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Consider an finite, directed multigraph G = (V, E) without self-
loops, as in Fig. 1. We will understand G as the hyperlink structure
of the web pages described by V; an arc from vertex u to vertex v
describes a hyperlink from page u to page v.

The random surfer model is a stochastic process that aims to rank
the relevance of a these pages. The states of this process are the ver-
tices V. With good probability «, the process picks an outgoing edge
at random and moves to that page. If there are no outgoing edges,
the surfer picks a random page from V instead. (Note that outgoing
edges are counted with multiplicities, so from vertex o in the exam-
ple, the chance of going to 1 is twice that of going to 2.) Alternatively,
with probability (1 — &), the surfer becomes bored and moves to a
random page from V instead. The probability « is called the damping
factor; a typically value that works well for web pages is « = %.

This process is a finite, irreducible, and ergodic Markov chain. Its
stationary distribution describes the page rank of each vertex. The
contribution of Serge Brin and Larry Page was to realise that this
value gives a good measure of the relevance of a web page, which is
the main idea behind the search engine Google.

Files

Vertex names are integers V = {0,...,n — 1}. Input files contain
|V|, followed by u and v for each (u,v) € E. The files are in the data
directory are:

three.txt The g-vertex graph from Fig. 1.

tiny.txt The 5-vertex graph from §1.6 from Sedgewick and Wayne.*
medium.txt The 50-vertex graph ibid.
wikipedia.txt The 11-vertex graph from Wikipedia’s PageRank article.?

p2p-Gnutellao8-mod.txt A 6301-vertex graph describing a file sharing
network. Vertices represent hosts in the Gnutella network topol-
ogy and edges represent connections between the Gnutella host,
collected 8 August 2002.3

Deliverables

1. Implement a simulation of the random surfer model. Start in
vertex o0 and follow the rules for a given number of iterations read
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Figure 1: A directed multigraph.
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Figure 2: Input file for the graph in
Fig. 1.

*R. Sedgewick and K. Wayne, Pro-
gramming in Java: An Interdisciplinary
Approach, Addison Wesley, 2007.

> “PageRank.” Wikipedia, The Free
Encyclopedia. Wikimedia Foundation,
Inc. Accessed 16 Sep 2012.

3 Modified from the Stanford Uni-
versity SNAP library, original file

at snap.stanford.edu/data/p2p-
Gnutellao8.html. Sources: J. Leskovec,
J. Kleinberg and C. Faloutsos. Graph
Evolution: Densification and Shrink-

ing Diameters. ACM Transactions on
Knowledge Discovery from Data (ACM
TKDD), 1(1), 2007. M. Ripeanu and I.
Foster and A. lamnitchi. Mapping the
Gnutella Network: Properties of Large-Scale
Peer-to-Peer Systems and Implications for
System Design. IEEE Internet Comput-
ing Journal, 2002.
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from the command line. Count the number of times each vertex is
visited and print the relative frequencies.

2. Solve the exact same problem using linear algebra instead of sim-
ulation. That is, construct the transition probability matrix P and
compute pP" for some sufficiently high r (read from the command
line) and some initial vector p of your choice. In fact, we're ap-
proximating the dominant left eigenvector, i.e., a vector satisfying
pP = p. There are (at least) 3 ways of computing pP’":

(a) Let pgp=p. Foreachi=1,...,mlet p; = p;_1P. Return p,.

(b) Compute Q = P" = P-P--- P using r — 1 matrix products.
Return pQ.

(c) Compute P’ by iterated squaring. Assume r is a power of 2.
Set Qo = Pand fori =1,...,logr compute Q; = Ql{l. Return
leogr~

Pick the one you think is fastest or easiest to implement for the
small instances.

However, to attack an instance of nontrivial size, you need to ex-
ploit the structure of the transition matrix. (Unless you like wait-
ing a lot.) Let A denote the adjacency matrix of G. Then we have
the hyperlink matrix H defined as H;; = A;;/ deg(i). Let D denote
the matrix where D;; = 0 if deg(i) > 0 and D;; = 1/n if deg(i) = 0.

Then,
—

1
P=a(H+D)+ 1,

where 1 is the |V| x |V| all-1s matrix. In particular,
1—-«a
pP = apH + apD + — L

All three of these vector-matrix products are simpler to com-
pute: all columns in D are identical, all columns in 1 are identical,
and H is sparse (so you don’t store is as a square matrix of size
O(|V|?); just as a list of O(|E|) nonzero values). Oh, and if you
really just wrote code to compute the dot product between p and
an all-1s vector, this is a good time for a break.

3. Fill out the report.
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Transition probabilities

The transition matrix for the graph described in three.txt is>

6 m 1
1 1/e -2
b= 10 /
and its 1oth power is
1
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The transition matrix P can be broken down into P = a(H + D) +

=21, where H=[...]and D = [..].

Results

The following table gives the top hits, i.e., the 5 first vertices of each
85

graph sorted by page rank, using & = {5;-
three.txt 2 (36.6%) 1 (27.5%) 0 (18.4%) 3 (17.3%)
tiny.txt [...]
medium.txt
wikipedia.txt
p2p-Gnutellao8-mod.txt

The following table gives the number of random walk steps and
(scalar) multiplications needed for each graph until the results were
stable to within 2 decimal places.

Graph # transitions  # multiplications
three.txt 54,325
tiny.txt

medium.txt
wikipedia.txt
p2p-Gnutellao8-mod.txt

Optional

Build a time machine, fly back to the early 1990s. Start a search en-
gine company based on this idea.
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¢ Complete the report by filling in your
names and the parts marked |...].
Remove the sidenotes in your final
hand-in.
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>Fill in the right values. Set « = 13-
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Perspective

For more thorough introduction to the mathematics behind this

model, see David Austin, How Google Finds Your Needle in the Web’s

Haystack, American Mathematical Society Feature Column, 2006.° ¢ www.ams.org/samplings/ feature-
The original paper is Sergey Brin, Lawrence Page, The anatomy column/fcarc-pagerank, retrieved 20

Sep 2012.
- ine7 i i
of a large-scale hypertextual Web search engine?, which also mentions » Computer Networks and

a bit about the data structure used for storing web page content. A ISDN Systems, 33: 107-17, 1998. info-

different model for establishing web page relevance was established lab.stanford.edu/pub/papers/google.pdf

by Kleinberg around the same time as PageRank.8 8 Kleinberg, Jon (1999). Authoritative
sources in a hyperlinked environment.
Journal of the ACM 46 (5): 604—632.
doi:10.1145/324133.324140.
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