
Chapter 210

Exponential Time Algorithms1

1
2013-09-08, rev. 36c2b94

These lecture notes were originally prepared for the AGAPE 2009

Spring School on Fixed Parameter and Exact Algorithms, May 25-29

2009, Lozari, Corsica (France).
This document attempts to survey techniques that appear in exact,

exponential-time algorithmics using the taxonomy developed by
Levitin. The purpose is to force the exposition to adopt an alternative
perspective over previous surveys, and to form an opinion of the
flexibility of the taxonomic framework of Levitin.2 2 Levitin, Introduction to the Design &

Analysis of Algorithms, Addison–Wesley,
2003.

I have made no attempt to be comprehensive. A recent textbook by
Fomin and Kratsch covers the material in much more depth.3 3 Fedor Fomin and Dieter Kratsch, Exact

Exponential Algorithms, Springer, 2010.

1 Brute force

A brute force algorithm simply evaluates the definition, typically leading to
exponential running times.

Some representative problems

TSP. Our first example is the Traveling Salesman Problem. Given a
weighted graph like

G =
1 2

3

4

5

6 7

8

9

4

5

2

with n vertices V = {v1, . . . , vn} (sometimes called “cities”) the
traveling salesman problem is to find a shortest Hamiltonian path from
the first to the last city, i.e., a path that starts at s = v1, ends at t = vn,
includes every other vertex exactly once, and travels along edges
whose total weight is minimal. Formally, we want to find

min
π

n−1

∑
i=1

w(π(i), π(i + 1)) ,

a taxonomic introduction to exponential time algorithms (draft) 2

where the sum is over all permutations π of {1, 2, . . . , n} that fix 1
and n. When the weights are uniformly 1, the problem reduces to
deciding if a Hamiltonian path at all.

This above expression can be evaluated within a polynomial fac-
tor of n! operations. In fact, because of certain symmetries it suffices
to examine (n − 2)! permutations, and each of these requires take
O(n) products and sums. On the other hand, it’s not trivial to iterate
over precise these permutations in time O((n − 2)!). We will nor-
mally want to avoid these considerations, since they only contribute
a polynomial factor, and write somewhat imprecisely O∗(n!), where
O∗(f (n)) means O(nc f (n)) for some constant c.

Independent set. An independent set in an n-vertex graph G = (V, E)
is a subset of vertices U ⊆ V where no edge from E has both its
enpoints in U. Such a set can be found by considering all subsets
(and checking independence of each), in time O∗(2n).

Satisfiability. The 3-Satisfiability problem is given by a Boolean for-
mula φ on variables x1, . . . , xn is on 3-conjunctive normal form if it
conists of a conjunction of m clauses, each of the form (a ∨ b ∨ c),
where each of the literals a, b, c is a single variable or the negation of
a single variable. The satisfiability problem for this class of formulas
is to decide if φ admits a satisfying assignment. This can be decided
by considering all assignments, in time O∗(2n). (Note that m can be
assumed to be polynomial in n, otherwise φ would include duplicate
clauses.)

Counting perfect matchings. A perfect matching in a graph G = (V, E)
is an edge subset M ⊆ E that includes every vertex as an endpoint
exactly once; in other words

|M| = 1
2 |V|

⋃
M = V.

In fact, famously, a matching can be found in polynomial time, so
we are interested in the counting version of this problem: how many
perfect matchings does G admit? From the definition, this still takes
O∗(2m) time. Figure 1: A bipartite graph and 2 of its

3 perfect matchings.We will look at this problem for bipartite graphs as well as for
general graphs.

The problems above are all difficult problems, hard for
complexity classes such as NP or #P, so we cannot expect to devise
algorithms that run in polynomial time. Instead, we will improve
the exponential running time. For example, for some problems we
will find vertex-exponential time algorithms, i.e., algorithms with

a taxonomic introduction to exponential time algorithms (draft) 3

running time exp(O(n)) instead of exp(O(m)) or O∗(n!) O∗(nn).
Other algorithms will improve the base of the exponent, for example
from O∗(2n) to O(1.732n).

Generating permutations and combinations

It is not completely straightforward to iterate over all subsets, k-
subsets or permutations of [n] = {1, . . . , n}. Knuth devotes over 300

pages to these questions.4 4 Donald E. Knuth, The Art of Computer
Programming, Vol. 4: Combinatorial
Algoriths, sec. 7.2.1.1–7.2.1.4. Addison–
Wesley, 2011.Subsets. If n is smaller than the number of bits in a machine word,

we can use the simple correspondance between binary numbers and
incidence vectors of subsets. The set S ⊆ [n] then corresponds to the
bit string with bi = [i ∈ S]. We can then generate all subsets of [n]
using machine arithmetic, counting from 0 to 2n. For larger n one
needs to simulate the “binary counter” logic: starting from the right,
find the first 0, flip it. If its left neighbour is a 1, proceed 0ing it and
continue to the left.

Permutations. Let (a1, . . . , an) be a permutation of [n]. Then the lexi-
cographically next permutation is given by the following procedure:

1. find the largest index i such that ai < ai+1

2. switch ai with the smallest value in (ai+1, . . . , an) larger than ai.

3. sort (ai+1, . . . , an)

Combinations. Let (a, . . . , ak) denote a k-subset of [n] in sorted order.
Starting with (1, 2, . . . , k), and ending in (n− k + 1, n− k + 2, . . . , n),
the next k-subset is given by the following procedure:

1. find the largest index i such that ai 6= n− k + i

2. increase ai by 1

3. for j = i + 1tok, set aj = ai + j− i

2 Greedy

A greedy algorithm does “the obvious thing” for a given ordering,
the hard part is figuring out which ordering. A canonical example is
interval scheduling.

In exponential time, we can consider all orderings. This leads to
running times around n! and is seldom better than brute force, so this
class of algorithms does not seem to play a role in exponential time
algorithmics. An important exception is given as an exercise.

a taxonomic introduction to exponential time algorithms (draft) 4

3 Recursion

Recurrences express the solution to the problem in terms of solu-
tions of subproblems. Recursive algorithms compute the solution by
applying the recurrence until the problem instance is trivial.

Decrease and conquer

Decrease and conquer reduces the instance size by a constant, or a
constant factor. Canonical examples include binary search in a sorted
list, graph traversal, or Euclid’s algorithm.

In exponential time, we produce several smaller instances (in-
stead of just one), which we can use this to exhaust the search space.
Maybe “exhaustive decrease and conquer” is a good name for this
variant—this way, the technique becomes an umbrella of exhaustive
search techniques such as branch-and-bound.

Q, size < n

problem P, size n

Solution to Q

Solution to P

Figure 2: Decrease and conquer with
one (left) and many (right) subprob-
lems.

3-Satisfiability. An instance to 3-Satisfiability includes at least one
clause with 3 literals. (Otherwise it’s an instance of 2-Satisfiability,
which can be solved in polynomial time.) Pick such a clause and
construct three new instances:

T?? set the first literal to true,

FT? set the first literal to false and the second to true,

FFT set the first two literals to false and the third to true,

These three possibilites are disjoint and exhaust the satisfying assign-
ments. (In particular, FFF is not a satisfying assignment.)

Each of these assignments resolves the clause under consideration,
and maybe more, so some cleanup is required. In any case, the num-
ber of free variables is decreased by at least 1, 2, or 3, respectively. We
can recurse on the three resulting three instances, so the running time
satisfies

T(n) = T(n− 1) + T(n− 2) + T(n− 3) + O(n + m) .

The solution to this recurrence is O(1.8393n). (The analysis of this
type of algorithm is one of the most actively researched topics in
exact exponential-time algorithmics and very rich.)

Independent set. Let v be a vertex of with at least three neighbours.
(If no such vertex exists, the independent set problem is easy.) Con-
struct two new instances to independent set:

G[V − v] the input graph with v removed. If I 63 v is an independent
set in G then it is also an independent set in G[V − v].

a taxonomic introduction to exponential time algorithms (draft) 5

G[V − N(v)] the input graph with v and its neighbours removed.
If I 3 v is an independent set in G, then none of v’s neighbours
belong to I, so that I − {v} is an independent set in G[V − N(v)].

These two possibilities are disjoint and exhaust the independent sets.
We recurse on the two resulting instances, so the running time is

no worse than

T(n) = T(n− 1) + T(n− 4) + O(n + m) .

The solution to this recurrence is O(1.3803n).

TSP. Galvanized by our successes we turn to TSP.
For each T ⊆ V and v ∈ T, denote by OPT(T, v) the minimum

weight of a path from s to v that consists of exactly the vertices in T.
To construct OPT(T, v) for all s ∈ T ⊆ V and all v ∈ T, the algorithm
starts with OPT({s}, s) = 0, and evaluates the recurrence

OPT(T, v) = min
u∈T\{v}

OPT(T \ {v}, u) + w(u, v) . (1)

While this is correct, there is no improvement over brute force: the
running time is given by

T(n) = n · T(n− 1)

which solves to O(n!). However, we will revisit this recurrence later.

Divide and conquer

The divide and conquer idea partitions the instance into two smaller
instances of roughly half the original size and solves them recur-
sively. Mergesort is a canonical example.

An essential question is how to partition the instance into smaller
instances. In exponential time, we simply consider all such partitions.
This leads to running times of the form

T(n) = 2nnO(1)T
(1

2 n
)
,

which is O(cn), and the space is polynomial in n. Maybe “exponen-
tial divide and conquer” is a good name for this idea.

problem P, size n

Q, size n/2 R, size n/2

Solution to Q Solution to R

Solution to P

problem P, size n

Solution to P

...

...

Figure 3: Divide and conquer with
one division (top) and an exponential
number of divisions (bottom).

TSP. Let OPT(U, s, t) denote the shortest path from s to t that uses
exactly the vertives in U. Then we have the recurrence

OPT(U, s, t) = min
m,S,T

OPT(S, s, m) + OPT(T, m, t) , (2)

where the minimum is over all subsets S, T ⊆ U and vertices m ∈ U
such that s ∈ S, t ∈ T, S ∪ T = U, S ∩ T = {m}, and |S| = b 1

2 nc+ 1,
|T| = n− |S|+ 1.

a taxonomic introduction to exponential time algorithms (draft) 6

The divide and conquer solution continues using this recurrence
until the sets U become trivial. At each level of the recursion, the
algorithm considers (n− 2)(n−2

d(n−2)/2e) partitions and recurses on two

instances with fewer than 1
2 n + 1 cities. Thus, the running time is

T(n) = (n− 2) ·
(

n− 2
d(n− 2)/2e

)
· 2 · T(n/2 + 1) ,

which solves to O(4nnlog n).
The space required on each recursion level to enumerate all par-

titionings is polynomial. Since the recursion depth is polynomial (in
fact, logarithmic) in n, the algorithm uses polynomial space.

4 Transformation

Transformations compute a problem by computing a different prob-
lem in its stead. This can be called transform-and-conquer or reduc-
tion.

For exponential time algorithms, the reductions can involve the
construction of an exponential number of instances (as in Moebius
inversion), or be of exponential size (as in finding triangles).

Perfect matchings in bipartite graphs

Consider a bipartite graph on the disjoint vertex sets L and R, where
|L| = |R|. Let A denote the biadjacency matrix of G defined as

aij =

1 , if ij is an edge ;

0 , otherwise .

Then the number of perfect matchings in G is given by the expression

∑
f : L→R

|R|

∏
i=1

ai f (i) ,

where the sum is over all bijections f from L to R. This does not give
us an interesting algorithm, because there are |R|! such bijections.

We now construct a suprising reformulation of the above expres-
sion that can be evaluated much faster.

With foresight, for S ⊆ R let h(S) denote the number of ways to
pick a neighbour in S for each vertex in L, such that each vertex in S
is chosen at least once. (Algebraically, h(S) can be given as

h(S) = ∑
f : L→S

|R|

∏
i=1

ai f (i) ,

a taxonomic introduction to exponential time algorithms (draft) 7

where the sum is over all surjective mappings from L to S.) The
number of perfect matchings is h(R). We have

∑
X⊆R

(−1)|R|−|X| ∑
S⊆X

h(S) = ∑
X⊆R

∑
S⊆X

(−1)|R|−|X|h(S)

= ∑
S⊆R

∑
X : S⊆X⊆R

(−1)|R|−|X|h(S)

= ∑
S⊆R

h(S) ∑
X : S⊆X⊆R

(−1)|R|−|X| = h(R) .

The surprising step is the last. It holds because the inner alternating
sum collapses to almost nothing:

∑
X : S⊆X⊆R

(−1)|R|−|X| =

1 , if S = R ;

0 , if S 6= R .

The first case is easy to see. The second case follows from a sim-
ple combinatorial fact, sometimes called the principle of inclusion–
exclusion:

Lemma 1 Let S and R be distinct sets with S ⊂ R. There are an equal
number of odd-sized and even sized sets X with S ⊆ X ⊆ R.

Proof. Let i ∈ R \ S. The mapping

X 7→ X⊕ {i}

establishes a bijection between the odd-sized and even-sized sets X
with S ⊆ X ⊆ R. �

We have
h(R) = ∑

X⊆R
(−1)|R|−|X| ∑

S⊆X
h(S) ,

which looks like no progress at all! The outer sum is over 2|R| terms
and the inner sum is over 2k terms, where k = |X|. Worse, each term
h(S) is defined as a sum over all surjective mappings between two
sets, which looks at least as hard to compute as the original problem.

But we can do much better, because the inner sum has a natural
combinatorial interpretation: it is the number of way in which each
vertex in L can pick a neighbour in X (withouth necessarily all neigh-
bours in X getting picked.) Thus,

∑
S⊆X

h(S) =
|R|

∏
i=1

∑
j∈X

aij .

Thus we have established Ryser’s formula, that the number of perfect
matchings is given by

∑
X⊆R

(−1)|R|−|X|
|R|

∏
i=1

∑
j∈X

aij ,

a taxonomic introduction to exponential time algorithms (draft) 8

and therefore computable in time O(2|R||R|2).
For more applications of this idea, see my survey.5 5 T. Husfeldt, Invitation to Algorith-

mic Uses of Inclusion–Exclusion, 2011,
arXiv:1105.2942.

Finding triangles

The number of triangles of undirected d-vertex graph T is given by

1
6 tr A3 ,

where A denotes the adjacency matrix of T and tr, the trace, is the
sum of the diagonal entries. To see this, observe that the ith diagonal
entry counts the number of paths of length 3 from the ith vertex to
itself, and each triangle contributes six-fold to such entries (once for
every corner, and once for every direction).

To compute A3 = A · A · A we need two matrix multiplications,
which takes time O(dω) for some ω < 3, the best current bound is
ω < 2.374.

Independent set. We want to find an independent set of size k in
G = (V, E), and now we assume for simplicity that 3 divides k.

Construct G′ = (V′, E′), where each vertex v ∈ V′ corresponds
to an independent set in G of size 1

3 k. Two vertices are joined by an
edge uv ∈ E′ if their corresponding sets form an independent set of
size 2

3 k. The crucial feature is that a triangle in G′ corresponds to an
independent set of size k in G. The graph G′ has (n

k/3) ≤ nk/3 vertices,
so the whole algorithm takes time O∗(nωk/3), rather than the obvious
(n

k).

Perfect matching The next example, for Perfect Matchings, is some-
what more intricate, and uses both transformations from this section.

We return to perfect matchings, but now in regular graphs. Let
G[n = r; m = k] denote the number of induced subgraphs of G with
r vertices and k edges. For such a graph, the number of ways to pick
1
2 n edges is kn/2, so we can rewrite

f (V) = ∑
Y⊆V

(−1)|V\Y|g(Y) =
m

∑
k=1

n

∑
r=2

(−1)rG[n = r; m = k]kn/2 .

Thus, we have reduced the problem to computing G[n = r; m = k]
for given r and k, and we’ll now do this faster than in the obvious 2n

iterations.
We are tempted to do the following: Construct a graph T where

every vertex corresponds to a subgraph of G induced by a vertex sub-
set U ⊆ V with 1

3 r vertices and 1
6 k edges. Two vertices in T are joined

by an edge if there are 1
6 k edges between their corresponding vertex

a taxonomic introduction to exponential time algorithms (draft) 9

subsets. Then we would like to argue that every triangle in T corre-
sponds to an induced subgraph of G with r edges and k edges. This,
of course, doesn’t quite work because (1) the three vertex subsets
might overlap and (2) the edges do not necessarily partition into such
six equal-sized families. Once identified, these problems are easily
adressed.

The construction is as follows. Partition the vertices of G into three
sets V0, V1, and V2 of equal size, assuming 3 divides n for readability.
Our plan is to build a large tripartite graph T whose vertices corre-
spond to induced subgraphs of G that are entirely contained in one
the Vi.

Some notation: An induced subraph of G has r1 vertices in V1, k1

edges with both endpoints in V1, and k12 edges between V1 and V2.
Define r2, r3, k2 , k3, k23, and k13 similarly. We will solve the problem
of computing G[n = r; m = k] separately for each choice of these
parameters such that r1 + r2 + r3 = r and k1 + k2 + k3 + k12 + k23 +

k13 = k. We can crudely bound the number of such new problems by
n3 + m6, i.e., a polynomial in the input size.

The tripartite graph T is now defined as follows: There is a ver-
tex for every induced subgraph G[U], provided that U is entirely
contained in one of the Vi, and contains exactly ri vertices and ki

edges. An edge joins the vertices corresponding to Ui ⊆ Vi and
Uj ⊆ Vj if i 6= j and there are exactly kij edges between Ui and Uj

in G. The graph T has at most 3 · 2n/3 vertices and 3 · 22n/3 edges.
Every triangle in T uniquely corresponds to an induced subgraph
G[U1 ∪U2 ∪U3] in G with the parameters described in the previous
paragraph.

The total running time is O∗(nωk/3) = (1.732n).

5 Iterative improvement

Iterative improvement plays a vital role in efficient algorithms and in-
cludes important ideas such as the augmentating algorithms used to
solve maximum flow and bipartite matching algorithms, the Simplex
method, and local search heuristics. So far, very few of these ideas
have been explored in exponential time algorithmics. An important
exception is a local search procedure for satisfiability.

Local search

We consider 3-Satisfiability. Start with a random assignment to the
variables. If all clauses are satisfied, we’re done. Otherwise, pick a
falsified clause uniformly at random, pick one of its literals unformly
at random, and negate it. Repeat this local search step 3n times. After

a taxonomic introduction to exponential time algorithms (draft) 10

that, start over with a fresh random assignment. This proces finds
a satisfying assignment (if there is one) in time O∗

(
(4

3)
n) with high

probability.
The analysis considers the number d of differences between the

current assignment A and a particular satisfying assignment A∗ (the
Hamming distance). In the local search steps, the probability that
the distance is decreased by 1 is at least 1

3 (namely, when we pick
exactly the literal where A and A∗ differ), and the probability that
the distance is increased by 1 is at most 2

3 . So we can pessimistically
estimate the probability p(d) of reducing the distance to 0 when we
start at distance d (0 ≤ d ≤ n) by standard methods from the analysis
of random walks in probability theory to

p(d) = 2−d.

(Under the rug one finds an argument that we can safely terminate
this random walk after 3n steps without messing up the analysis too
much.)

The probability that a ‘fresh’ random assignment has distance d to
A∗ is (

n
d

)
2−n,

so the total probabilty that the algorithm reaches A∗ from a random
assignment is at least

n

∑
d=0

(
n
d

)
2−n−d =

1
2n

n

∑
d=0

(
n
d

)
2−d =

1
2n (1 +

1
2)

n = (3
4)

n.

Especially, in expectation, we can repeat this proces and arrive at A∗

or some other satisfying assignment after (4
3)

n trails.

6 Time–Space tradeoffs

Time–space tradeoffs avoid redundant computation, typically “re-
computation,” by storing values in large tables. In particular, this
inludes dynamic programming.

Dynamic programming over the subsets

Dynamic programming consists of describing the problem (or a more
general form of it) recursively in an expression that involves only few
varying parameters, and then compute the answer for each possible
value of these parameters, using a table to avoid redundant computa-
tion. A canonical example is Knapsack.

In exponential time, the dynamic programme can consider all
subsets (of vertices, for example). This is, in fact, one of the earliest

a taxonomic introduction to exponential time algorithms (draft) 11

applications of dynamic programming, dating back to Bellman’s
original work in the early 1960s.

TSP. We turn to the Traveling Salesman Problem and show how to
solve it in O(2nn2). We go back to the decrease and conquer recur-
rence

OPT(T, v) = min
u∈T\{v}

OPT(T \ {v}, u) + w(u, v) .

The usual dynamic programming trick kicks in: The values OPT(T, v)
are stored a table when they are computed to avoid redundant re-
computation, an idea sometimes called memoisation. The space and
time requirements are within a polynomial factor of 2n, the number
of subsets T ⊆ V. Figure 4 shows the first few steps.

0 4 9

4 2 9

5 7 12

11 17 9

10 9 9

10 7 10

14 7 11

12 9

Figure 4: The first few steps of filling
out a table for OPT(T, v) for the ex-
ample graph. The starting vertex s is
at the top, v is circled, and T consists
of the black vertices. At this stage,
the values of OPT(T, v) have been
computed for all |T| ≤ 3, and we just
computed the value 9 at the bottom
right by inspecting the two underlined
cases. The “new” black vertex has been
reached either via a weight 2 edge, for a
total weight of 2 + 7, or via a weight 1

edge for a total weight of 12 + 1. The
optimum value for this subproblem is 9.

It is instructive to see what happens if we start with the divide and
conquer recurrence instead:

OPT(U, s, t) = min
m,S,T

OPT(S, s, m) + OPT(T, m, t) ;

recall that S and T are a balanced vertex partition of U. We build a
large table containing the value of OPT(X, u, v) for all vertex subsets
X ⊆ V and all pairs of vertives u, v. This table has size 2nn2, and
the entry corresponding to a subset X of size k can be computed by
accessing 2k other table entries corresponding to smaller sets. Thus,
the total running time is within a polynomial factor of

n

∑
k=0

(
n
k

)
2k = (2 + 1)n = 3n.

We observe that the benefit from memoisation is smaller compared to
the decrease and conquer recurrence, which spent more time in the
recursion (“dividing”) and less time assembling solutions (“conquer-
ing”).

Dynamic programming over a tree decomposition

The second major application of dynamic programming is over the
tree decomposition of a graph. See, e.g., chapter 11 in the textbook by
Kleinberg and Tardos.

Meet in the middle

Consider again the Traveling Salesman Problem. If the input graph
is 4-regular (i.e., every vertex has exactly 4 neighbours), it makes
sense to enumerate the different Hamiltonian paths by making one
of three choices at every vertex, for a total of at most O∗(3n) paths,

a taxonomic introduction to exponential time algorithms (draft) 12

instead of considering the O∗(n!) different permutations. Of course,
the dynamic programming solution is still faster, but we can do even
better using a different time–space trade-off.

We turn again to the “divide and conquer” recurrence,

OPT(U, s, t) = min
m,S,T

OPT(S, s, m) + OPT(T, m, t) .

This time we evaluate it by building a table for all choices of m and
T 3 t with |T| = n − b 1

2 nc. No recursion is involved, we brutally
check all paths from m to t of length |T|, in time O∗(3n/2). After this
table is completed we iterate over all choices of S 3 s with |S| =
b 1

2 nc + 1 the same way, using 3n/2 iterations. For each S and m we
check our dictionary for the entry corresponding to m and V − S.

It is instructive to compare this idea to the dynamic programming
approach. There, we used the recurrence relation at every level. Here,
we use it only at the top. In particular, the meet-in-the-middle idea is
qualitatively different from the concept of using memoisation to save
some overlapping recursive invocations.

7 Exercises

A graph can be k-coloured if each vertex can be coloured with one of
k different colours such that no edge connects vertices of the same
colour.

This set of exercises asks you do solve the k-colouring problem in
various ways for a graph with n vertices and m edges

Exercise 1. Using brute force, in time O∗(kn).

Exercise 2. Using a greedy algorithm, in time O∗(n!).

Exercise 3. Using decrease-and-conquer, in time in time O∗(((1 +√
5)/2)n+m). Hint: That’s the solution to the “Finonacci” recurrence

T(s) = T(s− 1) + T(s− 2).

Exercise 4. Using divide-and-conquer, in time O∗(9n).

Exercise 5. Using Moebius inversion, in time O∗(3n). Hint: ∑n
i=0 (

n
i)2

i =

(2 + 1)n.

Exercise 6. Using dynamic programming over the subsets, in time
O∗(3n).

Exercise 7. Using Yates’s algorithm and Moebius inversion, in time
O∗(2n).

Exercise 8. Using a transformation to counting triangles, count the
nuber of 2-colourings in time O∗(2ωn/3).

	Brute force
	Greedy
	Recursion
	Transformation
	Iterative improvement
	Time–Space tradeoffs
	Exercises

