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Maximum Cut

Consider an undirected graph G = (V, E) with positive edge weights
w(e) (e ∈ E). Set n = |V| and m = |E|. The Maximum Cut problem
(Maxcut) is to find a partition of the vertices with the largest total
weight of the edges “crossing” the partition, i.e., maximising the
value of

c(A) = ∑
(u,v)∈E,u∈A,v/∈A

w(u, v)

over all A ⊆ V.
Maxcut is NP-hard, so we have little hope of writing an algorithm

that solves arbitrary Maxcut instances optimally.

Algorithm R

Consider the following simple randomized algorithm (call it Algo-
rithm R): Let A be a random subset of V constructed by flipping a coin
r(v) ∈ {0, 1} for every vertex v ∈ V and setting v ∈ A if and only if
r(v) = 1.

Inputs

The data directory contains two input instances:

pw09_100.9.txt: A random instance with |V| = 100 and |E| = 4455.
The best cut in this instance is 13658.1 1 A. Wiegele, Biq Mac Library - A

collection of Max-Cut and quadratic 0-1
programming instances of medium size,
2007.

matching_1000.txt: A disjoint union of 500 edges with unit weight.

The input format is straightforward: the first line contains n and
m; every following line describes an edge in the format first vertex,
second vertex, weight. All weights are integers, vertices are num-
bered 1, 2, . . . , n.

Deliverables

1. Implement algorithm R and run it on the dataset provided in the
data directory. Use whatever programming language and libraries
you want, but make sure that your code is short and crisp; my
own solution takes 25 lines. Attach a printout to the report or have
it checked by your lab assistant.

2. Fill out the report on the next page; you can just use the LATEX
code if you want.
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Maxcut Lab Report

by Alice Cooper and Bob Marley2 2 Complete the report by filling in your
names and the parts marked [. . .].
Remove the sidenotes in your final
hand-in.Running time

The running time of algorithm R is [. . .]3. 3 Replace [. . .] by a function of n and/or
m. You can use asymptotic notation.
This is supposed to be easy.

Randomness

Algorithm R uses [. . .]4 random bits. 4 Replace [. . .] by a function of n and/or
m. Do not use asymptotic notation. This
is supposed to be easy.

Solution quality

Experiments.

1. For the input file pw09_100.9.txt with t = 100 runs, we found
an average cutsize of C = [. . .], roughly [. . .]% of the optimum
OPT = 13658. The distribution of cutsizes looks as follows:5 5 Display your cutsizes as a histogram.

Use whatever software you like to
produce the image; the placeholder
image on the left is constructed in the
LATEX source.
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2. For the input file matching_1000.txt [. . .]6 6 Perform the same analysis for match-
ing_1000.txt. This involves thinking to
determine OPT.

Analysis of performance guarantee Clearly, Algorithm R performs
quite badly on input matching_1000.txt. We will show that it can
perform no worse than that, i.e., we will establish that in expectation,
the cutsize C satisfies C ≥ [. . .] ·OPT.7 7 Replace [. . . ] by the right constant

We will view C as a random variable that gives the size of the cut
defined by the random choices. Let W denote the total weight of the
edges of G, i.e.,

W = ∑
e∈E

w(e) .

Then,
E[C] = 1

2 ·W . (1)

To see this, define the indicator random variable Xuv for every
edge uv ∈ E as follows. Set Xuv = 1 if uv crosses the cut, i.e., u ∈ A
and v /∈ A or u /∈ A and v ∈ A. Otherwise, Xuv = 0.

Then, Pr(Xuv = 1) = [. . .]. Now, E[C] = [. . .] Finally, we have
E[C] ≥ [. . .] ·OPT because clearly [. . .].8 8 Fill in the missing blanks in this para-

graph. Your calculations and arguments
need to include phrases like “because
BLA and BLA are independent” or
“disjoint,” and “by linearity of expec-
tation” and “because the weights are
positive.”
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Optional: Derandomising Algorithm R

Algorithm L

We now reduce the number of random bits used by the algorithm to
log n using a simple pseudorandom generator.

Let k = dlog(n + 1)e and flip k coins b1, . . . , bk. There are 2k −
1 ≥ n different ways of choosing a nonempty subset S ⊆ [k] of the
coins. Each of these ways defines a random bit rS =

⊕
i∈S bi. (Here,

⊕ denotes exclusive or.) This gives a total of n random bits. These
random bits are not as high-quality as the original k bits, but they
retain the crucial property of pairwise independence: If S 6= T then

Pr(rS 6= rT) = [. . .], .

Extend Algorithm R using this idea; call the resulting algorithm L
(for logarithmic randomness).

Algorithm Z

For our final trick, we let the random bits disappear completely: since
Algorithm L uses only k bits of randomness, we can iterate over all
coin flips—there are only 2k, which is polynomial (in fact, linear) in
n. Extend algorithm L using this idea; call the resulting algorithm Z
(for zero randomness). The running time of Z is O([. . .]).
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Perspective

This lab establishes minimal skills in algorithms implementation,
probabilistic analysis of algorithms (independence, linearity of ex-
pectation, and in particular the trick of computing an expectation
using indicator random variables), and approximation guarantees (in
particular, finding upper and lower bounds by exhibiting a concrete
“bad instance” and a comparison to a hypothetical optimum, respec-
tively). The histogram aims to establish the intuition that measure is
concentrated around its expectation.

To establish that Maxcut is NP-hard one reduces from NAE-Sat,
a reduction that can be found in many places9 Recall that the re- 9 C. Moore and S. Mertens, The Nature of

Computation, Oxford University Press,
2011, p. 146.

lated problem Minimum Cut is easy because of the max flow–min cut
theorem. A moment’s thought should convince you that as soon as
negative weights are allowed, the two problems are the same (and
both are hard). Algorithm R doesn’t work at all for negative weights.

Algorithm R is a classical randomised approximation algorithm,
its origins seem to be shrouded in the mists of time. The determin-
istic algorithm of Sahni and Gonzales10 can be viewed as a deran- 10 S. Sahni and T. Gonzalez. P-complete

approximation problems. J. Assoc.
Comput. Mach., 23(3):555–565, 1976.

domisation of R using the method of conditional expectations. These
algorithms were best knows until the breakthrough result of Goe-
mans and Williamson,11 which improved the approximation factor 11 M. X. Goemans and D. P. Williamson.

Improved approximation algorithms for
maximum cut and satisfiability prob-
lems using semidefinite programming.
J. Assoc. Comput. Mach., 42(6):1115–1145,
1995.

to 0.87856. Håstad has shown that no algorithm can approximate the
maxcut better than 16/17 ∼ 0.941176 unless P equals NP. Khot has
shown that the Goemans–Williamson bound is essentially optimal
under the Unique Games Conjecture.

Algorithm L can also be viewed as an application of pairwise inde-
pendent hash functions.
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