv, the resulting graph is [clean / (k + 1)- / k- / (k− 1)-
/ log k- / 1

2 k /
√

k-dirty].”

4

I2g (4 pts.) Write an algorithm based on the above observation,
briefly argue for its correctness, and state its running time. We are
after “FPT time”, i.e., a running time of the form f (k) · nO(1) for
some function f .

5

Question 3, Exponential time algorithms

We consider the problem of 2-colouring a 3-uniform family of sets.

Name: Bichromatic Balancing of 3-Sets (BB3S)

Input: A set U of n elements and a collection C of m subsets
S1, . . . , Sm ⊆ U, all of size |Si| = 3.

Output: A partition of U into two not necessarily equal sized parts
R and B such that every Si is not completely in R nor completely
in B. Formally, ∀i : |Si ∩ R| < 3 ∧ |Si ∩ B| < 3. If no such solution
exists, the word “impossible.”

Think of the elements of U as coloured red (R) or blue (B).
For instance, figures 4 and 5 contain two instances with n = m =

7. (One of them is solvable and the other is not.) The task can be
viewed as colouring the elements of U so that in no row the three
marked elements have the same color.

a b c d e f g
S1

S2

S3

S4

S5

S6

S7

Figure 4: An instance to BB3S. U =
{a, b, · · · , g}, S1 = {a, b, c}, etc.

a b c d e f g
S1

S2

S3

S4

S5

S6

S7

Figure 5: Another instance to BB3S

I3a (1 pt.) Solve the instances in figures 4 and 5. One of them is
impossible. 9

9 Your answer is a list of the sets R and
B and a very clear statement of which
of the two instances you solve.

I3b (2 pt.) Explain very briefly how BB3S can be solved by exhaus-
tive search (“brute force”) and state the resulting running time
(you may ignore polynomial factors in n and m).

I3c (2 pt.) Explain very briefly why BB3S can be solved in poly-
nomial time provided you knew for every Si the colour of at least one
of its elements. In other words, you are given a colouring of some
of the elements of U such that every Si already has at least on el-
ement coloured, and you want to find out if the partial solution
can be extended to a full solution by also colouring the remaining
elements.

I3d (4 pt.) Construct an algorithm for BB3S with a good worse case
run time bound.10

10 Your answer is a description of the
algorithm, possibly in pseudocode.
Clearly state and prove the running
time bound, which has to be better than
2n. We know at least 3 different ways to
answer this question.

6

Question 4, Randomized Algorithms φ = (x1 ∨ x2 ∨ x4) ∧ (x2 ∨ x3 ∨ x4)∧
(x1 ∨ x3 ∨ x4) ∧ (x1 ∨ x2 ∨ x4)∧
(x2 ∨ x3 ∨ x4) ∧ (x1 ∨ x3 ∨ x4)∧

(x1 ∨ x2 ∨ x3) ∧ (x1 ∨ x2 ∨ x3)

Figure 6: A 3-CNF formula φ

We consider the (optimisation version) of the Not-all-equal Satisfiabil-
ity problem. It’s like 3-Sat, except that we also forbid clauses with all
three literals true. Formally, a clause is NAE-satisfied if it contains at
least one true literal and and least one false literal.

Name: Max NAE-Sat

Input: A CNF formula in n variables with m clauses and exactly 3

literals per clause. Let’s agree that no variable appears twice in
any clause.

Output: An assignment that NAE-satisfies as many clauses as possi-
ble.

I4a Find a maximum NAE-satisfying assignment for φ in figure 6.

Consider the following randomized algorithm for this problem:

1. For every variable xi (i = 1, . . . , n), pick its truth value uniformly and
independently at random.

I4b (1 pt.) Run the algorithm on φ in figure 6. Use the random
values t, f , f , t. How large is the resulting solution?11 11 Your answer is an integer.

I4c (1 pt.) Consider the clause (x1 ∨ x6 ∨ x16). What is the probabil-
ity that this clause is NAE-satisfied?

I4d (2 pt.) Consider the clauses C1 = (x1 ∨ x2 ∨ x3) and C2 =

(x1 ∨ x4 ∨ x5). Let Ei denote the event that Ci is NAE-satisfied.
Compute Pr(E1 ∪ E2), Pr(E1 ∩ E2), and Pr(E1 | E2). Are E1 and E2

independent?

I4e (2 pt.) Compute the expected solution size, i.e., the number of
NAE-satisfied clauses.12 12 Include the calculation, be explicit

about assumptions such as indepen-
dence, linearity, etc.I4f (1 pt.) Determine the approximation ratio of the algorithm.13

13 Your answer is an expression and a
short argument.

	Exam 9 January 2013, 8:00–13:00, Sparta:C
	EDAN55 Advanced Algorithms
	Question 1, Approximation
	Question 2, Parameterized Analysis
	Question 3, Exponential time algorithms
	Question 4, Randomized Algorithms

