
Exact Algorithm for Independent Set
2012-10-17, rev. 2367ec4

Independent Set

Consider an undirected unweighted graph G = (V, E) and set
n = |V|. The Maximum Independent Set problem (MIS) is to find
a subset S of the vertices of largest size such that no pair of different
vertices in S are connected by an edge in G. The size of the largest
independent set in G is denoted by α(G).

MIS is NP-hard, but we will nevertheless implement algorithms
that compute α(G) for small instance graphs G and argue both em-
pirically and theoretically about their running time.

Notation. For a subset X ⊆ V, we will by G[X] denote the graph
induced by X, the graph that remains if we keep only the vertices
in X and the edges among them. For a vertex v, we denote by N[v]
its closed neighborhood, i.e. v and all its neighbors. We will slightly
abuse set difference and union notation by using − and + instead.
X + Y − Z for three sets X, Y, Z are those elements that are in either
X or Y but not in Z.

Algorithm R0

Consider the following simple recursive algorithm working on an
input graph G = (V, E). (Call it Algorithm R0):

1. If the input graph is empty, return 0.

2. If the input graph G has a vertex v without any neighbors, return
1 + R0(G[V − v]). See fig. 1.

v v

Figure 1: A graph with an isolated node
v. We can safely say v is in the MIS, and
continue without it.

3. Otherwise find a vertex u of maximum degree (if there are several
any will do) and return

max(1 + R0(G[V − N[u]]), R0(G[V − u])) ,

keeping in mind that that N[u] includes u. See fig. 2.
u

u u

Figure 2: Vertex u has highest degree.
Left branch: Assume u is in the MIS –
remove u and its neighbors, since the
neighbors can no longer be in the MIS.
Right branch: Assume u not in the MIS
– just remove u.

To see why algorithm R0 correctly computes α(G), note that if there
is an isolated vertex v, a maximum size independent set will always
contain it (Row 2). On the other hand, if there are no isolated ver-
tices, we can pick a vertex u of maximum degree and branch on the
two cases that u is in the maximum independent set (in which case
we discard all vertices adjacent to u from G), or that u is not in the
maximum independent set (Row 3).

exact algorithm for independent set 2

Inputs

The data directory contains eleven random input instances of in-
creasing size. All input files are text files on the following format
describing the undirected graph G = (V, E): First comes a positive
integer n giving the number of vertices in the graph. Next follow n
rows each containing n 0/1-entries describing the so-called adjacency
matrix of the graph. The jth integer at the ith row is a 1 if and only if
ij ∈ E.

file |V| α(G)
g30.in 30 14

g40.in 40 16

g50.in 50 19

g60.in 60 20

g70.in 70 22

g80.in 80 24

g90.in 89 26

g100.in 100 27

g110.in 110 29

g120.in 120 30

g130.in 130 ?

Deliverables

1. Implement algorithm R0 and run it on the instances provided in
data/g30.txt, data/g40.txt, ..., data/g60.txt.

Count the number of recursive calls of R0 for each instance and
plot the logarithm of that number vs the instance vertex size.

What is the time complexity dependence on n?

Use whatever programming language and libraries you want, but
make sure that your code is not unnecessarily long.

First implement the algorithm by making a new copy of the graph
at each recursive call, just to make it as easy as possible to verify
that the algorithm works as intended. Once you get this to work,
you can pay attention to the problem of efficiently representing a
graph through the recursion so that it is easy to remove (and add,
see below) vertices to it by temporarily modifying the graph at
hand.

Attach a printout to the report or have it checked by your lab
assistant.

2. Add the following line to algorithm R0 after its first line checking
for emptiness, and call the resulting algorithm R1 (replacing the
recursive calls to R0 by R1):

If G has a vertex v of degree 1 return 1 + R1(G[V − N[v]]).

Before you write any code – draw (by hand) pictures such as those
above to illustrate what happens with your graph when you run
algorithm R1 on it. Use the pictures when you implement the
algorithm, and when you argue the correctness of it, i.e., when you
motivate why it always computes α(G). You are supposed to bring
your pictures and show them to your lab assistant.

After you have implemented algorithm R1, run it on the instances
data/g30.in, data/g40.in, . . ., data/g100.in.

Count the number of recursive calls of R1 for each instance and
plot the logarithm of that number vs the instance vertex size.

exact algorithm for independent set 3

What is the time complexity dependence on n?

3. Add the following line to algorithm R1 after its first line checking
for emptiness, and call the resulting algorithm R2 (replacing the
recursive calls to R1 by R2):

If G has a vertex v with exactly two neighbors u, w, then if uw ∈ E
return 1 + R2(G[V − N[v]]), else add a new vertex z to the graph
with edges to every neighbor of u and w, except v, and return
1 + R2(G[V − N[v] + z]).

If G doesn’t have a vertex v with exactly two neighbors, then we
proceed just as in algorithm R1.

Draw pictures such as those above to illustrate algorithm R2, and
use the pictures both when you implement it, and when you argue
the correctness of it, i.e., motivate why it always computes α(G).

Run algorithm R2 on the instances data/g30.in, data/g40.in, . . .,
data/g120.in.

Count the number of recursive calls of R2 for each instance and
plot the logarithm of that number vs the instance vertex size.

What is the time complexity dependence on n?

4. Fill out the report on the next page; you can just use the LATEX
code if you want.

exact algorithm for independent set 4

Independent Set Lab Report

by Alice Cooper and Bob Marley1 1 Complete the report by filling in your
names and the parts marked [. . .].
Remove the sidenotes in your final
hand-in.Correctness

Algorithm R1 correctly computes α(G) because [. . .].2 2 Fill in the [. . .] with an argument why
R1 indeed computes the size of the
maximum independent set. Use as little
mathematical notation as necessary. A
“proof” is whatever convinces me.

Algorithm R2 correctly computes α(G) because [. . .].

Empirical Running time

Experiments. 3 3 Plot the logarithm of the number of
recursive calls for the three algorithms
R0, R1, and R2, in a combined image.

Use whatever software you like to
produce the image; the placeholder
image on the left is constructed in the
LATEX source, and should give you a
feel of what the result could look like
(with completely different values on the
y-axis.)

20 40 60 80 100 120
0

100

200

300

400

n

lo
g

re
cu

rs
iv

e
ca

lls R0

R1

R2

The running times of algorithm R0, R1, and R2 appear to be
[. . .], [. . .], and [. . .], respectively.4. 4 Replace the [. . .] by a function of n

on the form O(cn). Use your measure-
ments on the run time to estimate c in
the three cases.Theoretical Upper Bound

Denote be Ti(n) the worst runtime of algorithm Ri on any graph on n
vertices. Note that Ti(n) is a non-decreasing function of n. For R0 we
can conclude that

T0(n) ≤ max(T0(n− 1), T0(n− 1) + T0(n− 1− dmax))

≤ T0(n− 1) + T0(n− 2)

with dmax the degree of the vertex we branch on. The hard part is
the one when there are no isolated vertices, in which case the vertex
u we are branching on has at least one neighbor.

For R1 we have that5 5 Derive similar recursive bounds on
T1(n) and T2(n).T1(n) = [. . .]

For R2 we have that
T2(n) = [. . .]

Worst Case Upper Bound The running times of algorithm R0, R1, and
R2 are in [. . .], [. . .], and [. . .], respectively.6. 6 Replace the [. . .] by a function of

n on the form O(cn). Use the re-
cursive bounds you’ve derived
above. Hint: A recurrence of the form
T(n) ≤ ∑k

i=1 aiT(n − i) is called a
linear homogeneous recurrence relation
with constant coefficients. To solve it, you
can set T(n) ≥ cn where c is the largest
real root to the characteristic polynomial
xk −∑k

i=1 aixk−i .

exact algorithm for independent set 5

Optional

Add more “algorithmic intelligence” to the algorithm R2 in order to
tackle the instance in data/g130.in. Try to make it run in less than
10,000,000 recursive calls.

Suggestions for possible speed-ups:

• Is there some clever (branching) rule for vertices of degree 3?

• Can we use the information of the largest found independent set
so far, to reduce further computation time?

• What if the graph gets disconnected?

exact algorithm for independent set 6

Perspective

This lab establishes medium skills in recursive algorithms implemen-
tation, and simple means to analyze their running time.

The algorithms investigated here can hardly be called “advanced”,
but the main message is that no one knows how to do significantly
better with any other means. Indeed, the strongest theoretical worst
case run time bound for maximum independent set to date is ob-
tained by a computerized calculation on a huge set of branching
reduction rules, just like the ones we’ve looked at here [Robson. Al-
gorithms for maximum independent sets. Journal of Algorithms,
7(3):425–440, 1986]. For a much cleaner analysis with just a few rules,
obtaining a comparative bound, see [Fomin, Grandoni, and Kratsch.
A measure & conquer approach for the analysis of exact algorithms,
JACM 56 (5), article No. 25, 2009].

	Independent Set
	Independent Set Lab Report
	Optional
	 Perspective

