
Exploring Open Source Software as an

Enabler for Open Innovation in

Software-Intensive Organizations

Hussan Munir

Licentiate Thesis, 2015

Department of Computer Science

Lund University

ii

Licentiate Thesis 3, 2015
ISSN: 1652-4691

Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: hussan.munir@cs.lth.se
WWW: http://cs.lth.se/hussan_munir

Printed in Sweden by Tryckeriet i E-huset, Lund, 2015

c© 2015 Hussan Munir

ABSTRACT

Background: Open Innovation (OI) has attracted scholarly interest from a wide
range of disciplines since its introduction by Henry Chesbrough in 2003. How-
ever, OI remains unexplored for software-intensive organizations and its potential
impact on the organization’s innovative performance. There are many ways of en-
abling OI in software-intensive organizations and Open Source Software (OSS) is
a one example.
Aim: The aim is to investigate how OSS projects enables innovation for organi-
zation’s proprietary solutions. Specifically, OI needs to be explored at the project
level instead of the firm’s level to identify its potential impact on the firm’s in-
novative performance. Consequently, we can eradicate other confounding factors
that may or may not contribute to firms innovative performance thereby, making
it difficult for the researchers to understand the impact of OI on firms innovative
performance.
Research Methodology: The thesis followed an empirical approach and the opted
research methodology encompasses a systematic mapping study and a survey fol-
lowed by two case studies. We investigated OI by studying OSS projects namely
Jenkins and Gerrit.
Results: Start-ups have higher tendency to adopt OI compared to market leading
firms and too open behavior from incumbents may have negative impact on the
firm’s innovative performance. Moreover, the case company [Sony Mobile] set up
a Tools department to work with communities, which lead to more inner source
initiatives in other units of Sony. However, the project openness remains limited
to the non-competitive tools which is not the direct source of revenue. The whole
transition from Closed Innovation to Open Innovation model was a paradigm shift
to get close to Google’s tools chain, driven bottom up by engineers with the sup-
port of management. Moreover, OI testing process does not strictly adhere to
standard Software Engineering testing process. Both requirements and issues are
prioritized based on the most pressing needs of an organization.
Conclusion: As a result of adopting OI, the case company freed-up developers
time, better quality assurance, faster releases and upgrades. For adopters of OI, it
should be used as a complementary approach to speed up the firms internal inno-
vation processes rather than replacing them.

ACKNOWLEDGEMENTS

This work was funded by Synergies project, grant 621-2012-5354 from the Swedish
Research Council.

First and foremost, I want to thank the Almighty Allah (God) because he has
graced my life with opportunities that I know are not of my hand or of any other
human hand. He has always shown me the way through crests and troughs of life
and he is the one I always look up to.

I submit my highest appreciation to my supervisors Prof. Dr. Per Runeson
and Dr. Krzysztof Wnuk for their patience, immense knowledge and continuous
support. I could not have imagined having better supervisors and mentors for my
ongoing PhD. study. I am also indebted to Dr. Kai Petersen for kick starting my
research career prior to starting my PhD. Sony Mobile Lund also deserves a lot of
credit for sharing empirical data to make my research industry relevant.

I am also thankful to all of the Department of Computer Science faculty mem-
bers and the Software Engineering Research Group for their help and support. In
particular, I would like to thank Johan Linåker for our ongoing research collabo-
ration and amusing conversations both on and off the work. Furthermore, it is also
impossible to have a good week at work without having a Sushi with Alma and
Mehmet.

All my academic growth would not have been possible without the support
of my younger brother and an elder sister. She played a special role in my early
educational career when I needed the encouragement and self-confidence. Last
but not least, I am eternally grateful to my parents for the disciplined childhood,
sacrifices, unceasing encouragement, selfless support and attention throughout my
life. I and you (Mom and Dad) know that your kid would not have come that far
in his life without you.

Hussan Munir

LIST OF PUBLICATIONS

In the introduction chapter of this thesis, the included and related publications
listed below are referred to by Roman numerals.

Publications included in the thesis
I Open Innovation in Software Engineering: A Systematic Mapping Study

Hussan Munir, Krzysztof Wnuk and Per Runeson
Empirical Software Engineering, Pages 1-40, 2015.

II A Survey on the Perception of Innovation in a Large Product-focused
Software Organization
Johan Linåker, Hussan Munir, Per Runeson, Björn Regnell, Claes Schrewelius
6th International Conference on Software Business-ICSOB, 2015.

III Open Innovation through the Lens of Open Source Tools: An exploratory
case study at Sony Mobile
Hussan Munir, Johan Linåker, Krzystof Wnuk, Per Runeson and Björn Reg-
nell
Submitted to a Software Engineering Journal, 2015 (Under review).

IV Software Testing in Open Innovation: An exploratory case study of Ac-
ceptance Test Harness for Jenkins
Hussan Munir, Per Runeson
Proceedings of the 2015 International Conference on Software and System
Process (ICSSP).

Related Publications
V Considering Rigor and Relevance When Evaluating Test Driven Devel-

opment: A Systematic Review
Hussan Munir, Misagh Moayyed, Kai Petersen
Information and Software Technology., vol. 56, no. 4, Pages 375-394, 2014.

viii

VI An Experimental Evaluation of Test Driven Development vs. Test-last
Development with Industry Professionals
Hussan Munir, Krzysztof Wnuk, Kai Petersen and Misagh Moayyed
Proceedings of the 18th International Conference on Evaluation and As-
sessment in Software Engineering EASE 2014.

ix

Contribution statement
All papers included in this thesis have been co-authored with other researchers.
The authors’ individual contributions to Papers I-IV are as follows:

Paper I
For Paper I Hussan Munir was the lead author. He designed and executed the study
followed by a validation and paper review from Dr. Krzysztof Wnuk and Prof. Per
Runeson. Hussan Munir was responsible for data collection and analysis. More-
over, Dr. Krzysztof Wnuk was involved in the screening of studies extracted from
databases.

Paper II
Johan Linåker and Hussan Munir were responsible for writing the paper after per-
forming the analysis of data. Dr. Krzysztof Wnuk and Prof. Per Runeson were
involved in the initial planning and distribution of survey. The results were than
reviewed by the all four authors.

Paper III
Hussan Munir is the first author with the main responsibility for the research effort
together with Johan Linåker. Hussan Munir and Johan Linåker wrote a majority
of the text after performing the data mining and data analysis, and the co-authors
contributed with constructive reviews. Dr. Krzystof Wnuk was also involved in
conducting the interviews with industry professionals.

Paper IV
Paper IV was performed by Hussan Munir with Prof. Per Runeson. Hussan Mu-
nir was responsible for the study design, data collection, analysis of data, and did
most of the writing. Prof. Per Runeson provided feedback during the study and
reviewed the paper.

CONTENTS

Introduction 1
1 Introduction . 1
2 Related work and terminology 3
3 Research goals . 4
4 Research methodology . 6
5 Results and synthesis . 8
6 Ethical aspects and threats to validity 15
7 Future work . 16

Included papers 19

I Open Innovation in Software Engineering: A Systematic Mapping
Study 21
1 Introduction . 22
2 Related work . 23
3 Research methodology . 28
4 Results and analysis . 34
5 Discussion . 55
6 Implications for Research and Practice 58
7 Conclusions . 60

Appendix A Rigor and Relevance Criteria 61
1 Rigor . 61
2 Relevance . 62

Appendix B Database search strings 65

II A Survey on the Perception of Innovation in a Large Product-focused
Software Organization 67
1 Introduction . 67
2 Related work . 69

xii CONTENTS

3 Methodology . 70
4 Results . 73
5 Conclusions . 81

III Open Innovation through the Lens of Open Source Tools: An ex-
ploratory case study at Sony Mobile 83
1 Introduction . 84
2 Related work . 86
3 Case study design . 88
4 Quantitative analysis . 97
5 Qualitative analysis . 100
6 Discussion . 109
7 Conclusion . 117

IV Software Testing in Open Innovation: An Exploratory Case Study of
the Acceptance Test Harness for Jenkins 119
1 Introduction . 119
2 Research Design . 120
3 Results and Analysis . 122
4 Conclusions . 127

Bibliography 129
References . 132

INTRODUCTION

1 Introduction

Open innovation (OI) is an emerging management paradigm which originated
from high technology industry practices in the US and Japan [23]. OI can be
traced back to Allen’s [7] collective invention in the 19th century. Two decades af-
ter Allen’s paper from 1983, Henry Chesbrough coined the term Open Innovation
as “a paradigm that assumes that firms can and should use external ideas as well
as internal ideas, and internal and external paths to market, as they look to ad-
vance their technology”. In Fig.1, the dotted line in the funnel shows the boundary
of the firm where ideas can seep in and out. Ideas can originate from inside the
firm’s research process, but some of ideas may seep out of the firms, either in the
research stage or later in the development stage. One of the typical examples of
idea leakage is a start-up company, often initiated by some of the company’s own
personnel. Ideas can also start outside the firm’s own labs and can move inside.

As the world moves towards the Knowledge Society [38], utilizing knowledge
and ideas from both inside and outside of an organization becomes more important
than ever. Therefore, OI can be analyzed and researched from the various man-
agement perspectives: strategic positioning, business models, value chain, know-
ledge creation and core competencies. OI initiated an unabated interest among
researchers in innovation management [68], economics, psychology, sociology,
and also Software Engineering [136]. The work initiated by Chesbrough inspired
both scholars and practitioners to rethink the design of the innovation strategies in
a networked environment [68]. OI encompasses various forms of knowledge trans-
fer such as inbound (outside-in knowledge), outbound (inside-out knowledge), and
coupled process (outside-in and inside-out knowledge) [50].

The novelty of OI was questioned by an argument that closed innovation might
have been the exception in the history, characterized mostly by open innovation
practices [104]. In response, Chesbrough proposed Erosion Factors that under-
cuts the logic of the Closed Innovation model of R&D and developed the logic
of the Open Innovation model. These erosion factors, such as increased mobility

2 INTRODUCTION

Figure 1: Open Innovation

of workers, declining US hegemony, more capable universities, growing access of
start-up firms to venture capital, changed the conditions under which firms inno-
vate. In addition, the rise of internet has brought the knowledge access and sharing
capabilities of previous firm-specific internal network to the World Wide Web [23].

In the field of software engineering, the success of Open Source Software
(OSS) in the past twenty years indicates its existence before the term OI was
coined [91]. Furthermore, OSS is the most straight forward application of OI
software development and used as an example of OI in the studies included in this
thesis [22]. Both OSS and OI tend to favor the use of external knowledge together
with internal knowledge as a mutually beneficial measure for organizations and
communities. However, it should be noted that OSS is not equivalent to OI. The
underlying difference between OI and OSS is that the the open innovation efforts
are usually run by one company trying to innovate by reaching the knowledge
outside its walls. The problem to be solved or the opportunity ((e.g. Build Fail-
ure Analyzer, Gerit Jenkins Trigger)) to be addressed is owned by the company
running the open innovation project and with the company at the center of all col-
laboration. The solution to the problem may have a direct on indirect impact on
firm’s innovation process. On the contrary, OSS problem or opportunity itself is
the central point of focus, so people and organizations all connect to each other
rather than working through one central organization. Furthermore, OI company
has the business model influenced or driven by the OI definition. The business
model utilizes both internal and external ideas to create value, while defining in-
ternal mechanism to claim some portion of the value.

The OI vs. OSS phenomenon can be explained by Linux development when
IBM donated hundreds of patents and invested more than $100 million a year

2 Related work and terminology 3

to support the Linux OS. One of the OI advantages is that the risks and costs
of development can be shared among the stakeholders. Although, IBM invested
significant amount of money in the Linux development, other firms such as Nokia,
Hitachi and Intel also made substantial investments as well [90]. By supporting
the Linux, IBM was strengthening its own business model in selling proprietary
solutions for its clients running on top of Linux. Additionally, the openness of
Linux also gave IBM more freedom to co-develop products with its customer [23].

However, the shift from the Closed innovation to the Open innovation model
poses significant challenges to software-intensive organizations in terms of keep-
ing their competitive advantage in relation to their competitors. The openness
challenges software intensive organizations on both operational and strategic lev-
els. This thesis focuses on investigating the OSS projects considered representative
examples of OI to investigate the impacts of OI on firms innovative performance.
Particularly, what triggers software-intensive organizations to indulge themselves
in the OI enabled projects and the innovation outcomes attached to it. Furthermore,
it is desirable to see if the existing practices of requirements engineering and test-
ing fits well with Open Innovation. The four studies in the thesis are exploratory
in nature due to lack of existing evidence on OI in software engineering.

2 Related work and terminology

Despite the wide interest in several domains, OI is far from thoroughly researched
in software engineering. OSS is often explored as one of the main examples of OI
in order to incorporate the external knowledge and innovation to internal product
innovation. However, Munir et al. [107] recognized the lack of systematic efforts
to summarize and synthesize the state of the research on OI in software engineer-
ing. The previously attempted reviews were either partly systematic [68,141,150]
or focused on the metrics used to measure innovation in OSS [40].

Organization use different strategies to engage in OSS communities [32], e.g.
adopting selective revealing [62] or OI models [21]. West et al. [143] highlighted
the strategies that organizations use to acquire, incorporate the external knowledge
into their internal innovation processes and exploiting the Intellectual Property
Rights (IPR) by a selective revealing strategy. Stuermer et al. [132] conducted
a study on applying the private collective model at Nokia to identify the incen-
tives for individuals investing in OSS and the firms. Nokia benefited from the
introduced private collective model in terms of learning effects, reputation gain,
reduced development effort and low knowledge protection costs. On the other
hand, the cost of implementing the private collective model entails difficulty to
differentiate, guard business secrets, reduce the community barriers and give up
organizational control.

In addition, OI entails challenges on process and business levels. West et
al. [145] highlighted the business related challenges faced by the leading firms

4 INTRODUCTION

in the development of Symbian: 1) balancing the interests of all stakeholders, 2)
knowing the requirements for a product that has yet to be created, and 3) prior-
itizing the conflicting needs of all stakeholders. On the other hand, Conboy and
Morgan [27] hinted upon process related challenges that agile and OI do not get
along well in terms of dealing with the management of innovative requirements
and release planning [27].

Software intensive organizations (see Table 1) intended to indulge themselves
in OSS communities, need to adjust their software development processes in their
efforts to fix bugs and contribute new features to the community. These efforts
might reduce the maintenance cost compared to in-house software development.
Furthermore, OSS involvement may also entails different modes of working in
terms of separate requirements engineering process for innovative requirements [87,
148] and OSS governance mechanism [90] to facilitate software development in
OI context. Dahlander [34] concluded that initiating an OSS project is often a
pragmatic way of attracting skilled workforce from communities. Moreover, hav-
ing a dedicated employee working close to the community seems to be an enabler
for not only building a good reputation of an organization in the community, but
also allow exercising the governance/control mechanism to steer the development
towards organization’s business model. Linden et al. [96] concluded that when a
software product loses its competitive value in terms of profitability, customers, in-
novation and learning [76] with the passage of time due to improvements and ever
growing size of the software, it becomes a good candidate for OSS development.

Furthermore, it remains unclear what motivates software-intensive organiza-
tions and what are the key factors these organizations consider before adopting
OI. Chesbrough [23] pointed out that convincing evidence with the large sample
studies on the performance improvement from OI is still lacking. Therefore, there
is a need to perform case studies on a product level instead of a firm’s level in order
to see OI impact on firm’s internal innovation.

3 Research goals
To better understand OI in software engineering, the following Research Goals
(RG) are formulated (see Fig. 2).

RG1: To synthesize the research knowledge on OI for software-intensive organi-
zations

RG2: To understand the perception of innovation in large scale software-intensive
organizations through an industrial survey

RG3: To explore and evaluate how software-intensive organizations use OSS as
an enabler for OI and innovation outcomes

RG4: To investigate how software testing is performed in OI

3 Research goals 5

Table 1: Definitions
Terms Definition

Software-intensive
organization

Organizations extensively using or developing
softwares with the focus on adopting OSS that in-
fluence organization’s innovation capacity.

Acceptance test har-
ness

It is part of the Jenkins project used to test
(unit tests) Jenkins plugins in an automated fash-
ion [106].

Jenkins Jenkins is the leading open source continuous in-
tegration server. It provides 1000+ plugins built in
Java to support building and testing [2].

Gerrit It is a web-based code review tool built on top of
the git version control system [3].

Product innovation Product innovation is the introduction of a good or
service that is new or significantly improved with
respect to its characteristics or intended uses [4].

Process innovation Process innovation is the implementation of a new
or significantly improved production or delivery
method [4].

Business innovation Business innovation is the implementation of
a new marketing method involving significant
changes in product design or packaging, product
placement, product promotion or pricing [4].

Organizational inno-
vation

Organizational innovation is the implementation
of a new organizational method in the firm’s busi-
ness practices, workplace organization or external
relations [4].

6 INTRODUCTION

As can be seen in Figure 2, RG1 triggers Paper I to identify OI state of the
research in software engineering. OI has attracted a lot of researchers across dif-
ferent domains. However, it remains unexplored in software engineering. Paper I
systematically explores the existing OI literature with the focus on software engi-
neering.

RG2 is formulated to understand how the term Product, process, business
and organization Innovation is perceived and understood among employees of a
software-intensive organization. Paper II was designed to meet the RG2 and it
highlighted the lack of understanding of the term innovation among employees at
all levels [95].

RG3 is relevant to investigate OI on a product level in a software-intensive
organization and influenced by RG1. The literature lacks evidence about the per-
formance of OI on the fined grained product development level [23]. Paper III
is aimed at exploring why and how a software-intensive organization adopts OI.
In addition, Paper III also points out the innovation outcomes gained by the case
organization.

RG4 leads to Paper IV, focused on exploring the testing activities of OI based
project and identifying the key challenges associated with the testing in OI.

Figure 2: Research Overview (See synthesis in section 5)

4 Research methodology
Several research methods were utilized to meet the research goals. The thesis
mainly consists of exploratory and evaluative empirical research [146], based on
studies using a systematic mapping study [113], survey [46] and case study [122]
research method (see Table 2).

4 Research methodology 7

Paper I presents a systematic mapping study designed to explore the OI liter-
ature on software engineering. Prior reviews were either not systematic [68, 150],
partly systematic [142] or, for example, focus on the history or evolution of OSS or
available innovation metrics [40]. Moreover, these reviews lack objective quality
criteria to support the interpretation of the results to evaluate OI performance. It is
to be noted that the main focus of Paper I was to explore OI in software-intensive
organizations and not the use of software to support OI. Furthermore, it was not
possible to start with the clear cut research questions due to lack of evidence for
a systematic literature review. Therefore, a systematic mapping study was chosen
over the systematic literature review in order to explore the OI notion in software
engineering.

In Paper II, a qualitative survey [94] is presented to understand the perception
of innovation, particularly, how product innovation, business innovation, market
innovation and process innovation interplay with each other [4]. The main trig-
ger for conducting this survey was the interest of the case company in exploring
whether or not employees have a common understanding of the term innovation.
A qualitative survey was chosen over interviews to get a more generalized view
point from hundreds of employees (229 responses) across the whole organization
in the limited amount of time. It was more desirable to draw the conclusion based
on 229 responses rather than a limited number of interviews.

Paper III presents a case study, which not only investigates OI in an exploratory
manner but also makes an attempt to evaluate OI performance in software-intensive
organizations. The research questions in Paper III are partly based on the findings
from Paper I. First, the study explores the top contributors in the development of
Gerrit and Jenkins (see Table 1). Second, it explains the transition process from
Closed Innovation to Open Innovation, and the key triggers for the case company
towards this transformation. Third, it maps the existing practices of requirements
engineering and testing with the identified OI challenges. The study made an at-
tempt to understand how the aforementioned software engineering processes inter-
act in OI. In order to achieve the aims, the study uses the flexible case study design
to explore OI in software engineering since it is more suitable for exploratory stud-
ies. The quantitative data extracted from the source code repositories is used as a
basis for identifying the type of contributions made by the case company and also
the key interviewees in the studied units of analysis.

Paper IV idea came up from the interviews conducted in Paper III while inves-
tigating testing activities in OI. One of the interviewees mentioned the initiation
of Acceptance Test Harness (ATH), which helps developers to test Jenkins with
automated test cases. As a consequence, Paper IV presents a case study conducted
to explore if the ATH testing activities adhere to the ISO/IEC/IEEE 29119 testing
standard. Paper IV compares and contrasts OI testing process with the standard
testing process and sets the agenda for future work with the main focus on soft-
ware testing in OI (see Fig. 2).

The case company used in the studies is Sony Mobile and the units of analy-

8 INTRODUCTION

sis are Gerrit [3] and Jenkins [2]. Both Jenkins and Gerrit are OSS tools part of
Sony’s continuous integration tool chain. Sony Mobile is a multinational organi-
zation with more than 5,000 employees globally, developing embedded devices.
The chosen branch in the thesis is responsible for the development of Android
phones. Furthermore, Sony is becoming more and more open in terms of using
OSS communities. The transition from the closed innovation to open innovation
could be a good comparison to OI in software engineering. Therefore, Jenkins and
Gerrit are OSS examples studied in the thesis seen as an enabler for OI in software
engineering.

Table 2: Research strategy [122]

Paper Id Research Object Research Strategy

Paper I Exploratory Systematic Mapping Study

Paper II Exploratory Survey

Paper III Exploratory and Evaluative Case Study

Paper IV Exploratory Case Study

5 Results and synthesis

This section summarizes the results from the papers included in this thesis. For
each paper, we stated the rationale, the methodology used and the key findings.

RG1: To synthesize the research knowledge on OI for software-
intensive organization

Paper III identifies 33 studies, divided into nine themes as a result of thematic
analysis [31]. 17 out of 33 studies were found to be in high rigor and relevance
category and 12 studies were found in the high relevance and low rigor category
indicating that results are highly relevant to industry. The key themes identified in
the study are as follow:

1. IP strategies

2. OI toolkits

3. Degree of openness

4. OI models/frameworks

5. Managerial implications

5 Results and synthesis 9

6. Enabling OI communities

7. Benefits

8. Challenges

9. OI strategies

Each of the above mentioned themes is defined in detail in Paper I with corre-
sponding empirical evidence associated with it. Furthermore, we classified papers
based on the research methodology [122] and paper classification [146] followed
by the rigor and relevance analysis [71]. 20 evaluation papers used case study re-
search methodology, seven were survey evaluation, two proposal papers each with
survey and framework followed by one framework validation and a tool proposal
paper.

In conclusion, the results indicate that start-ups have a higher tendency to
opt for OI compared to incumbents and firms assimilating knowledge into their
R&D activity have a better chance of gaining financial advantage. Furthermore,
an important implication for industry is that OSS and OI does not come for free.
Software-intensive organizations must invest in the OSS communities with a clear
resource investment plan to leverage their key resources. The large share of eval-
uation research alludes to researchers to produce more solution oriented papers
followed by the validation.

RG2: To understand the perception of innovation in a large
scale product-focused software organization

Paper II focuses on investigating how innovation is perceived among the employ-
ees of the case company. Four innovation types namely, product innovation, pro-
cess innovation, business innovation, organizational innovation and the interplay
between them were studied in a survey at a local branch of a multi-national orga-
nization. 229 responses were received including 469 free text comments.

Qualitative data analysis indicated that employees have trouble relating to the
term Innovation. Employees considered themselves not able to perform or par-
ticipate in innovation activities since they do not see it as a part of their work.
Therefore, there is a need to create the mindset that innovation is possible. The
majority of respondents think that product innovation triggers process innovation
and business innovation. However, the product and business innovation seems
quite complementary. Furthermore, we identified challenges for all four innova-
tion types and it may be implied that the company has challenges in managing OI
concepts due to lack of clear understanding of the term innovation.

10 INTRODUCTION

RG3: To explore and evaluate how a software-intensive
organization uses OSS as an enabler for OI and gains ben-
efits

Paper III investigated the OSS tool usage and involvement of Sony Mobile. The
units of analysis were Jenkins and Gerrit, the central tools in Sony Mobile’s contin-
uous integration process. Moreover, the study also investigated how Sony Mobile
captures value externally using OSS communities. We started by extracting the
Gerrit and Jenkins change log data to classify Sony Mobile’s contributions, and to
identify the key contributors for interviews.

The results of the study suggest that moving from Closed Innovation to Open
Innovation model was a paradigm shift around 2010 when Sony Mobile moved
from the Symbian platform to Google’s open source Android platform in its prod-
ucts, driven bottom-up from the engineers at Sony Mobile. Jenkins and Gerrit
are not seen as a competitive advantage or a source of revenue, which indicates
that Sony Mobile’s openness is limited to the non-proprietary and non-competitive
tools only. Furthermore, the requirements process in the Tools department was
optimized to work towards the Jenkins and Gerrit communities. The Tools depart-
ment team works in an agile manner with the influences from Kanban for simpler
planning.

On the other hand, the Tools department is struggling to test Gerrit with the
old manual testing framework. The openness made the Tools department think
of switching from the manual to an automated testing process. Consequently, an
Acceptance Test Harness is created to contribute internal acceptance tests to the
community and have the community to execute what Sony Mobile tests when set-
ting up a next stable version and vice versa. More so, requirements prioritization
and bug fixes are prioritized based on the most pressing needs of Sony Mobile.
Paper III further explores if there are any innovation outcomes attached to these
tools and identified the following innovation outcomes (see Paper III) as results of
these tools in Sony Mobile’s continuous integration process:

1. Free features

2. Free maintenance

3. Freed up time

4. Knowledge retention

5. Flexibility

6. Increased turnaround speed

7. Increased quality assurance

8. Improved new product releases and upgrades

5 Results and synthesis 11

9. Inner source initiative

Sony Mobile uses dedicated resources in the Tools department to work with the
Jenkins and Gerrit communities. Furthermore, we also discovered that Sony Mo-
bile lacks key performance indicators to measure its innovation capability before
and after the introduction of OI in the Tools department. However, the qualitative
data suggests that OI results in improved stability and flexibility in the develop-
ment environment. The findings of the study are limited to software-intensive
organizations with the similar domain, size and context as Sony Mobile.

RG4: To investigate how software testing is performed in
OI
Paper IV extracts and analyses the change log data of ATH in conjunction with the
work on Paper III to pinpoint the top contributors to ATH, followed by five semi-
structured interviews. It is to be noted that, interviewees were identified from
the change log data to know their opinion about the ATH testing and challenges
associated with it.

To conclude, the ATH testing process does not strictly follow the ISO/IEC/IEEE
testing standard due to the absence of formal test plans. Furthermore, testable ob-
jects are derived based on the individual stakeholders needs without consulting
other stakeholders in the community. Taking the high number of Jenkins plug-
ins (1000+) into account, it becomes increasingly difficult to have a complete test
coverage since the test cases depends on the subjective judgment of developers.
Paper IV concludes that ATH enables developers to identify problematic areas
(plugins) and take corrective actions rapidly whenever there is an update in the
Jenkins core or any of its plugin.

Synthesis
This section provides answers to the four research goals by synthesizing the results
from the included papers, see Table. 3. The synthesized evidence from Paper I
suggests that start-ups have a higher tendency to adopt OI compared to incum-
bents since start-ups engage themselves in OSS to quickly acquire the knowledge.
OI provides some initial gains for smaller companies but also has the tendency
to limit the organizational performance when the level of participation increases
above average [70, 131]. In order to gain financial benefits, it is imperative for an
organization to have high the absorptive capacity to utilize the available technical
knowledge [32]. Business strategies play a vital role in embracing OI and comp-
anies may pursue their differentiation strategy with a controlled degree of open-
ness. However, it needs to be explored which strategy is optimal, given the com-
pany’s size domain and product characteristics as mentioned by Mowery [104].
Furthermore, adopting OI seems rather like a reactive strategy than a proactive

12 INTRODUCTION

strategy to hold on to an organizational competitive advantage. An interviewee
mentioned in Paper III that the transition from Closed innovation to Open Innova-
tion was made from existing proprietary solutions to the tools used by Google in
their Android development to get as close as possible to Google’s tool chain. This
transition process was driven bottom up with the support of management to ease
off the old and complex chain of integration and building solutions.

Regarding, determinants of openness, several factors interplay in the decision
making process whether or not a new feature or a project should be open. Ev-
idence suggests (Paper III) that openness is limited to the tools that are not the
direct source of revenue (commodity). However, it does have an indirect impact
on the propriety product development labeled as innovation outcomes in Paper III.
OI impacts on product development by increasing the turnaround speed for new
releases and upgrades, better quality assurance and frees up the time for more in-
novative activities. In addition, interviewees in Paper III acknowledged that it is
not only the free work that motivates organizations but also the risk of lagging
behind by not choosing to work with communities.

5 Results and synthesis 13

Ta
bl

e
3:

R
es

ea
rc

h
Sy

nt
he

si
s

Pa
pe

r
I

Pa
pe

r
II

Pa
pe

r
II

I
Pa

pe
r

IV

•
O

I
re

m
ai

ns
un

ex
pl

or
ed

in
SE

•
L

ac
k

of
sy

st
em

at
ic

ef
fo

rt
to

su
m

m
ar

iz
e

O
Ii

n
SE

•
N

in
e

di
st

in
ct

th
em

es
id

en
tifi

ed
:

1)
IP

st
ra

te
-

gi
es

,
2)

ch
al

le
ng

es
,

3)
B

en
efi

ts
,

4)
O

I
C

om
-

m
un

iti
es

,
5)

M
an

ag
er

ia
l

im
pl

ic
at

io
ns

,
6)

O
I

to
ol

ki
ts

,
7)

de
gr

ee
of

op
en

ne
ss

,
8)

O
I

in
st

ru
-

m
en

ts
/s

tr
at

eg
ie

s,
9)

O
I

m
od

el
s/

fr
am

ew
or

ks

•
29

ou
to

f3
3

st
ud

ie
sw

er
e

re
po

rt
ed

w
ith

hi
gh

re
le

-
va

nc
e

•
R

es
ul

ts
ar

e
re

le
va

nt
to

in
du

st
ry

du
e

hi
gh

re
le

-
va

nc
e

•
O

I
sh

ou
ld

be
us

ed
in

a
co

m
pl

em
en

ta
ry

ro
le

in
-

st
ea

d
of

a
re

pl
ac

em
en

t
to

ac
ce

le
ra

te
th

e
in

te
rn

al
in

no
va

tio
n

•
In

no
va

tio
n

is
pr

om
ot

ed
to

st
ay

co
m

pe
tit

iv
e

•
Pr

od
uc

t
in

no
va

tio
n

tr
ig

-
ge

rs
pr

oc
es

s
an

d
bu

si
-

ne
ss

in
no

va
tio

n

•
Pr

od
uc

t
an

d
or

ga
ni

za
-

tio
na

l
in

no
va

tio
n

ar
e

co
m

pl
em

en
ta

ry

•
In

cr
ea

si
ng

aw
ar

en
es

s
ab

ou
t

th
e

fo
ur

in
no

-
va

tio
n

ty
pe

s
(P

ro
du

ct
,

pr
oc

es
s,

bu
si

ne
ss

,
or

ga
-

ni
za

tio
na

l)
m

ay
im

pr
ov

e
th

e
in

no
va

tio
n

•
O

bj
ec

tiv
e

in
te

rp
re

ta
tio

n
of

in
no

va
tio

n
ty

pe
s

ne
ed

s
to

be
pr

om
ot

ed

•
A

do
pt

in
g

O
I

w
as

a
pa

ra
di

gm
sh

if
t

an
d

es
se

nt
ia

lly
dr

iv
en

bo
t-

to
m

up
lim

ite
d

to
th

e
no

n
co

m
-

pe
tit

iv
e

to
ol

s

•
O

pe
ni

ng
up

is
be

co
m

in
g

m
or

e
an

d
m

or
e

ac
ce

pt
ab

le
at

So
ny

M
ob

ile

•
R

E
pr

oc
es

s
is

in
fo

rm
al

an
d

pr
i-

or
iti

za
tio

n
is

ba
se

d
on

th
e

in
di

-
vi

du
al

ne
ed

s
of

st
ak

eh
ol

de
rs

•
O

ng
oi

ng
tr

an
si

tio
n

fr
om

a
m

an
-

ua
l

te
st

in
g

to
au

to
m

at
ed

te
st

in
g

us
in

g
A

cc
ep

ta
nc

e
Te

st
H

ar
ne

ss

•
Fr

ee
d-

up
tim

e,
in

cr
ea

se
d

sp
ee

d,
fr

ee
fe

at
ur

es
,

in
ne

r
so

ur
ce

in
i-

tia
tiv

es
,

K
no

w
le

dg
e

re
te

nt
io

n,
in

cr
ea

se
d

qu
al

ity
as

su
ra

nc
e

ar
e

so
m

e
of

th
e

ke
y

in
no

va
tio

n
ou

t-
co

m
es

fo
un

d
as

a
co

ns
eq

ue
nc

e
of

O
I

•
A

T
H

pr
oc

es
s

do
es

no
t

st
ri

ct
ly

ad
he

re
s

to
IS

O
/I

E
C

/I
E

E
E

du
e

to
in

de
pe

nd
en

t
id

en
tifi

ca
-

tio
n

of
te

st
ab

le
fe

at
ur

es
fr

om
st

ak
eh

ol
de

rs
w

ith
-

ou
t

an
y

fo
rm

al
te

st
pl

an

•
D

iffi
cu

lt
to

at
ta

in
th

e
co

m
pl

et
e

te
st

co
ve

ra
ge

du
e

to
10

00
+

pl
ug

in
s

in
Je

nk
in

s

•
D

ef
ec

ts
de

te
ct

io
n

pr
o-

ce
ss

of
Je

nk
in

s
be

ca
m

e
fa

st
er

be
ca

us
e

th
e

de
ve

l-
op

er
s

ca
n

qu
ic

kl
y

ru
n

te
st

ca
se

s
on

th
ei

r
lo

ca
l

br
an

ch
to

de
te

ct
th

e
in

-
tr

od
uc

tio
n

of
bu

gs
be

-
fo

re
m

er
gi

ng
th

e
co

de
w

ith
th

e
m

ai
n

br
an

ch

14 INTRODUCTION

Based on Conboy [27], the interplay between OI and agile where Agile seems
to create barriers in transferring the ideas outside the team boundaries, mainly due
to short iterations, stand-up meetings, limited documentation, and features backlog
reduces the time for trying out new things or sharing ideas outside your team.

Furthermore, managers can enhance the firm’s innovativeness by encouraging
their employees to participate in communities. Consequently, the Tools dept. at
Sony Mobile is spearheading the culture of being active or in engaging with com-
munities. However, they have too few resources in terms of time and budget to
make a significant contribution in the OSS communities. The key implication for
managers is that the organization may adopt differentiation strategies to achieve
openness without isolating their developers from the community. There is a risk
that other software companies may not devote their best employees to work in the
community or may only passively participate in the development process. There-
fore, too open behavior might be commercially harmful for the organization.

Software-intensive organizations promotes innovativeness among their em-
ployees in order to keep up with the competitive nature of ever growing technology,
but the meaning of the term innovation and the interplay between organizational,
business, product and process innovation are not well understood across different
units of the studied organization (see Paper II). An interviewee in Paper II stated,
“. . . I recognize that [company] does this often [. . .] But I am not sure if it is
really innovative or just mindless changes.”. The borderline between when some-
thing goes from being an improvement or common functionality to an innovation
is subtle. In addition, some employees believed that it is not the part of their work
description or role. A tester stated in Paper II that working with testing does not
lead much improvement in the product besides some ideas that pops up occasion-
ally. Therefore, there is a need to increase awareness and knowledge of different
innovation types with clear role descriptions which may improve the innovation in
an organization.

Building on to the testing part, Jenkins and Gerrit communities both focused
on manual test cases. The openness led Sony Mobile to think about automated
testing for Jenkins launching the Acceptance Test Harness to improve quality as-
surance. It may reduce the work load internally and may secure that the settings
and cases specific to Sony Mobile are taken care of. On the other hand, the com-
munity gets the view and settings from a large company which enables community
development.

However, when it comes to requirements and bugs prioritization , all stake-
holders prioritize their most pressing needs. An interviewee surveyed in Paper III
emphasized that they almost never implemented any feature requests from outside
unless Sony Mobile thought that it is a good idea. To summarize, OI became more
and more accepted practice in the Sony Mobile with the passage of time due to the
associated innovation outcomes. In effect, OI makes internal development faster.

6 Ethical aspects and threats to validity 15

6 Ethical aspects and threats to validity

The investigation of OI at the case company was triggered as a result of difference
of opinion on OI between engineers, middle management and higher management.
Engineers believe that opening up development process can give them a cutting
edge over their competitors. By doing so, they can steer the community towards
their business model and make the community work for them by contributing their
code back to the community. However, the open strategy required some time to be
accepted. The results of the Paper III have the potential to influence the top man-
agement decisions regarding OI adoption. A typical example could be to present
negative findings to discourage OI initiatives. Therefore, it is vital for researchers
to present the findings as objectively as possible.

OI research in SE involves software engineers working in the industry. The
investigation started from mining the OSS code repositories to identify the key
contributors and possibly classify their contributions in terms of new features, bug
fixes, cosmetic issues or documentation. However, the data collection process
about research subjects and the case company is a two step process:

1. Collect the public data about software engineers and the case company from
GitHub

2. Conduct interviews based on data collected from the code repositories

It is worth mentioning that the case company has shown a strong interest in inves-
tigating its OI activities to see whether or not it is helping them to accelerate their
internal innovation process. Sony Mobile gets recommendation whether or not
opening up in their development process gives them a cutting edge on their com-
petitors and the researchers are able to publish research papers to carry forward OI
state of the art in software engineering. Therefore, its a collaboration that leads to
a win-win situation for both stakeholders. On the hind side, there are risks attached
to the research process. Specifically, the case company fully understands the im-
portance of collaboration with the research community and its positive impacts on
their internal processes of working. However, if a local newspaper correspondence
decides to picks up something (e.g. internal conflicts) randomly from the study out
of the context and place it on the front page of the local newspaper may lead to a
massive dent on concerned organization’s reputation.

Apart from ethical aspects there are validity concerns that worth mentioning
about the thesis. Internal validity is the confidence that we can place in the cause
and effect relationship in a scientific study [122]. In the thesis, review protocols
were created for all the studies and reviewed by all authors to be more objective
and to assure quality as well. The studies revealed that Sony Mobile does not have
any metrics to measure innovation thus, researchers had to rely on implications
drawn from qualitative data collected from interviews. The element of subjectivity
was addressed by performing the analysis independently by multiple researchers.

16 INTRODUCTION

External validity refers to ability to generalize the study findings [122]. In par-
ticular, all those software-intensive organizations using Jenkins and Gerrit in their
continuous integration process have the context similar to Sony Mobile. There-
fore, the findings of the studies included in the thesis may be generalizable to
organizations using Jenkins and Gerrit in their continuous integration process.

Construct validity refers to choosing the right measure for the concept under
study [122]. One of the deficiencies found in the literature was that OI investigated
at the firms level to see its innovative impact, which leads to the introduction of
confounding factors. Therefore, in this thesis we aimed at investigating OI at the
project level to eradicate confounding factors that may or may not lead to firms
innovative performance. More so, Gerrit and Jenkins (see Paper III, and Paper IV)
are not the typical examples of revenue producing softwares but can be seen as a
good candidate for investigating OI using OSS at a project level and its impact on
Sony Mobile’s innovative performance.

Reliability deals with the ability to replicate the same study with the same re-
sults [122]. To address the reliability concerns, review protocols, multiple data
sources, independent qualitative and quantitative data, and interview transcription
summary validation by interviewees were some of the techniques used in the stud-
ies to draw conclusions more reliably. Finally, the study design and findings of the
studies were kept transparent in terms of mentioning the context of case company
except for the anonymous interviewees names.

7 Future work

As a next step after licentiate, the plan is to move from exploratory studies to eval-
uation and solution oriented work. The following research goals are formulated
for future research work.

RG1 Validate the findings of Paper III across the software-intensive organizations
and write more generalized results for practitioners regarding adoption of
OI.

RG2 Investigate the contribution strategy of the case company in relation to the
product complexity. More specifically, we want to see if contributing to
the community would save the case company time in relation to a patching
strategy.

RG3 Investigate the testing challenges experienced by developers in OI enabled
projects as opposed to closed source projects.

In pursuit of aforementioned goals, three studies are planned to further investi-
gate OI in software engineering (see Fig. 2). The research plan for the three studies
is as follows:

7 Future work 17

Study V is planned to investigate OI trends in Swedish software industry. We
plan to design a survey as an extension to Paper III to generalize the findings and
possibly write recommendation for practitioners regarding when, how and why to
adopt OI in SE. The survey questions will be divided in the following categories:

1. Demographics

2. Involvement in OI using OSS projects (Why)

3. Requirements engineering process and OI (How)

4. Testing process and OI (How)

5. Business strategy (When)

6. How OI is measured in Software Engineering?

This study will give us more information on OI performed on a product de-
velopment across the software-intensive organizations. As a result, it should be
possible to generalize the answers to the questions, particularly Why, how and
when, on the whole Swedish software industry.

Study VI is planned to investigating Sony Mobile’s contribution-strategy to
leverage their resources in an efficient manner. Contribution of certain bug fixes
and feature implementations without a thoughtful process may implicate the giving
away of differentiating features, or doing something that is already a commodity.
Therefore, Study VI is aimed using Kraljic Matrix [83], a tool to evaluate the
OSS contribution strategy in terms of its business impact in relation to control
complexity. Furthermore, we plan to utilize the three-layer product model for
managing system growth, suggested by Bosch [15]. The idea is to further evaluate
Sony Mobile’s contribution strategy based on the following three layers:

1. Commoditized functionality

2. Differentiating functionally

3. Innovative and experimental functionality

Study VII is planned to get the overview of issues experienced by testers in OI
enabled projects. Limited information is available in the literature regarding the
negative experiences of developers with automated testing. The study conducted
by Wiklund [147] analyzed and classified a company’s issues in the internal discus-
sion board for test automation tools. One of the key reasons for using a discussion
board instead of a ticketing system is that the discussions are more transparent and
provide an opportunity for building a future knowledge bases for automated testing
support. However, findings suggest that only 32% of the users considered forums
to be a viable support alternative and users expecting a quick response are less
likely to use forums. Instead, framework developers alluded that they get many

18 INTRODUCTION

request for support through emails, telephone and instant messages. Therefore, it
would be interesting to compare the Closed Innovation test automation with Open
Innovation test automation process to better understand testing in OI context.

The overall goal is to build on to the exploratory part of the research presented
in the licentiate thesis and move towards solution oriented OI studies. Particularly,
we want to write more generalized guidelines for researchers and practitioners
based on the future studies. These guidelines will entail when and how to adopt
OI and how open software-intensive organizations should adapt their processes
(i.e testing) to maximize their innovative performance. The possible collaboration
for Study VII, Study V and Study VI may include professional software engineers,
testers and managers actively contributing to OSS communities, and working in
software-intensive organizations.

INCLUDED PAPERS

CHAPTER I

OPEN INNOVATION IN
SOFTWARE ENGINEERING: A

SYSTEMATIC MAPPING
STUDY

Abstract

Context: Open innovation (OI) means that innovation is fostered by using both
external and internal influences in the innovation process. In software engineering
(SE), OI has existed for decades, while we currently see a faster and broader move
towards OI in SE. We therefore survey research on how OI takes place and con-
tributes to innovation in SE.
Objective: This study aims to synthesize the research knowledge on OI in the SE
domain.
Method: We launched a systematic mapping study and conducted a thematic anal-
ysis of the results. Moreover, we analyzed the strength of the evidence in the light
of a rigor and relevance assessment of the research.
Results: We identified 33 publications, divided into 9 themes related to OI. 17/33
studies fall in the high–rigor/high–relevance category, suggesting the results are
highly industry relevant. The research indicates that start-ups have higher ten-
dency to opt for OI compared to incumbents. The evidence also suggests that
firms assimilating knowledge into their internal R&D activities, have higher like-
lihood of gaining financial advantages.
Conclusion: We concluded that OI should be adopted as a complementary ap-
proach to facilitate internal innovation and not to substitute it. Further research is
advised on situated OI strategies and the interplay between OI and agile practices.

22 Open Innovation in Software Engineering: A Systematic Mapping Study

1 Introduction

Open innovation (OI) and associated free exchange of information about new tech-
nologies are recognized as one of the main drivers for collective inventions in the
19th century by Allen [7]. Two decades after Allen’s paper from 1983, Ches-
brough’s seminal book about OI [24] has initiated an unabated interest [51] among
researchers in innovation management [68], economics, psychology, sociology,
and also Software Engineering (SE) [135]. The work initiated by Chesbrough [24]
forced both practitioners and scholars to rethink the design of innovation strategies
in a networked environment [68]. The inherent flexibility of software, combined
with increase of software cost and value for new products and services, puts SE
into the hotspot of OI. Several trends, such as outsourcing, crowd-sourcing and
funding, global software development, open source software, agility, and flexibil-
ity, challenged the do it yourself mentality [49]. More courageous voices sug-
gested even that closed innovation might have been the exception in the history,
characterized mostly by open innovation practices [104].

OI is a relatively new field of research and a collective theoretical foundation is
starting to emerge. Chesbrough [24] was the first to define OI as “a paradigm that
assumes that firms can and should use external ideas as well as internal ideas, and
internal and external paths to market, as they look to advance their technology”.
OI encompasses various activities such as inbound, outbound and coupled activ-
ities [50], and each of these activities can be more or less open. Open Source
Software (OSS) is the most straightforward application of OI to software devel-
opment [68], although not the only one [150]. The success of OSS in the last
twenty years have ignited and encouraged several new movements for collective
innovation such as: outsourcing, global software development, crowd-sourcing
and founding.

Despite the wide interest in several domains and the unquestionable potential
that OI can bring to the software industry, OI remains greatly unexplored in the SE
literature, while in the OI literature extensive interest is given to exploring OSS
as one of the ways to incorporate external knowledge and innovation to internal
product innovation [24]. Similarly in the early days of OSS, many interesting
OI initiatives were performed, e.g. opening up software product organizations
and utilizing open configurations [73]. However, there is a lack of systematic
efforts that focus on summarizing the current state of the literature on the relation
between OI and SE. Previous reviews are either not systematic [68, 150], partly
systematic [142] or, for example, focus on the history or evolution of OSS or
available innovation metrics [40]. Moreover, these reviews lack quality criteria to
support the interpretation of the results in favor or against OI.

Therefore, we identified a need to systematically review OI research in SE
with a specific focus on assessing the strength of the empirical evidence in the
identified studies [71], highlighting the current themes and outlining implications
for research and practice. For instance, a study might have high relevance (e.g.

2 Related work 23

managerial implications for an industrial scale project), but at the same time have
low rigor (e.g. having validity threats and lacking descriptions of the units of
analysis). Consequently, these above mentioned needs lay the foundation for a
systematic mapping study [113] to explore the concept of OI in the context of SE.
Specifically, this mapping study makes the following contributions:

1. Identification of the existing themes and patterns in the literature for open
innovation in software engineering.

2. Assessment of trustworthiness of the results with respect to rigor and rele-
vance [71].

3. Based thereon, identification of knowledge that may inform industry prac-
tice on open innovation in software engineering

4. Identification of the research gaps for further exploration of open innovation
in software engineering [78].

The remainder of the paper is structured as follows: Section 2 presents related
work and Section 3 presents the research method (review protocol). Next, Section
4 highlights the results of the search and the analysis the synthesized research,
followed by a discussion in Section 6 which results in a research agenda and advice
for industry practice in Section 6. Section 7 concludes the paper.

2 Related work

Using the study by West and Bogers [142], we identified four secondary studies
(literature reviews) on OI [40, 68, 142, 150], relevant to this study. The studies are
summarized in Table 1.

Are the reviews systematic? Huizingh [68] and Wnuk and Runeson [150] con-
ducted reviews on OI, however neither of them is systematic according to the
guidelines stated by Kitchenham et al. [77]. The study conducted by West and
Bogers [142] could be considered partly systematic, since the relevance can be
seen in terms of data sources, inclusion/exclusion criteria and data extraction. On
the other hand, the review conducted by Edison et al. [40] adheres to guidelines by
Kitchenham et al. [77] and Petersen at al. [113]. In this paper, we report a review
conducted according to the guidelines by Kitchenham et al. [77].

What were the objectives behind conducting reviews? West and Bogers [142]
conducted a review on OI with the main objective to define an agenda for OI
research. They classified the studies into three main categories of OI, namely,
inbound (outside in), outbound (inside out) and coupled, as suggested by Enkel at
al. [42]. Wnuk and Runeson [150] performed a study with the goal to propose a
SE framework for OI.

24 Open Innovation in Software Engineering: A Systematic Mapping Study

Huizingh [68] also focused on exploring the notion of open innovation and
on the degree of OI adoption by the firms. The study concluded that the know-
ledge about how to apply OI and when to do it is still incomplete. Edison at
al. [40] centered their literature study around innovation measurement and inno-
vation management aspects, e.g. definitions, frameworks and metrics. Our study
limits its scope to SE and focuses on deriving existing OI themes and patterns us-
ing thematic analysis. Moreover, this study also focuses on exploring the strength
of evidence under the light of rigor and relevance, and states the further course of
action in terms of OI in SE.

What were the data sources used in the reviews? Were the used search terms
appropriate? Huizingh [68] neither specified the database, nor the search terms
used. Likewise, West and Bogers [142] did not mention the search terms for their
study, but provided the time scope of the survey (between 2003 and 2010) and
the list of selected management journals, see Table 1. Conversely, the study con-
ducted by Wnuk and Runeson [150] used Inspec and Compendex and the follow-
ing search terms “Open innovation, requirements engineering, testing, software
and methodology”. However, the time span for the search is not reported. Edi-
son et al. [40] used multiple data sources namely, Inspec and Compendex, Sco-
pus, IEEE explore, ACM digital library, Science direct, Business Source Premier
(BSP) and performed the search between 1949 and 2010, see Table 1. Their search
terms aim at identifying innovation metrics, measurements, drivers and innovation
attributes. Inspired by the previous reviews, we organized our search string into
three main categories and employed the inclusion exclusion criteria after the search
process, with keywords: i) related to OI, ii) on SE in order to restrict the results to
the SE domain, and iii) pertaining to empirical evidence on OI (see Section 3.3).
Furthermore, we complemented our search string with backward snowball sam-
pling [72, 123] by scanning the reference list of all primary studies, see Section
3.2.

Did the reviews use any quality assessment criteria for primary studies before
analyzing their results? Neither Wnuk and Runeson [150] nor Huizingh [68] used
explicit quality assessment criteria for the identified studies. On the other hand,
West and Bogers [142] included studies that focused on OI as per the definition
by Chesbrough [24] and excluded book reviews, commentaries and editorial intro-
ductions. Edison et al. [40] used a set of questions for quality assessment and to
evaluate if a study explains the aims, methodology and validity threats. We used
a comprehensive set of guidelines that cover rigor and relevance of studies. We
slightly tailored the criteria from Ivarsson et al. [71] to fit into the scope of this
study, see Section 3.4.

How did the reviews extracted data from primary studies? Did they map data
extraction with research questions? The data extraction strategy was not reported
in three studies [68, 142, 150]. The information about the mapping between the
data extraction properties and the research questions was also absent. However,
Edison at al. [40] described the data extraction strategy which was piloted before

2 Related work 25

the execution to ensure a common understanding among all involved researchers.
We created a defined set of data extraction properties, and mapped them on re-
search questions to avoid redundant information, outlined in Table 3.

How did the reviews synthesize the data from primary studies? Neither of the
four studies followed an established procedure for the synthesis, such as thematic
or cross-case analysis [30, 31]. Instead, West and Bogers [142] used a self created
four phase integrated model (i.e. obtaining, integrating, commercializing, interac-
tion with communities) to guide the literature review and classified studies based
on dimensions provided by Enkel at al. [42]. Similarly, Wnuk and Runeson [150]
presented the synthesis in a table where studies are categorized in terms of re-
search type (e.g. evaluation, proposal, opinion, solution, conceptual etc.) defined
by Wieringa et al. [146]. Moreover, studies were also classified in terms of soft-
ware techniques, process and methods, and presented a framework to foster OI
with technical and methodological dimensions stated above.

Edison et al. [40] presented their synthesis in terms of different types of inno-
vation definitions available in the literature, metrics used to measure innovation,
and challenges related to existing innovation measurements. They developed a
model to assist organizations to use the available measures to develop insights into
their innovation program. Finally, Huizingh [68] wrote a literature review without
synthesis.

In summary, this systematic study aims at exploring the OI in SE in a much
more rigorous manner according to guidelines of Kitchenham et al. and Petersen
et al. [77, 113] and focusing on systematic synthesis of the findings.

26 Open Innovation in Software Engineering: A Systematic Mapping Study

Fa
ce

ts
W

es
ta

nd
B

og
er

s[
14

2]
(2

01
3)

E
di

so
n

et
al

.[
40

](
20

13
)

W
nu

k
et

al
.[

15
0]

(2
01

3)
H

ui
zi

ng
h

[6
8]

(2
01

0)

Sy
st

em
at

ic
Pa

rt
ly

Y
es

N
o

N
o

D
at

a
so

ur
ce

s

1.
A

ca
de

m
y

of
M

an
ag

em
en

tJ
ou

rn
al

2.
A

ca
de

m
y

of
M

an
ag

em
en

tR
ev

ie
w

3.
A

dm
in

is
tr

at
iv

e
Sc

ie
nc

e
Q

ua
rt

er
ly

4.
C

al
if

or
ni

a
M

an
ag

em
en

tR
ev

ie
w

5.
H

ar
va

rd
B

us
in

es
s

R
ev

ie
w

6.
IE

E
E

Tr
an

sa
ct

io
ns

on
E

ng
in

ee
ri

ng
M

an
ag

e-
m

en
t

7.
In

du
st

ri
al

an
d

C
or

po
ra

te
C

ha
ng

e

8.
In

te
rn

at
io

na
l

Jo
ur

na
l

of
Te

ch
no

lo
gy

M
an

-
ag

em
en

t

9.
Jo

ur
na

lo
fP

ro
du

ct
In

no
va

tio
n

M
an

ag
em

en
t

10
.

L
on

g
R

an
ge

Pl
an

ni
ng

11
.

M
an

ag
em

en
tS

ci
en

ce

12
.

M
IT

Sl
oa

n
M

an
ag

em
en

tR
ev

ie
w

13
.

O
rg

an
iz

at
io

n
Sc

ie
nc

e

14
.

R
&

D
M

an
ag

em
en

t

15
.

R
es

ea
rc

h
Po

lic
y

16
.

R
es

ea
rc

h-
Te

ch
no

lo
gy

M
an

ag
em

en
t

17
.

St
ra

te
gi

c
M

an
ag

em
en

tJ
ou

rn
al

18
.

Te
ch

no
lo

gi
ca

l
Fo

re
ca

st
in

g
an

d
So

ci
al

C
ha

ng
e

19
.

Te
ch

no
va

tio
n

1.
In

sp
ec

an
d

C
om

pe
nd

ex

2.
Sc

op
us

3.
IE

E
E

X
pl

or
e

4.
A

C
M

D
ig

ita
lL

ib
ra

ry

5.
Sc

ie
nc

eD
ir

ec
t

6.
B

us
in

es
s

So
ur

ce
Pr

em
ie

r(
B

SP
)

In
sp

ec
an

d
C

om
pe

nd
ex

N
/A

2 Related work 27

Fa
ce

ts
W

es
ta

nd
B

og
er

s[
14

2]
(2

01
3)

E
di

so
n

et
al

.[
40

](
20

13
)

W
nu

k
et

al
.[

15
0]

(2
01

3)
H

ui
zi

ng
h

[6
8]

(2
01

0)

R
ep

ea
ta

bi
lit

y
N

o
Y

es
N

o
N

o

Q
ua

lit
y

A
ss

es
sm

en
t

N
o

Y
es

N
o

N
o

In
cl

us
io

n/
ex

cl
us

io
n

cr
ite

-
ri

a
Pa

rt
ly

Y
es

N
o

N
o

D
at

a
ex

tr
ac

tio
n

pr
op

er
tie

s
Pa

rt
ly

Y
es

N
o

N
o

Va
lid

at
io

n
of

re
su

lts
N

o
Y

es
(P

ilo
te

d
th

e
cr

ite
ri

a)
N

o
N

o

D
at

a
sy

nt
he

si
s

Pa
rt

ly
(w

ith
ou

tm
en

tio
ni

ng
its

ty
pe

)
Y

es
(w

ith
ou

tm
en

tio
ni

ng
its

ty
pe

)
E

xp
lo

ra
tio

n
in

st
ea

d
of

sy
nt

he
si

s
N

o
(O

nl
y

co
nc

lu
si

on
)

Pu
rp

os
e

A
n

at
te

m
pt

to
de

fin
e

an
ag

en
da

fo
r

op
en

in
no

va
tio

n
re

-
se

ar
ch

T
hi

s
st

ud
y

ex
pl

or
es

va
ri

ou
s

as
pe

ct
s

re
le

va
nt

to
in

no
va

-
tio

n
m

ea
su

re
m

en
tr

an
gi

ng
fr

om
de

fin
iti

on
s,

m
ea

su
re

m
en

t
fr

am
ew

or
ks

an
d

m
et

ri
cs

th
at

ha
ve

be
en

pr
op

os
ed

in
lit

er
-

at
ur

e
an

d
us

ed
in

pr
ac

tic
e

T
hi

s
pa

pe
r

pr
op

os
es

a
so

ft
w

ar
e

en
gi

ne
er

-
in

g
fr

am
ew

or
k,

de
si

gn
ed

to
fo

st
er

op
en

in
-

no
va

tio
n

by
de

si
gn

in
g

an
d

ta
ilo

ri
ng

ap
pr

o-
pr

ia
te

so
ft

w
ar

e
en

gi
ne

er
in

g
m

et
ho

ds
an

d
to

ol
s.

T
he

st
ud

y
in

te
nd

st
o

ex
pl

or
e

th
e

ch
al

le
ng

es
th

at
bo

th
pr

ac
tit

io
ne

rs
an

d
ac

ad
em

ic
s

fa
ce

in
un

de
rs

ta
nd

in
g

th
e

op
en

in
no

va
tio

n
co

n-
ce

pt
.

T
he

pa
pe

r
al

so
fo

cu
se

s
on

le
ss

un
-

de
rs

to
od

ar
ea

s
of

op
en

in
no

va
tio

n
th

at
“r

e-
qu

ir
e

m
an

ag
em

en
ta

tte
nt

io
n

an
d

of
fe

rf
ru

it-
fu

li
de

as
fo

rf
ur

th
er

ac
ad

em
ic

re
se

ar
ch

”.

O
ut

co
m

e
T

he
st

ud
y

de
fin

ed
th

e
ag

en
da

fo
r

op
en

in
no

va
tio

n
re

-
se

ar
ch

an
d

co
nc

lu
de

s
w

ith
re

co
m

m
en

da
tio

ns
fo

r
fu

tu
re

re
se

ar
ch

th
at

in
cl

ud
e

ex
am

in
in

g
th

e
en

d-
to

-e
nd

in
no

va
-

tio
n

co
m

m
er

ci
al

iz
at

io
n

pr
oc

es
s,

an
d

st
ud

yi
ng

th
e

m
od

er
-

at
or

s
an

d
lim

its
of

le
ve

ra
gi

ng
ex

te
rn

al
so

ur
ce

s
of

in
no

va
-

tio
n

A
sy

st
em

at
ic

lit
er

at
ur

e
re

vi
ew

fo
llo

w
ed

by
an

on
lin

e
qu

es
tio

nn
ai

re
an

d
in

te
rv

ie
w

s
w

ith
pr

ac
tit

io
ne

rs
an

d
ac

a-
de

m
ic

s
w

er
e

em
pl

oy
ed

to
id

en
tif

y
a

co
m

pr
eh

en
si

ve
de

fi-
ni

tio
n

of
in

no
va

tio
n

th
at

ca
n

be
us

ed
in

so
ft

w
ar

e
in

du
st

ry
.

T
he

m
et

ri
cs

fo
r

th
e

ev
al

ua
tio

n
of

de
te

rm
in

an
ts

,
in

pu
ts

,
ou

tp
ut

s
an

d
pe

rf
or

m
an

ce
w

er
e

al
so

ag
gr

eg
at

ed
an

d
ca

t-
eg

or
iz

ed
.

B
as

ed
on

th
es

e
fin

di
ng

s,
a

co
nc

ep
tu

al
m

od
el

of
th

e
ke

y
m

ea
su

ra
bl

e
el

em
en

ts
of

in
no

va
tio

n
w

as
co

n-
st

ru
ct

ed
fr

om
th

e
fin

di
ng

s
of

th
e

sy
st

em
at

ic
re

vi
ew

.

T
hi

s
st

ud
y

di
sc

us
se

s
th

e
m

et
ho

do
lo

gi
-

ca
l

an
d

pr
oc

es
s

di
m

en
si

on
s

an
d

ou
tli

ne
s

ch
al

le
ng

e
ar

ea
s

th
at

sh
ou

ld
be

re
vi

ew
ed

w
he

n
tr

an
si

tio
ni

ng
to

so
ft

w
ar

e
en

gi
ne

er
in

g
dr

iv
en

op
en

in
no

va
tio

n.

T
he

st
ud

y
sh

ow
s

th
at

op
en

in
no

va
tio

n
ha

s
be

en
a

va
lu

ab
le

co
nc

ep
tf

or
so

m
an

y
fir

m
s

an
d

in
so

m
an

y
co

nt
ex

ts
in

in
no

va
tio

n
m

an
-

ag
em

en
t.

H
ow

ev
er

,
th

e
kn

ow
le

dg
e

ab
ou

t
ho

w
to

do
it

an
d

w
he

n
to

do
it

re
m

ai
n

di
s-

pe
rs

ed
an

d
in

co
m

pl
et

e.

Ta
bl

e
1:

Su
m

m
ar

y
of

ex
is

tin
g

lit
er

at
ur

e
re

vi
ew

s

28 Open Innovation in Software Engineering: A Systematic Mapping Study

3 Research methodology

In this section, we present the literature review methodology, based on the guide-
lines provided by Kitchenham et al. [77] and Petersen et al. [113]. The study was
conducted in six steps outlined in subsections below: I) identification of primary
studies, II) search string development and database search, III) performing includ-
ing and exclusion criteria, IV) data extraction, V) quality assessment through rigor
and relevance, and VI) synthesis and reporting.

3.1 Research questions

The research questions for the mapping study are defined as:

RQ1: Which themes and patterns of OI in SE exist in the literature?

RQ2: How strong is the evidence in favor of or against OI in SE?

3.2 Identification of primary studies

In order to identify the primary studies, following steps were performed, see Figure
1.

1. Identification of 15 control papers [35] from forward snowball sampling
[54, 72].

2. Extraction of studies from databases using a search string: 2805 papers were
identified using a search string

3. Duplicate elimination at the database level: 305 studies were found to be
duplicates, and hence removed.

4. Selection of studies based on abstract, titles and keywords: 2279 papers
were not found relevant and excluded.

5. Filtering based on inclusion/exclusion criteria: 194 additional papers were
excluded after applying the inclusion/exclusion criteria and 27 papers were
found to be relevant and pertain to the scope of this study

6. Backward snowball sampling was applied to scan the reference list of 27
primary papers and enabled us to spot 6 more relevant papers.

We identified 33 studies that directly pertain to the scope of the study. The ad-
ditional studies found by the snowball sampling confirms the usefulness of snow-
balling for identification of potential studies missed by database searches.

3 Research methodology 29

Figure 1: Identification of primary studies

Inspec/Compendix

(1264 Paper)

1. Control papers (15 Papers)

IEEE Explore

(756 papers)

ACM

(31 papers)

Science Direct

(674 papers)

ISI Web of Science

(80 papers)

Refine search string

2. Total studies extracted by Search string
(2805 papers)

3. Duplication at Database level
(2500 Papers)

6. Backward

snowball

sampling
(6 Paper)

Forward

snowball

sampling

4. Filtration based on abstract, tiles, keywords
(221 Papers)

5. Filtration based on inclusion/exclusion criteria
(27 Papers)

DB duplicates

removed

(305 papers)

 Removed based on

Title/abstract

(2279 papers)

discarded based on

inclusion/exclusion

194 papers)

33 Primary papers

Applying Search String

30 Open Innovation in Software Engineering: A Systematic Mapping Study

3.3 Search string strategy

In order to develop the search string, the keywords were aptly derived from 15
control papers, see Figure 1. The search terms are organized into three interven-
tions: T1 includes terms related to open innovation, T2 related to outcomes, T3
related to the research methods.

1. T1: Open Innovation OR Open-Innovation OR OI OR innovation OR inno-
vation management

2. T2: software OR software ecosystem OR product line OR requirement*
engineer* OR requirement* management OR open source

3. T3: exploratory study OR lesson* learn* OR challenge* OR guideline*
OR Empirical investigation OR case study OR survey OR literature study
OR literature review OR interview* OR experiment* OR questionnaire OR
observation* OR quantitative study OR factor*

The interventions are combined using Boolean operators (T1 AND T2 AND
T3) to achieve the desired outcome. We searched the following databases, using
their command interfaces and utilizing expert or advanced search capabilities (the
search strings used per database are reported in Appendix B):

1. ISI Web of Science

2. Inspec and Compendix (Engineering Village)

3. ACM Digital Library

4. IEEE Xplore

5. Science Direct (Elsevier)

The search string was refined, using the control papers as a benchmark, until
the average acceptable level of precision and recall was achieved. A study con-
ducted by Beyer and Wright [12] reported that the recall of the search strategies
ranged from 0% to 87%, and precision from 0% to 14.3%. The final search string
retrieved 13 out of 15 control papers which gives recall of 86.66%. The final
search string achieved precision of 0.52% (13 out of 2500 papers, excluding du-
plicates). Both precision and recall scores are in range with the findings of Beyer
and Wright [12]. The fact that two of the control papers were not captured by
the final search string confirms the observations by Wohlin et al. [152] that using
single search strategies leads to missing studies. Therefore, we combined database
searches with snowball sampling.

3 Research methodology 31

3.4 Inclusion/exclusion criteria

The inclusion/exclusion criteria were derived and piloted. These criteria were ap-
plied simultaneously on studies to make sure we only include studies that pertains
to SE domain and not, for example economics, management or psychology.

Table 2: Inclusion exclusion criteria
Inclusion Criteria (All must apply) Exclusion Criteria (Each apply sepa-

rately)

• Peer reviewed papers, and in
case of duplicate publications,
the priority follows the se-
quence: Journals, Conferences,
Workshops

• The study must be accessible in
full text.

• The study highlights the
research-focused concept of
OI in the context of software
engineering.

• The study that reports the bene-
fits, disadvantages, limiting fac-
tors, and challenges of OI.

• The studies pertaining to the
scope of open source software
used as OI examples

• Factors limiting the adoption of
OI in SE

• Available tools used by the soft-
ware community to support OI
in SE

• Studies that discusses the open-
ness of software producing orga-
nization(SPO)

• All studies from 1969 to 2013

• All gray and white literature

• Non-English articles

• Studies about OI in the manage-
ment and economics context

• Intellectual property rights pa-
pers

• Research on OI not related to SE

• All papers that mentioned only
the use of software to bring in-
novation in the fields other than
SE.

• All articles, which are not within
the field of SE in terms of how to
develop software

• All duplicate studies

The selection of studies was accomplished independently by the two first au-
thors, applying the inclusion/exclusion criteria. In case of uncertainty, the authors
included the papers to next step in order to reduce the risk of excluding the relevant
papers as suggested by Petersen and Bin Ali [112]. Kappa statistics [84] was cal-
culated at multiple steps in order to check the agreement level between the authors.

32 Open Innovation in Software Engineering: A Systematic Mapping Study

First, the Kappa coefficient was calculated on a 10% randomly selected sample of
titles and abstracts and it was found to be 0.37. After discussing and resolving the
disagreements, the Kappa value increased to 0.91. Second, Kappa was calculated
on a sample of randomly selected 50% of papers included into the full text reading
phase while applying inclusion/exclusion criteria. Disagreements were identified
as the Kappa value (0.48) was found to be below the substantial agreement range.
Consequently, after discussing and resolving disagreements [112], the kappa value
increased to 0.95. It is to be noted that the inclusion/exclusion criteria was applied
simultaneously. However, for exclusion it is enough when one exclusion criterion
holds.

3.5 Data extraction and synthesis strategy

The data extraction properties outlined in Table 3 were discussed and finalized
beforehand. Moreover, a spreadsheet was created for the data extraction properties
and also mapped to research questions, see Table 3. The first author performed the
data extraction, supervised by the second and the third authors.

The extracted data was synthesized by performed thematic analysis based on
the guidelines by Cruzes et al. [31]. First, we identified patterns in the data and
then grouped those patterns into distinct themes. Second, in order to check the
trustworthiness of each paper, we used rigor and relevance criteria which helped
us identifying whether or not results are generalizable to the software industry, see
Section 3.6.

3.6 Quality assessment with respect to rigor and rele-
vance

We used the rigor and relevance assessment checklist by Ivarsson et al. [71]. Two
researchers reviewed the ratings and data extraction to ensure objectivity. Each
paper was assigned a score using objective criteria tailored for this mapping study,
see Appendices 1 and 2. The idea behind investigating rigor and relevance re-
sembles the use of a rubric based evaluation in education [71]. Previous stud-
ies [74, 103] have shown that rubrics increase the reliability of assessments in
terms of inter-rater agreement between researchers.

Rigor can be defined as “the research methodology is carried out in accor-
dance with corresponding best practices” [71]. Ivarsson et al. [71] state that rigor
has two dimensions: following the complete reporting of the study, and best prac-
tices. Through aggregating of study presentation aspects from existing literature,
they defined rigor as the degree to which study context (C), design (D), and valid-
ity threats (V) are described. All facets are rated on a scale, i.e. weak, medium,
and strong description, see Appendix 1.

Relevance deals with the impact of a study on industry [71]. It consists of
manifold aspects, namely, relevance of the topic studied [128], ability to apply

3 Research methodology 33

Table 3: The data extraction properties explained and mapped to the research
question

Category Properties RQ Mapping

General informa-
tion

Authors, Title, Year of Publication, Ab-
stract

RQ1, RQ2

Study Type Evaluation research, Solution research,
Validation research, Proposal research

RQ1, RQ2

Research Meth-
ods

Case study, Tool proposal, Survey,
Framework

RQ1, RQ2

Research Prob-
lem

Description of research questions RQ1, RQ2

Outcomes Benefits, limitation, strategies, patterns
related to OI

RQ1

Context Subjects Type (Students/ professional-
s/researchers/mixed), number of sub-
jects, case description, validity threats
to context.

RQ2

a solution in a real world industrial setting with degree of success [153], use of
research methods that facilitate industrial realism [129], and provision of a realistic
situation in terms of users, scale, and context [71]. We followed the suggestion of
Ivarsson et al. [71] to decompose rigor into: users/subjects (U), scale (S), research
methodology (RM), and context (C), see Appendix 2.

3.7 Validity threats

This section highlights the validity threats associated with the systematic mapping
and how they were addressed prior to the study in order to reduce their impact
[122].

Internal validity

The key idea behind conducting the systematic mapping study was to capture avail-
able literature as much as possible without introducing any researcher bias thereby,
internal validity seem to be a major challenge for the study. In order to address the
internal validity concerns, a review protocol was created beforehand and evaluated
by three researchers, which took on roles of quality assurance as well. The internal
validity is enhanced by following the systematic mapping guidelines [113] and the
guidelines for quality assessment criteria [71].

34 Open Innovation in Software Engineering: A Systematic Mapping Study

Construct Validity

Construct validity refers to the presence of potential confounding factors and whether
or not a study was able to capture what was intended in terms of aims and objec-
tives. One important concern for this study was the multiple definitions of OI. In
order to minimize this threat and build on solid foundation, Chesbrough’s concept
of OI is adopted [24].

External validity

External validity refers to the ability to generalize the results to different settings,
situation and groups. The majority of the studies fall into the case study cate-
gory with high rigor and relevance, see Figure 6. Moreover, many studies were
conducted in industrial contexts hence, the results are more general and industry
relevant.

Reliability

Reliability is concerned with to what extent the data and the analysis are depen-
dent on a specific researcher. Multiple strategies were taken into account in order
to enhance reliability. First, there is always a risk of missing out on primary stud-
ies with a single search string for all selected databases. Therefore, 15 control
papers were identified through forward snowball sampling to verify the precision
and recall of the search string. However, this only minimizes the selection bias that
may impact further research steps. We believe that the potential effect of this bias
have a lesser importance in mapping studies than in SLRs. To further substantiate
the search process, backward snowball sampling was applied and resulted in addi-
tional studies pertaining to the context of OI in software engineering (see Figure
1).

Second, quality assessment of the identified studies is sensitive on interpreta-
tion. Therefore, rigor and relevance criteria were applied to increase the objectivity
of this step. The evaluation was performed by the first author and reviewed by the
remaining authors. Moreover, we created a data spread sheet and mapped research
questions with the data extraction properties in order to comply with the objectives
of this study. Besides, all studies were rated according to the rigor and relevance
criteria tailored from Ivarsson et al. [71] and data extraction properties from each
paper were reviewed by two researchers in the study.

4 Results and analysis

In this section, the results of the mapping study analysis are reported. We give
an overview of the time distribution and categorize the studies based on research

4 Results and analysis 35

Figure 2: Distribution of studies over publication years

methodology used. An analysis of the themes studied is reported, followed by a
detailed description of each theme.

4.1 Distribution of OI studies

33 primary studies about OI in software engineering were found, distributed by
their publication year in Figure 2. The scholarly interest in OI seems to be growing
at a steady pace since its introduction in 2003 with a maximum annual rate of 8
studies published in 2009. However, the trend declines after that, and it it hard to
assess why, since the interest in OI seem to grow in general [68].

4.2 Categorization based on research methodology

Primary studies found are categorized into the research methodology (i.e. case
study, experiment, survey etc) and type of the study (i.e. evaluative, proposal,
solution, opinion etc) dimensions. The horizontal axis in Figure 3 represents re-
search methodologies defined by Runeson et al. [122] and vertical axis represents
the classification of studies established by Wieringa et al. [146]. Evaluations, us-
ing case study research methodology dominate among the identified papers with
20 papers, among which two were interview studies that we consider qualitative
case studies. Evaluations, using survey research methodology was found in 7 pa-
pers. We classified only 2 papers in each of the framework–proposal and case

36 Open Innovation in Software Engineering: A Systematic Mapping Study

Figure 3: Research methodology classification based on Runeson et al. and
Wieringa et al. [122, 146]

study–proposal categories. Finally, the categories case study–validation and tool
proposal–solution received only 1 paper each and no papers were identified in the
case study solution category.

4.3 Thematic analysis

The main objective behind conducting this analysis is to find the recurring themes
in the identified primary studies. Based on the guidelines provided by Cruzes et
al. [30, 31], we performed the following analysis steps:

1. Extract data from the primary studies

2. Identify the interesting themes from the data

3. Group the themes into the distinct categories

4. Assess the trustworthiness of the identified themes using rigor and relevance
criteria

The resulting 9 themes of OI in software engineering are depicted in Figure 4.
Figure 5 provides a more detailed view on the identified themes using the mind
map technique, where the 33 primary studies are referred to as S_1 to S_33. In
order to assess the trustworthiness of the identified themes, the rigor and relevance

4 Results and analysis 37

Figure 4: Identified Open Innovation themes in Software Engineering

analysis is performed and its results are visualized in Figure 6. Details on the
primary studies and the rigor an relevance scores are reported in the appendix,
Table 1. The rigor and relevance scores are used to find the evidence in favor and
against OI in SE (research question RQ2). The results from less relevant and less
rigorous studies have weaker empirical support than those stemming from highly
relevant and rigorously conducted primary studies. There can also be promising
highly relevant studied that were conducted with low rigor.

Studies are organized into four quadrants (A, B, C and D) according to their
rigor and relevance scores. The procedure for classification was as follows:

1. Studies with the score from (0–1.5) are considered as low rigor, while high
rigor is defined for a score of 2 or above.

2. Studies with the score from (0–2) are considered as low relevance, while
high relevance covers scores from 2.5 or above.

We classified 17 studies as having the highest rigor and relevance, see area A
in Figure 6, and these results are the most trustworthy. Moreover, we classified
12 studies into C category of studies with high relevance but low rigor. On the
other hand, categories B and D contain two studies each and in for both categories
the relevance scores were higher than the rigor scores, see Table 1. The identified
themes are are presented in the subsections below, sorted according to the number
of categorized studies.

38 Open Innovation in Software Engineering: A Systematic Mapping Study

Fi
gu

re
5:

M
in

d
M

ap
of

O
Ii

n
SE

4 Results and analysis 39

Figure 6: Categorization of studies based on rigor and relevance

OI Strategies/Instruments

The software industry is characterized by frequent technological changes which
force large incumbent firms to more rapidly innovate their strategies in the pur-
suit to sustain their current revenue levels. OI strategies focus on how innovation
networks and strategies can be used to participate, orchestrate or govern this tech-
nologically unstable environment.

Research and development (R&D) collaboration strategies seem to help or-
ganizations to attract and establish communities and to stay competitive. This
strategy is also visible among the firms that adopt OI to enhance their innovation
process in nine primary studies (S_3, S_5, S_6, S_13, S_15, S_19, S_25, S_26,
S_29). Six out of these studies (S_3, S_6, S_13, S_15, S_25, S_29) were con-
ducted with high rigor and relevance, see category A in Figure 6. The remaining
three studies (S_5, S_19, S_26) were classified into category C which indicate that
the studies have relatively low rigor but still their results are highly relevant.

Looking at the primary studies with high rigor and relevance scores, the re-
sults of one study (S_3) indicated that firm’s human capital affects the adoption
of OI business strategy among the Finnish software companies. Consequently, the
companies that have larger academically educated staff more often apply OI busi-

40 Open Innovation in Software Engineering: A Systematic Mapping Study

ness strategies. Harison and Koski (S_3) stated the reason for that is the ties be-
tween the OSS communities and universities. Smaller companies (start-ups) tend
to apply more open innovation strategies compared to large and older firms. This
interpretation seems reasonable since smaller companies often leverage OSS to
acquire knowledge and substitute of a comparable depth as for the in-house R&D
capabilities that they lack. Overall results suggest that a more positive attitude
towards openness enables firms to better share in the benefits of open innovation
processes (S_6).

In a study about implementing a private collective model at Nokia (S_13), a
number of mitigation strategies were adopted. Nokia had the evidence of their
competitors using their source code, therefore, they partially revealed their source
code to retain control and information, and future plans leakage was protected
through non-disclosure agreements. Moreover, the development control was com-
promised by involving communities, hiring key developers and upstream participa-
tion, which resulted in no single vendor being able to control the platform. Besides
that, Nokia opened up and communicated the structure of its internal processes.

Dahlander and Magnusson (S_15) highlight that in order to address the emerg-
ing challenges of the public-private development model, such as attracting out-
siders to work in their community, companies are releasing the code under open
source licenses and in this way are establishing new communities or using existing
communities. At the same time, companies often adopt licensing practices that
clarify ownership, devoting resources to evaluate source code and give feedback
on source code to communities.

One of the main conclusions of Grøtnes’ study (S_29) is that the open inno-
vation takes place in neutral arenas like standardization, and outside-in, inside-out
and coupled processes are used to create new technological platforms. A more re-
stricted membership gives a separate outside-in and inside-out process while open
membership leads to a coupled process. A key difference can be explained by the
example of Android that was available for invited firms only, while open member-
ship is open for all. Open membership creates a modular innovation that embeds
new radical innovations like mobile TV, while Android creates an architectural
innovation with possibilities for further radical innovations.

Similarly, Deutsche Telekom (S_25) used Foresight workshops, executive fo-
rums, Customer integration, Endowed chairs (opening doors to academia world),
Consortia projects (cost sharing of complex projects), Corporate Venture Capitalist
(window to innovation in the start-up community and technology sourcing through
co-investing), Internet platforms, Joined development, strategic alliances, spin-
outs (external commercialization of internal R&D results in technologies, products
or services) and test market (equipping a city with next generation infrastructure)
to take advantage of open innovation, see Figure 5.

Looking at the studies performed with less rigor, West and Gallagher (S_5)
argued that companies employing strategies such as pooled R&D/product devel-
opment (firms sharing the R&D), spin-outs and selling complement and attracting

4 Results and analysis 41

donated complements, easier overcome the following challenges: 1) the generation
and contribution of external knowledge (motivating), 2) incorporating the external
innovation into firms resources and capabilities (incorporating), 3)diversifying the
exploitation of intellectual property (IP) resources (maximizing).

The most noted example of pooled R&D is the Mozilla project, initiated by
Netscape in response the competitive pressure from Microsoft Internet Explorer
(IE). Vendors such as IBM, HP and Sun needed a Unix based browser to increase
sales of Internet connected workstations and therefore donated some of their IPs
to the open source development lab (OSDL), while exploiting the common advan-
tages of all the contributors to expedites the sale of related products. Similarly,
spin-out (shared R&D between firms and a community) can also release the po-
tential IP from the firm that is not creating the value anymore. Thereby, the firms
transform internal development projects to externally visible open source projects.

Consequently, the donated IP generates demands for other products and ser-
vices that the (donor) firms continued to sell. An examples of a spin-out is when
IBM promotes the Java programming language, developed by Sun Microsystems,
to compete with Microsoft. IBM was still able to generate revenue from sales of
hardware and supporting services in the Java world. Selling complements is used
by firms to build upon the already existing products and succeed through differ-
entiation strategy and in contrast, donating complements are more feasible when
selling to technically professional buyers, capable of making modification and im-
provements, such as hobbyist programmers or corporate engineers.

In addition, Dittrich and Duysters (S_19) also addressed the difference be-
tween exploration (seeking radical innovation) and exploitation (seeking incre-
mental innovation) strategies adopted by firms to sustain their position in rapidly
changing technological environments. Exploration networks make use of flexible
legal organizational structures, whereas exploitation alliances are associated with
legal structures that enable long-term collaboration. Nokia followed an exploita-
tion (incremental innovation) strategy in the development of the first two gener-
ations of mobile telephony devices, and an exploration (radical) strategy in the
development of technologies for the third generation. Such inter-firm networks
seem to offer flexibility, speed, innovation, and the ability to adjust smoothly to
changing market conditions and new strategic opportunities.

While studying the case of embedded Linux (S_26) Henkel found that hob-
byists and developers in universities reveal nearly all of the code in contrast to
companies. In particular, the more important it is to obtain external development
support, the more code the respective firms reveal.

Challenges

This theme highlights business and process related challenges (S_4, S_9, S_12,
S_14, S_15, S_21, S_24, S_13) faced when firms try to adopt open innovation,
summarized in Table 4. Business related challenges refer to business strategy

42 Open Innovation in Software Engineering: A Systematic Mapping Study

(S_9, S_13, S_14), entry barriers (S_15, S_21) and governance (S_12, S_24).
Governance refers to establishing measurement and control mechanisms to enable
project managers and software developers within the communities as well as others
within a software development organization, to carry out their roles and responsi-
bilities [25]. Process related challenges consider hinders in strategy realization.

Facets Challenges

B
us

in
es

s Business strategy

• Unclear content and contribution strategy (S_14)

• Contribution time-line unclear (S_14)

• Minimize modifications to the open source code (S_14)

• Unclear relationship between the benefits from contributions in
terms of strategy and business goals (S_14)

• Be strategic when adopting innovative features (S_14)

• Balancing the interests of those participants against those of the
ecosystem leader (S_9)

• Difficulty to differentiate (S_13)

• Guarding business secrets (S_13)

• Definition of core competencies (S_21)

• Legal and property rights issues concerning the external know-
ledge (S_21)

Strategic OI entry barrier

• Accessing communities to extend the resource (S_15)

• Reducing community entry barriers base (S_13)

• Aligning firm strategies with the community (S_15)

• Community build-up and management (S_21)

• Achieving a common vision (S_12)

• Finding staff/ Competencies (S_24)

• Lack of expertise (S_24)

Governance

• Expectation management of community (S_21)

• Increasing knowledge sharing and exchange (S_12)

• Achieving a high level of commitment (S_12)

• Giving up control (S_13)

• Lack of support (S_24)

• Lack of ownership (S_24)

4 Results and analysis 43

Facets Challenges

Pr
oc

es
s Agile processes

• The new approach caused significant problems in terms of trans-
ferring the ideas outside the team (S_4)

• Visibility as to what the new [agile] team were doing dropped
quickly. The introduction of agile coincided with a rapid drop
in the number of developers from that team attending the overall
R&D meetings. (S_4)

• The use of short iterations, a feature backlog and stand-up meet-
ings reduced the amount of time you can spend playing around
or sharing ideas outside your team (S_4)

• Motivating the generation and contribution of external know-
ledge (Motivating) (S_4)

• Incorporating external innovation into firms resources and capa-
bilities (Incorporating) (S_4)

• Diversifying the exploitation of intellectual property (IP) re-
sources (Maximizing)(S_4)

Relation between process and innovation

• Augmenting the requirements management process (S_14)

• Manage innovative features in a separate process (S_14)

• Top-down or bottom-up open innovation (S_14)

Release planning and prioritization

• Prioritization process needs modification (S_14)

• Challenging acceptance criteria kills innovative features (S_14)

• Need for special flow for innovative features to evolve to meet
acceptance criteria (S_14)

• Release planning even more challenging (S_14)

• Prioritizing the conflicting needs of heterogeneous ecosystem
participants (S_9)

• Assimilating communities in order to integrate and share results
(S_15)

• Efficient process management (S_21)

• Lack of Road-maps with OSS Products (S_24)

• Overcoming Not Invented Here (S_21)

Table 4: OI challenges categorized in business and process themes.

As can be seen in Table 4, business and process level challenges are considered
to be major hindering factors for the adoption of OI. Finding the right balance

44 Open Innovation in Software Engineering: A Systematic Mapping Study

between contributing to community and reaping benefits is tough, and thus results
in unclear business strategies (S_14). One of the biggest concerns is the difficulty
in differentiation if a firm indulge itself in an OSS solution and guard its business
secrets because its competitors have the same solution available for their products
(S_14). Other challenges are: managing the conflicting needs (S_9) of all players
involved in the process, aligning the firm’s strategy with community (S_15) and
achieving a common vision (S_12). Even if a firm has a clear business strategy
to resolve the often conflicting stakeholders’ needs, the challenge of community
build up and survival remains (S_21). Therefore, firms and communities need to
find the right balance of governance(S_13).

On the other hand, process related challenges are negatively impacting OI. For
instance, Conboy and Morgan (S_4) suggest that agile and OI do not get along
well, especially when dealing with the management of innovative requirements
and release planning. Agile requirements backlogs do not have room for innova-
tive requirements since short iterations, a feature backlog and stand up meetings
make it extremely tough to play around or share ideas outside your team. The
lack of control over release planning was also pointed out as a challenge in a study
(S_11), for example, sometimes it is a better business decision to adopt the open
source code, perform minimum changes, and sell it instead of spending time on
developing differentiation features. This raises a question whether or not firms
should have a separate requirements management process for innovative features
(S_11), but nevertheless there is an inherent complexity in requirement manage-
ment process while managing innovative features. Further process challenges in-
clude the lack of clear roadmaps for product highly dependent on OSS platforms
and overcoming the “not invented here” mentality.

The majority of the primary studies highlighting the challenges lie in categories
A (S_13, S_14, S_15, S_24) and C (S_4, S_9, S_12) suggesting that results are
highly relevant to industry Only one study (S_21) lie in category D.

Benefits

This category highlights the OI adoption benefits in terms of positive impacts as-
sociated with the inside-out, outside-in, coupled processes and the private collec-
tive model (S_10, S_12, S_13, S_20, S_23, S_24, S_26, S_31). The benefits are
summarized in Table 5. As far as the strength of evidence is concerned, five pa-
pers (S_10, S_13, S_23, S_24, S_31) lie in category A and two studies (S_12,
S_26) fall into category C. The fact that only one study (S_20) has low rigor and
relevance suggests that the identified OI adaption benefits are highly relevant for
industry.

4 Results and analysis 45

Facets Benefits

Pr
oc

es
s Knowledge building and exchange

• Knowledge sharing and exchange (S_12)

• Low knowledge protection costs (S_13)

• Easy access to all information (S_12)

• Increases organizational learning (S_12)

• Improves collaboration with groups in Europe, USA, India
(S_12)

• Customer demand for source code has a significant (5%), posi-
tive effect on the decision to reveal at all (S_31)

Platform and reuse

• Improves platform use (S_12)

• Promotes software reuse (S_12)

• Increases trust in platform (S_12)

Communication

• Direct communications (S_12)

• Supporting OI in an existing social network site lowers the hur-
dles for expressing and communicating ideas (S_20)

Involvement and innovation support

• Improves involvement of product teams (S_12)

• Improves feedback by being open (S_12)

• Avoidance of duplicate work (S_12)

• Empowers developers and project leaders (S_12)

• Introduces diverse people to each other, adding more heteroge-
neous viewpoints to ideas (S_20)

• The process acts as a catalyst for ideas: while it does not help
with the initial conception of an idea, it makes all following steps
easier (S_20)

• Executing the OI might result in the realization of ideas and
broadening companies offering (S_20)

• Developer/Tester Base (S_24)

• Flexibility of use (S_24)

46 Open Innovation in Software Engineering: A Systematic Mapping Study

Facets Benefits

B
us

in
es

s Time to market, cost, maintenance and efficiency

• Reduces time to market (S_12)

• Cost savings (S_12)

• Increases efficiency in development (S_12)

• Reduced maintenance effort (S_26)

• Bug fixes by others (S_26)

• Small firms reveal significantly more due to resource scarcity
(S_26)

• Further development by others (S_26)

Innovation

• Increases innovative capacity and speed (S_12)

• Adoption of innovation (S_13)

• Increased innovation at lower costs (S_13)

• Encourages innovation (S_24)

• The OI technology scouting is positively associated to the SME’s
innovative performance (S_10)

• Communities provide SME’s a rich of free-of-charge (S_23)

• Increases collaboration (S_24)

Improved competitiveness and other business gains

• Extra business functionality (S_24)

• Improves adoption rate of the platform (S_12)

• New competitive weapon for managers in non market leaders
firms (S_31)

• Reputation gain (S_13)

• Revealing good code improves our company technical reputation
(S_26)

• Distribute ownership and control (S_12)

• Learning effects (S_13)

• De-facto standards (S_24)

Culture change

• Public success stories might create a culture of innovation (S_20)

• Firm reveals all of its drivers is positively related to the impor-
tance of technical benefits (S_31)

• External factors are less, and firm characteristics more important
for selective revealing. (S_31)

4 Results and analysis 47

Facets Benefits

Table 5: OI Benefits categorized in business and process themes

The benefits are divided into the process and business related, see Table 5.
OI allows firms to find a pool of skilled labor outside their boundaries without
a significant cost. This external labor provides feedback and enables knowledge
exchange between the community and the firms (S_12). Organizational learning
is another important benefit, where OI often gathers diverse people with similar
interests, adding more heterogeneous viewpoints to ideas (S_12). However, it is to
be noticed that OI does not help with initial conception of an idea; rather it acts as
a catalyst for ideas, and might also result in the idea realization. Consequently, OI
provides opportunities to offer more choices to consumers and possibly broaden
the firms’ offerings. Furthermore, knowledge sharing and exchange lead to avoid-
ance of duplicate work and encourages software reuse. Analyzing behavior of
firms unveil that one third of the firms reveal no source code at all, and another
one third of the firms reveal an amount between 0 to 100 %, while the remaining
firms reveal all their source code. Customer demands are reported as the key factor
that causes the firms to reveal the source code (S_31).

OI also brings business advantages, outlined in Table 5. OI involvement en-
ables efficient development processes (S_12), reduces development cost (S_12),
and increases innovation capacity (S_12). OI can also help to reduce time to mar-
ket and can permit firms to build and maintain a good repute from code revealing
(S_13), public success stories and innovation culture (S_20). Finally, findings
suggest that by being open, companies can significantly increase their competi-
tive advantage and managers from the companies that are not market leaders may
consider it as the competitive weapon against their competitors (S_12).

Enabling OI communities

This theme refers to communities as distributed groups of individuals, aiming at
solving a general problem and/or developing a new solution supported by com-
puter mediated communication. The solutions developed in the community can be
used in conjunction with the firms’ internal capability to develop competitive ser-
vices and products. In particular, this theme uncovers strategies adopted by firms to
use communities as complementary assets, positive impacts of the community on
firms’ innovation and challenges associated with it (S_1, S_6, S_8, S_21, S_33),
see summary in Table 6.

As can be seen in Table 6, firms exploiting communities in their innovation
process not only gain a good reputation but also influence the direction of devel-
opment and legitimate the use of projects (S_1, S_6). Having an employee in the
community seems to be the key to enabler of these advantages. Thus, companies

48 Open Innovation in Software Engineering: A Systematic Mapping Study

R
ef

Po
si

tiv
e

Im
pa

ct
s

N
eg

at
iv

e
fin

di
ng

s
St

ra
te

gi
es

S_
1

•
C

re
at

es
go

od
re

pu
ta

tio
n

•
L

eg
iti

m
iz

es
th

e
us

e
of

th
e

pr
oj

ec
t

•
C

om
pa

ni
es

ca
n

in
flu

en
ce

th
e

de
ve

lo
p-

m
en

td
ir

ec
tio

n
fo

rt
he

se
co

m
m

un
iti

es

•
N

o
cl

ea
r

ev
id

en
ce

th
at

fir
m

sp
on

so
re

d
in

di
vi

du
al

s
ar

e
ab

le
to

or
ch

es
tr

at
e

or
st

im
ul

at
e

de
ba

te
w

ith
in

th
es

e
co

m
m

un
iti

es

•
In

di
vi

du
al

s
w

ith
af

fil
ia

tio
ns

w
ith

la
rg

e
in

cu
m

be
nt

s
in

th
e

so
ft

w
ar

e
in

du
st

ry
ha

ve
no

si
gn

ifi
ca

nt
ef

-
fe

ct
in

th
e

co
m

m
un

ity

•
O

th
er

so
ft

w
ar

e
co

m
pa

ni
es

m
ay

no
t

de
vo

te
th

ei
r

be
st

em
pl

oy
ee

s
to

w
or

ki
ng

in
th

e
co

m
m

un
ity

or
m

ay
on

ly
pa

ss
iv

el
y

sc
re

en
de

ve
l-

op
m

en
ts

•
A

m
an

on
th

e
in

si
de

to
be

ab
le

to
ga

in
ac

ce
ss

to
co

m
m

un
iti

es

4 Results and analysis 49

R
ef

Po
si

tiv
e

Im
pa

ct
s

N
eg

at
iv

e
fin

di
ng

s
St

ra
te

gi
es

S_
6

•
A

m
or

e
po

si
tiv

e
at

tit
ud

e
to

w
ar

ds
re

ve
al

-
in

g
w

ill
en

ab
le

fir
m

st
o

be
tte

rs
ha

re
in

th
e

be
ne

fit
s

of
op

en
in

no
va

tio
n

pr
oc

es
se

s

•
To

o
op

en
be

ha
vi

or
by

fir
m

s
pr

o-
gr

am
m

er
s

w
ou

ld
be

co
m

m
er

-
ci

al
ly

ha
rm

fu
l

•
M

an
ag

em
en

t
is

no
t

al
w

ay
s

in
-

fo
rm

ed
ab

ou
t

th
is

sh
ar

in
g

an
d

ha
s

br
oa

d,
bu

t
no

ne
th

el
es

s
lim

-
ite

d
m

ea
ns

of
m

on
ito

ri
ng

it

•
M

an
ag

em
en

t
m

ay
ov

er
es

tim
at

e
th

e
ri

sk
of

cr
iti

ca
l

co
de

le
ak

in
g

ou
t

•
Sp

on
so

r
pr

ov
id

es
m

on
et

ar
y

re
-

w
ar

ds
to

co
nt

ri
bu

to
rs

•
E

m
pl

oy
ee

re
fe

rr
al

s
to

at
tr

ac
t

co
nt

ri
bu

to
rs

•
T

he
fo

ca
l

fir
m

m
ig

ht
co

ns
id

er
la

un
ch

in
g

its
ow

n
pu

bl
ic

O
SS

pr
oj

ec
t

in
or

de
r

to
at

tr
ac

t
pr

ag
-

m
at

ic
O

SS
de

ve
lo

pe
rs

S_
8

•
Fe

at
ur

e
gi

ft
s

(n
ew

fe
at

ur
es

in
st

ea
d

of
ex

-
te

ns
io

n
of

ex
is

tin
g

fe
at

ur
es

)
•

N
/A

•
Pa

rt
ic

ip
an

ts
ha

vi
ng

an
ac

tiv
ity

(i
.e

.
re

po
rt

bu
gs

,
of

fe
r

bu
gs

fix
et

c.
)

ar
e

m
or

e
lik

el
y

to
be

gr
an

te
d

ac
ce

ss
to

th
e

de
ve

lo
pe

r
co

m
m

un
ity

50 Open Innovation in Software Engineering: A Systematic Mapping Study

R
ef

Po
si

tiv
e

Im
pa

ct
s

N
eg

at
iv

e
fin

di
ng

s
St

ra
te

gi
es

S_
21

•
In

cr
ea

se
of

id
ea

to
rs

an
d

th
er

ef
or

e
id

ea
s

•
St

ro
ng

cu
st

om
er

or
ie

nt
at

io
n

si
nc

e
us

er
s

ca
n

ar
tic

ul
at

e
w

is
he

s
di

re
ct

ly

•
Po

ss
ib

ili
ty

to
us

e
w

is
do

m
of

th
e

cr
ow

ds
to

ha
nd

le
hi

gh
nu

m
be

ro
fi

de
as

•
N

ew
fo

rm
s

of
ev

al
ua

tio
n

w
ith

be
tte

r
re

-
su

lts

•
M

or
e

an
d

be
tte

r
id

ea
s,

co
nc

ep
ts

an
d

pr
od

uc
ts

•
In

cr
ea

se
in

ef
fic

ie
nc

y
an

d
ef

fe
ct

iv
ity

•
C

om
m

un
ity

bu
ild

-u
p

an
d

m
an

-
ag

em
en

t

•
O

ve
rc

om
in

g
N

ot
In

ve
nt

ed
H

er
e

•
Te

ch
ni

ca
lr

ea
liz

at
io

n
of

ex
te

rn
al

in
te

rf
ac

es

•
L

eg
al

an
d

pr
op

er
ty

ri
gh

ts
is

su
es

co
nc

er
ni

ng
th

e
ex

te
rn

al
kn

ow
-

le
dg

e

•
E

xp
ec

ta
tio

n
m

an
ag

em
en

t
of

co
m

m
un

ity

•
D

efi
ni

tio
n

of
co

re
co

m
pe

te
nc

ie
s

•
E

ffi
ci

en
tp

ro
ce

ss
m

an
ag

em
en

t

•
N

/A

4 Results and analysis 51

R
ef

Po
si

tiv
e

Im
pa

ct
s

N
eg

at
iv

e
fin

di
ng

s
St

ra
te

gi
es

S_
33

•
O

I
co

m
m

un
iti

es
pr

od
uc

e
co

m
pl

em
en

-
ta

ry
as

se
ts

th
at

ar
e

of
si

gn
ifi

ca
nt

va
lu

e
to

fir
m

s

•
Pr

ov
id

e
fir

m
sw

ith
th

e
ta

ci
tk

no
w

le
dg

e
to

ad
dr

es
s

so
m

e
of

th
e

te
ns

io
ns

th
at

ar
is

e
in

fir
m

-c
om

m
un

ity
in

te
ra

ct
io

n

•
L

im
ite

d
re

so
ur

ce
ba

se
of

sm
al

lfi
rm

s
ex

-
er

ts
a

ce
ili

ng
-e

ffe
ct

on
th

e
op

tim
al

le
ve

l
of

co
m

m
un

ity
in

vo
lv

em
en

t

•
A

bo
ve

-a
ve

ra
ge

le
ve

ls
of

te
ch

ni
ca

l
co

m
-

m
un

ity
pa

rt
ic

ip
at

io
n

lim
it

th
e

fin
an

ci
al

pe
rf

or
m

an
ce

of
sm

al
lO

SS
fir

m
s

•
fo

r
sm

al
l

fir
m

s,
in

iti
al

in
cr

ea
se

s
in

in
-

vo
lv

em
en

ti
n

th
e

co
m

m
un

iti
es

ha
s

a
po

s-
iti

ve
im

pa
ct

on
th

ei
r

fin
an

ci
al

pe
rf

or
-

m
an

ce

•
C

on
tr

ib
ut

in
g

en
ta

ils
si

gn
ifi

ca
nt

co
st

s
in

te
rm

s
of

re
so

ur
ce

In
ve

st
-

m
en

ts
an

d
lo

ss
of

st
ra

te
gi

c
as

se
ts

th
at

m
ay

re
su

lt
in

de
cr

ea
si

ng
re

-
tu

rn
s

•
in

te
rn

al
an

d
ex

te
rn

al
so

ur
ce

s
of

in
no

va
tio

n
ar

e
co

m
pl

em
en

ts
ra

th
er

th
an

su
bs

tit
ut

es

Ta
bl

e
6:

St
ud

ie
s

in
th

e
O

Ic
om

m
un

ity
th

em
e

52 Open Innovation in Software Engineering: A Systematic Mapping Study

use employee referrals or offer individuals monetary rewards to exploit communi-
ties. Besides, initiating OSS projects is an alternative way for attracting pragmatic
OSS developers (S_6).

Using the wisdom of crowds, and direct articulation of user wishes (S_8, S_21)
help organizations receive new features from communities instead of extensions of
already existing features. Albeit claimed that OI can bring benefits to both small
and large companies, small firms with limited resources exert a ceiling effect on
community involvement. OI should, in those cases, be used as a complemen-
tary asset to accelerate internal innovation and R&D processes of the organization
(S_33). On the other hand, OI does have its cost when companies might procure
the outcome of the community participation, but at the same time not be willing
to devote their best resources to work in the communities (S_1, S_6). In addition,
it remains unclear how to orchestrate or stimulate debates within communities,
thereby making it hard for firms to achieve their goals. Consequently, too open
behavior might be potentially harmful and contributions without selective reveal-
ing strategy could entail significant cost in terms of programming resources and
loss of strategic assets that may result in decreasing returns (S_21, S_33). As far
as the trustworthiness of results of these studies is concerned based on rigor and
relevance (see Figure 6), 5 studies (S_1, S_6, S_8, S_33) lie in category A except
for one study (S_21) in category D.

Managerial implications

This category includes six studies that focus on the recommendations for man-
agers how and when to indulge in open innovation, in order to increase firms in-
novative performance (S_7, S_15, S_17, S_22, S_32, S_33), see Figure 4. The
primary study (S_17) suggests that firms working in open source settings can pur-
sue differentiation strategies to achieve openness, without really distancing their
developers from the communities. The openness is most realized at the component
level and differs significantly between software and hardware components. Open-
ness of software seems to be more important to the community than openness of
hardware. Thus, companies may get involved in open source software initiatives
and secure their competitive position by capturing more value or differentiation in
hardware. Managers could enhance the degree of innovation and performance of
their firms in a number of ways. Among them, firms should consider getting access
to skilled resources, and learning by encouraging their employees to participate in
the communities, instead of free riding (S_33).

Moreover, firms operating in hostile environments, motivate managers to draw
knowledge out of end users and communities (S_32). However, most often it is
not a straightforward decision for managers to participate in communities or draw
knowledge from end users. A survey conducted in Dutch software industry re-
vealed that managers are confronted with too little available time, resources, lack
of commitment, and often the wrong strategy to indulge themselves in the commu-

4 Results and analysis 53

nities (S_22). Furthermore, firms need to develop sufficient absorptive capacity to
benefit from external knowledge and to find interesting tasks for community partic-
ipants to keep them motivated (S_15). To underline the strengths of the evidence,
Figure 6 depicts four studies (S_17, S_33, S_32, S_15) classified in category A
with high rigor and relevance, while two studies (S_7, S_22) fall in category C
that have high industry relevance but relatively low rigor.

OI Models/Framework

This theme includes the models or frameworks (S_7, S_11, S_13, S_20, S_27).
Two studies (S_27, S_13) lie in category A and three studies (S_7, S_11, S_20)
fall into category C, B and D respectively, see Figure 6. Jansen et al. presents an
open software enterprise model (OSE) for determining the openness of a software
producing organization (S_27). An organization can choose to be open on both
supply and demand sides of the supply chain. This happens typically by opening
up development on the side of software developers and contributors, or opening
up service delivery on the side of service partners who deploy, configure, and
service the software platform produced by the organization. However, the paper
lacks clear guidelines how to execute these activities using software engineering
techniques or processes.

Stuermer et al. (S_13) focuses on the private-collective innovation model
which proposes incentives for individuals and firms to privately invest resources
to create public goods innovations. Such innovations are characterized by non-
exclusivity and non-rivalry in consumption. Stuermer et al. examined Nokia’s
Internet Tablet development and identified five hidden costs: difficulty to differ-
entiate, guarding business secrets, reducing community entry barriers, giving up
control, and organizational inertia.

Ebner et al. (S_7) highlight the idea of competition as a method to nurture a
virtual community for innovations. Similarly, Wnuk et al. (S_11) proposed a soft-
ware engineering framework, designed to foster open innovation by designing and
tailoring appropriate software engineering methods and tools. The framework is
divided into the technical (e.g. requirements engineering, software design, devel-
opment and testing techniques etc.) and methodological dimensions. Singer et al.
(S_20) envisions a 7 step innovation process as a conceptual solution. The process
covers an idea life-cycle from its creation to its realization and is exemplified on
an IT-related example.

Degree of openness

Openness of a software producing organization is explicated by revealing the pro-
prietary information. Existing and potential intellectual property rights are vol-
untarily given up to the interested parties in order to make them accessible. This
theme comprises three studies that not only contain different forms of open strate-
gies (S_16, S_17), but also presents an open enterprise software (OSE) model

54 Open Innovation in Software Engineering: A Systematic Mapping Study

developed in order to assess the openness of organizations (S_27). West (S_16)
claims that proprietary platforms are more suitable for market leaders and open
standards are more feasible when propriety strategies fail. Besides, differentiation
can be achieved through opening some parts, by disclosing technology under such
conditions that it will only provide value to customers, without really giving away
the advantage to competitors. Open source provides direct benefits to many users
who lack the requisite technical skills to do their own development.

Balka et al. (S_17) state that transparency, accessibility and replicability are
important to open design communities. They present an open software enterprise
model that suggests that openness can quickly create critical mass of developers
or partners around the software product if the surrounding partners are prepared to
enter in the ecosystem in any of roles, such as developers, values added resellers,
service partners or customers. However, Balka et al. also suggest that openness is
not always beneficial to the organization and mention the role of partnerships in
software producing organizations as a form of openness (S_17). It is also noticed
that openness often leads to creation of new business models. All above men-
tioned results carry more industry relevance, since two studies (S_17, S_27) lie in
category A, and one study (S_16) in category C with high relevance and low rigor.

Intellectual property (IP) strategies

This theme refers to strategies used by firms to share IP among stakeholders in
the OI context. Rayna and Striukova (S_18) investigated open source vs. patent
pools as innovation structures, however the study has low relevance according
to Figure 6. Patent pools are comprised of multi-party ownership and include
not only current patents, but may also include future changes to these patents.
Typically, all patents in a patent pool are available to each member of the pool.
In contrast, the open source structure is based on the copy-left paradigm instead
of intellectual monopoly rent paradigm, where the source code as well as any
subsequent modifications and improvements are released, not only to the members
of the project, but to the whole community. This study (S_18) compares two OI
structures in terms of risks, cooperation, financial/non-financial benefits, standards
and their feasibility.

Rayna and Striukova (S_18) argue that patent pools and open source have
common risks and benefits. For instance, the key risks are associated with in-
tellectual property right (IPR) infringement, bad publicity and discouraged further
investment. On the other hand, benefits can be reaped in terms of decreased R&D
expenditure and transaction cost, access to skilled resources and increased future
business opportunities and reputation. Besides that, open source is exclusive in ap-
plication but universal in access while patent pools are universal in application but
exclusive in access. Therefore, it is more suitable for large companies to initiate
or adopt patent pools compared to small companies or start-ups. Small comp-
anies may find additional benefits in terms of having a chance to set a standard

5 Discussion 55

in open source and give them access to highly skilled work force, and thereby re-
duce the development cost. Finally, patent pools are often formed based on prior
knowledge unlike open source that generates new knowledge based on skills and
competences.

OI toolkits

This theme includes the toolkits developed in order to involve end users into firms’
internal innovation process. Given that international firms often operate in hostile
environments, limited evidence (S_2, S_28, S_32) was found related to the use
of user innovation toolkits and its impacts on firms innovative performance. As
far as the strength of evidence is concerned, one study (S_32) was found in cat-
egory A and remaining two studies (S_2, S_28) fall into category C, see Figure
6. Wang et al. concluded that innovation toolkits improve the innovation outcome
and productivity for users with knowledge and experience. We identified only one
toolkit, namely INOVEX (S_28), that is used by software producing organizations
to extract knowledge from end users. When it comes to utilizing the end user
knowledge, evidence suggests that larger firms seem to exploit end users online
less than the smaller firms (S_32). This could be due to the fact that small firms
are having more open search strategies caused by a lack of skilled resources and
the need to reduce the development cost.

5 Discussion
The synthesized evidence in this study suggests that smaller companies (start-ups)
have higher tendency to adopt OI compared to incumbents. This trend makes
sense when we consider start-ups engaging themselves in OSS solution in order
to quickly acquire knowledge and R&D capabilities. OI provides initial financial
gains for small companies, but also limits their financial performance when the
level of participation increases above the average. Thus, in order to reap the finan-
cial benefits, it seems important to have high absorptive capacity to properly catch
the technical know-how from the available knowledge. Large companies should
encourage their developers to participate in communities for improved knowledge
sharing and for obtaining heterogeneous viewpoints on ideas.

The primary studies classified in the OI strategies category (Section 4.3) indi-
cate that both small and large companies explore the OI potential, but in different
ways. For smaller companies, adapting OSS solutions seems to provide the most
benefits, while larger companies also benefit from adapting their code ownership
strategies and internally adapt OSS practices via so called inner-sourcing [66].
Therefore, it is possible to hypothesize that larger companies should dedicate more
effort into the OI strategies and options analysis. Moreover, companies that own
implemented assets have more possibilities to capitalize their innovative poten-
tial via OI strategies, than companies that have no implemented assets. Still, for

56 Open Innovation in Software Engineering: A Systematic Mapping Study

companies owning only intangible innovations, there exist strategies to share these
assets via, for example, pooled IPR forums.

The primary studies summarized in the enabling communities for open in-
novation category (Section 4.3) lead to an interpretation that communities offer
significant benefits that companies should exploit. In particular, it seems that ini-
tiating OSS projects is equally important from the OI perspective as joining or
governing an OSS project or the entire ecosystem. It remains an important aspect
to further explore what strategy is optimal, given the company’s size, domain and
product characteristics. Furthermore, our results suggest that firms are able to in-
fluence the direction of development (governance) in communities to some extent,
with one exception. Companies that sponsor individuals in their involvement in
OSS projects were not able to effectively stimulate or orchestrate debates in these
projects, mainly because communities believe that companies have their vested
interests in participation. This could explain the difference between OSS and OI
well, where in OI organizations decide to open up when they see a potential benefit
in opening up, while in OSS the community contributes with the mind set of free
software ideology without expecting any benefits in return.

The results regarding the interplay between OI and agile methods provide in-
teresting interpretations. It seems that openness is often compromised due to lack
of transparency between competitors, and even business units within an organi-
zation. Combining agile and OI seems to create barriers in transferring the ideas
outside the team’s boundaries, primarily due to the use of short iterations, min-
imum documentation, stand-up meeting, and a feature backlog that reduces the
amount of time you can spent trying new things or sharing ideas outside your
team. The resulting lack of overall R&D group overview disables the innovation
opportunities when using agile practices (S_4). Further, the introduction of agile
with OI caused a rapid decline in teams attending R&D meetings, due to the lack
of tolerance for prolonged meetings as stated by senior anonymous developers,
using the old plan-driven approach we would have been going to meeting after
meeting, but since going to agile, every minute you spend in one of these meetings
you just think about all of the work not being done (S_4).

To further demonstrate the challenges of OI in the agile context, developers
quoted that on-site customer practice seem to be the most telling barrier since
you feel accountable to person there at all time and its harder to justify taking a
half day out to sit with folks in other projects for benefits of other customers. At
the same time, managers experienced lower quality of ideas due to focus on daily
work.

Managers can enhance the financial situation and innovativeness of their firms,
by encouraging their employees to participate in communities. To gain further
advantage, managers can consider the learning and resource advantages attached
to community participation, instead of just free riding. The identified evidence
suggests that participation is more strongly related to the performance of those
firms that exhibit high level of social participation. However, the literature also

5 Discussion 57

underlines the inherent complexity for organization to initiate, build and nurture
an external community as a complementary asset to their internal R&D process.
To be more specific, managers have too few resources available in order to indulge
them in communities. This may lead to too much time and commitment to make
significant contributions in these communities.

Business strategies also play an important role in embracing open innovation,
thus companies can pursue differentiation strategies with the controlled degree of
openness towards communities. Nonetheless, transparency and accessibility are
important factors when talking about openness of firms. Consequently, from the
firms’ point of view, OI does not substitute the already existing R&D process, but
it complements the existing internal innovation processes.

Regarding OI models or frameworks, fostering competing ideas seems to be
promising. At the same time, companies may use social networks to lower the
hurdle of sharing ideas, but since the primary study (S_20) presents preliminary
work and therefore lacks rigor and relevance, more empirical research is needed to
ensure that. Similarly, the framework presented by Wnuk and Runeson (S_11) is
preliminary and lacks specific guidelines about which SE techniques are applicable
for which contexts.

When it comes to the benefits and challenges of applying a collective innova-
tion model (S_20) there is a need for further studies that directly connect bene-
fits and challenges with SE techniques, as the current evidence is incomplete and
largely anecdotal. Similarly, Jansen et al. (S_27) describe in great detail what to do
rather than how to do it, especially on the operational level, where appropriate SE
techniques can provide great support. To summarize, there seems to be a lot of in-
teresting techniques or processes that foster OI, but the ways how to operationalize
them remain unspecified and requires further research.

When looking at the results in the IP strategies theme, it appears that patent
pools is an alternative solution for the companies that may not necessary have
innovation implemented in software (S_18). Both patent pools, and OSS share
many benefits and challenges, but differ in that OSS provide universal access but
is exclusive in application, while patent pools restrict the access but enable appli-
cation. Thus, large companies should use their IPR capital for enabling OI via
patent pools.

The results indicate little research focus on the OI toolkits since only one
toolkit was found among the primary studies. Moreover, primary studies suggest
that extensive experience is required to unlock the full potential of these toolkits.
Therefore, it remains to be explored how to enable less experienced practitioners
to be more innovative and in this way to leverage their innovative potential. We be-
lieve that enabling newcomers is important to fully benefit from OI, since many OI
contexts are characterized with high turnover for contributors that often contribute
once in a project.

58 Open Innovation in Software Engineering: A Systematic Mapping Study

6 Implications for Research and Practice

6.1 Research Agenda for Open Innovation in Software
Engineering

In line with the advice by Kitchenham et al. [78], we use the systematic mapping
study to derive an agenda for further research. We interpret the increased scholarly
interest in OI since the launch of Chesbrough’s book in 2003 as a sign of increased
importance of OI. Still the number of publications that focus on OI in SE remain
small and therefore we believe that focusing on OI in SE should be highlighted on
the research agenda in SE. In particular, based on the results our interpretation, the
following areas should be put on the research agenda:

• Further exploring suitable software development methodologies that foster
OI. The results outlined in Section 4.3 suggest that combining agile and OI
provides additional challenges that may have a ceiling effect on the potential
benefits from OI. Thus, it is important to direct research efforts into better
understanding of which development methods or processes best suits OI and
what changes need to be implemented to unlock OI’s full potential.

• Providing clear managerial guidelines on how to adapt OI depending on the
context factors, with a special focus on which SE techniques, processes and
methods can be applied depending on the selected managerial strategy. In
this way the findings reported in Sections 4.3 and 4.3 will be complemented
by guidelines on the operational level to form more complete solutions for
adapting to OI.

• Exploring the balance between community involvement and in-house SE ac-
tivities. This study identified several benefits from OI and OSS community
involvement, see Section 4.3. However, the process-related benefits should
be further explored, with a focus on uncovering where involvement brings
most benefits. In particular, the role of OI involvement in improved testing
remains unexplored, where we believe that OI provides not only significant
reduction of the test effort but also can be a source of innovation. We base
this assumption on a premise that testing uncovers unexpected behavior of
software, which could be inspirational in the innovation process.

• Focusing on the role of requirements engineering in OI both during and
beyond innovation discovery. OI offers access to a wide and heteroge-
neous communities of potential stakeholders which puts pressure on the cur-
rent techniques for key stakeholder identification and domain understanding.
Advances in current techniques are required for supporting the identification
of commodity and competitive advantage requirements sources. Beyond in-
novation discovery, there is a need for a decision making support that can

6 Implications for Research and Practice 59

combine both strategic and operational levels and provide run-time require-
ments triage support for capturing and incorporating OI potential into prod-
uct planning and requirements decision making. Despite that, researching
if unimplemented requirements that represent valuable IPRs, can be shared
with others in a similar way as for example patents, and what benefits this
approach brings is important.

• We encourage researchers to develop and publish more solution and vali-
dation research in OI as these remain underrepresented, see Figure 3. The
large number of evaluation research is definitely positive but, at the same
time, highlights the immaturity of the OI in SE research area. Thus, more
solutions in terms of tool proposals or frameworks and their validations are
needed to advance to the next maturity level.

6.2 Implications for industry practice
Although we summarize the empirical evidence in the field of OI in SE being
scarce, there is some evidence that may be used to guide software companies in
their innovation strategies:

• The identified conflict between agile and OI principles should be given spe-
cial attention. Agile principles focus developers attention and communica-
tion in order to meet specific project goals. However, the innovation pro-
cess benefits from the noise of leaks in the information flow from multiple
sources, internal as well as external. Companies should make sure that this
information flow is regained, using other practices.

• Open innovation strategies seem to be more beneficial for smaller and newer
actors in a market. They may apply OI and thus can gain significant com-
petitive advantage against competitors by more quickly absorbing potential
innovation. However, there are also examples of major corporations that
manage a software ecosystem, based on open or semi-open innovation. The
take-away for companies is that they need to define and monitor their OI
strategy to make sure their actions are relevant, given their current and fu-
ture expected market position.

• An implication for industry, based on the literature findings, is that OSS
and OI is not for free. In order to gain the full and long term benefits from
OI, companies must invest in the open communities, and since these are
complex networks with a multitude of actors, these companies must have a
clear resources investment plan, just as they need for closed innovations.

• IPR management is different for OI. The studied research recommend large
companies using patent pools to manage their IPR capital in relation to the
open innovation community.

60 Open Innovation in Software Engineering: A Systematic Mapping Study

7 Conclusions
Open innovation (OI) becomes significantly important for companies developing
software-intensive products and services. It provides several benefits that force
these companies to re-think and often significantly change their current innovation
strategies. The external availability of innovations combined with the flexibility of
their realization generate new opportunities for providing value to the customers.
OI pushes software industry into a new ground where well-known and checked
software development and management strategies need to be revisited. At the
same time, OI remains greatly unexplored in the SE literature, focusing greatly on
exploring OSS, resulting in a lack of systematic efforts to summarize OI literature
in relation to software engineering.

We conducted a systematic mapping study on OI in software engineering with
the aim to identify the existing themes in the literature and evaluate them based on
the rigor and relevance analysis.

Answering research question RQ1 we identified nine themes. The dominant
themes are related to OI strategies, OI challenges and benefits, enabling OI com-
munities, managerial implications of adaption OI and OI models or frameworks.
The degree of openness, OI toolkits and IP strategies are less frequently repre-
sented in the surveyed papers.

Our findings for RQ2 suggest that the majority of the studies is conducted with
high rigor and high relevance (17 out of 33) and as many as 29 out of 33 were con-
sidered industry relevant. This strongly indicates that OI in SE is industry practice
oriented. Further, 27/33 studies are of evaluation type, which is unusually high for
a mapping topic. Therefore, we encourage more solution and validation research,
see Table 1. The high rigor and relevance scores also imply generalizability of the
results derived from thematic analysis in answer to RQ1.

This mapping study leads to a proposal to further explore SE in OI in terms
of development methodologies that interplay with OI, situated managerial guide-
lines for OI adaptation, as well as exploring the balance between open community
involvement and in-house development. Specifically, the roles of testing and re-
quirements engineering in OI remain unexplored.

Acknowledgement
This work is funded by the Swedish National Science Foundation Framework
Grant for Strategic Research in Information and Communication Technology, project
Synergies (Synthesis of a Software Engineering Framework for Open Innovation
through Empirical Research), grant 621-2012-5354.

APPENDIX A

RIGOR AND RELEVANCE
CRITERIA

1 Rigor

Context(C)

1. Strong description: The context is described to the extent where it becomes
comparable to other settings [71]. In particular, we emphasized subject type
(graduate, undergraduate, professionals, researcher), development experi-
ence, development methodology, duration of the observation. If all these
aforementioned factors are highlighted, then C is evaluated to 1.

2. Medium description: If any of the above mentioned factors is missing in
the study, then C is evaluated to 0.5.

3. Weak description: If no description of context is provided in the study,
then C is evaluated to 0.

Design (D)

1. Strong description: The research design is described to the extent where
it becomes transparent and detailed enough for the reader to understand the
design [71]. To be specific, if the study underlined the outcome variables,
measurement criteria, treatments, number of subjects , and sampling, then
D is evaluated to 1.

2. Medium description: If a study is missing out on any of the factors related
to design and data collection is missing (see above), then D evaluates to 0.5.

3. Weak description: If no design description is provided at all then, D is
evaluated to 0.

Validity threats (V)

62 Rigor and Relevance Criteria

1. Strong description: If different types of validity (i.e. internal, external,
conclusion and construct validity) are evaluated and reflected upon then, V
is evaluated to 1.

2. Medium description: If a study only highlights the subset of the relevant
threat categories then, V is evaluated to 0.5

3. Weak description: If a study is missing out on validity discussion com-
pletely, then V is evaluated to 0.

2 Relevance
Users/Subjects (U)

1. Contribute to relevance: If the subjects used in the study are from industry
(professionals) then, U is evaluated to 1 for industry.

2. Partially contribute to relevance: The subjects are partially representative,
i.e. they are master(Msc.) or graduated students then, U is evaluated to 0.5

3. Does not contribute to relevance: If the subjects are bachelor/undergrad
students or the information is missing then, U is evaluated to 0

Scale (S)

1. Contribute to relevance: If an industrial size application is used in the
study then, S is evaluated to 1.

2. Does not contribute to relevance: The application is down-scaled or a toy
example hence, S is evaluated to 0.

Research Methodology (RM)

1. Contribute to relevance: The chosen research methodology is suitable to
scrutinize real world contexts and situations with relevance for practitioners
(action research, case study, industry interviews, experiment investigating a
real situation, and surveys/interviews). If study belongs to any of the afore-
mentioned research methodologies then, RM is evaluated to 1

2. Does not contribute to relevance: If a Study is using Lab experiment (hu-
man subjects/software) or missing information then, RM is evaluated to 0.

Context (C)

1. Contribute to relevance: If a study is executed in a setting that matches
real industrial usage (industrial setting) then, C is evaluated to 1.

2. Does not contribute to relevance: If a study is investigated under under
artificial setting (e.g. lab) or others that do not represent a context matching
real world situations, or not reported then, C is evaluated to 0.

2 Relevance 63

Table 1: Rigor and relevance scores with category
Study_ID Ref. C D V Rig. Sum U S RM C Rel. SUM Category
S_1 [34] 1 1 0.5 2.5 1 1 1 1 4 A
S_2 [137] 0.5 0.5 0.5 1.5 1 1 1 1 4 C
S_3 [57] 1 1 0 2 1 1 1 1 4 A
S_4 [28] 1 0.5 0 1.5 1 1 1 1 4 C
S_5 [139] 1 0.5 0 1.5 1 1 1 1 4 C
S_6 [63] 1 0.5 0.5 2 1 1 1 1 4 A
S_7 [39] 0.5 0.5 0.5 1.5 0.5 1 1 1 3.5 C
S_8 [136] 1 1 0.5 2.5 1 1 1 1 4 A
S_9 [144] 0.5 0 0 0.5 1 1 1 1 4 C
S_10 [110] 1 1 0.5 2.5 1 1 1 1 4 A
S_11 [150] 1 0.5 0.5 2 0 0 1 1 2 B
S_12 [101] 0.5 0.5 0.5 1.5 1 1 1 1 4 C
S_13 [132] 1 1 0 2 1 1 1 1 4 A
S_14 [148] 0.5 0.5 1 2 1 1 1 1 4 A
S_15 [33] 1 1 0 2 1 1 1 1 4 A
S_16 [140] 0.5 0.5 0 1 1 1 1 1 4 C
S_17 [9] 1 1 0.5 2.5 1 1 1 1 4 A
S_18 [117] 0.5 1 0.5 2 0 1 0 0 1 B
S_19 [37] 0.5 0.5 0.5 1.5 1 1 1 1 4 C
S_20 [127] 0 0.5 0 0.5 0 0 1 0 1 D
S_21 [70] 0 0.5 0 0.5 0 0 0 1 1 D
S_22 [133] 0.5 0.5 0 1 1 1 1 1 4 C
S_23 [26] 1 1 0.5 2.5 1 1 1 1 4 A
S_24 [102] 1 0.5 0.5 2 1 1 1 1 4 A
S_25 [120] 0.5 0 0 0.5 1 1 1 1 4 C
S_26 [62] 1 0.5 0 1.5 1 1 1 1 4 C
S_27 [73] 1 0.5 0.5 2 1 1 1 1 4 A
S_28 [18] 0 0.5 0 0.5 1 1 0 1 3 C
S_29 [55] 1 0.5 1 2.5 1 1 1 1 4 A
S_30 [36] 1 1 0.5 2.5 1 1 1 1 4 A
S_31 [64] 1 0.5 0.5 2 1 1 1 1 4 A
S_32 [85] 1 1 0 2 1 1 1 1 4 A
S_33 [131] 1 1 1 3 1 1 1 1 4 A

APPENDIX B

DATABASE SEARCH STRINGS

Search string used for the Compendex and Inspect database (years 1969 to
2013):

(((((Open Innovation WN KY OR Open-Innovation OR OI WN KY OR inno-
vation WN KY OR innovation management WN KY) AND (software WN KY OR
software ecosystem WN KY OR product line WN KY OR requirement* engineer*
WN KY OR requirement* management WN KY OR open source WN KY) AND
(exploratory study WN KY OR lesson* learn* WN KY OR challenge* WN KY
OR guideline* WN KY OR Empirical investigation WN KY OR case study WN
KY OR survey WN KY OR literature study WN KY OR literature review WN KY
OR interview* WN KY OR experiment* WN KY OR questionnaire WN KY OR
observation* WN KY OR quantitative study WN KY OR factor* WN KY) AND
(ENGLISH) WN LA))))

Search string used for the ACM Digital Library database (years 1969 to 2013):
((((((((((((((((((("Title":"Open Innovation" OR "Title":"Open-innovation" OR

"Title":OI OR "Title":innovation OR "Title":innovation management) AND ("Ab-
stract": software OR "Abstract": software ecosystem OR "Abstract": require-
ment* engineer* OR "Abstract": open source OR "Abstract": product line) AND
("Abstract":exploratory study OR "Abstract": challenge* OR "Abstract": guide-
line* OR "Abstract": Empirical investigation OR "Abstract": case study OR "Ab-
stract": survey OR "Abstract": literature study OR "Abstract": literature review
OR "Abstract": interview* OR "Abstract": experiment* OR "Abstract": ques-
tionnaire OR "Abstract":observation* OR "Abstract":quantitative study OR "Ab-
stract":factor*))))) and (FtFlag:yes))) and (FtFlag:yes)) and (PublishedAs:journal
OR PublishedAs:proceeding OR PublishedAs:transaction) and (FtFlag:yes)))) and
(PublishedAs:journal OR PublishedAs:proceeding OR PublishedAs:transaction)
and (FtFlag:yes)))))))))

Search string used for the IEEE Explore database (years 1969 to 2013):
((("Index Terms":"Open Innovation" OR "Index Terms": "Open-Innovation"

OR "Index Terms":OI OR "Index Terms": innovation management OR "Index
Terms": innovation) AND (Search_Index_Terms: software OR "Index Terms":

66 Database search strings

ecosystem OR "Index Terms": product line OR "Index Terms":requirement* en-
gineer* OR "Index Terms": requirement* management* OR "Index Terms": open
source) AND (p_Abstract:case study OR "Abstract": exploratory study OR "Ab-
stract": lessons learn* OR "Abstract": survey OR "Abstract": Empirical investi-
gation OR "Abstract": guidelines "Abstract": literature study OR "Abstract": in-
terview OR "Abstract": experiment OR "Abstract": factors OR "Abstract": ques-
tionnaire)))

Search string used for the ISI Web of Science database (years 1969 to 2013):
(((TI=("Open Innovation" OR "Open-Innovation" OR OI OR innovation OR

innovation management) AND TS=(software OR software ecosystem OR product
line OR requirement* engineer* OR requirement* management OR open source)
AND TS=(exploratory study OR lesson* learn* OR challenge* OR guideline* OR
Empirical investigation OR case study OR survey OR literature study OR litera-
ture review OR interview* OR experiment* OR questionnaire OR observation*
OR quantitative study OR factor*)))) AND Language=(English) Refined by: Web
of Science Categories=(COMPUTER SCIENCE INFORMATION SYSTEMS
) Timespan=1969-2013. Databases=SCI-EXPANDED, SSCI, A&HCI, CPCI-S,
CPCI-SSH

Search string used for the Science Direct database (years 1969 to 2013):
(open innovation OR open-innovation OR OI OR innovation OR innovation

management) AND (software OR software ecosystem OR product line OR re-
quirement* engineer* OR requirement* management OR open source) AND (ex-
ploratory study OR lesson* learn* OR challenge* OR guideline* OR Empirical
investigation OR case study OR literature study OR literature review OR inter-
view* OR experiment* OR case study OR questionnaire OR observation* OR
quantitative study OR factor*)[All Sources(Computer Science)]

CHAPTER II

A SURVEY ON THE
PERCEPTION OF INNOVATION

IN A LARGE
PRODUCT-FOCUSED

SOFTWARE ORGANIZATION

Abstract

Context. Innovation is promoted in companies to help them stay competitive. Four
types of innovation are defined: product, process, business, and organizational.
Objective. We want to understand the perception of the innovation concept in in-
dustry, and particularly how the innovation types relate to each other.
Method. We launched a survey at a branch of a multi-national corporation.
Results. From a qualitative analysis of the 229 responses, we see that the un-
derstanding of the innovation concept is somewhat narrow, and mostly related to
product innovation. A majority of respondents indicate that product innovation
triggers process, business, and organizational innovation, rather than vice versa.
However, there is a complex inter-dependency between the types. We also iden-
tify challenges related to each of the types.
Conclusion. Increasing awareness and knowledge of different types of innovation,
may improve the innovation. Further, they cannot be handled one by one, but in
their interdependent relations.

1 Introduction

In recent years, the focus on innovation has increased in many lines of business.
Novel products and services have always been important, while with an increas-

68 A Survey on the Perception of Innovation in a Large Product-focused . . .

ing pace of change, new technologies and market concepts being launched, with
small vendors coming up and changing the scene in very short time, the need for
continuous innovation is stressed in larger companies. Internet technologies for
communication and distribution, and products and services primarily differenti-
ated with respect to software, enables this shift by lowering the thresholds for new
actors, and thereby threatening the position of existing ones.

Innovation is not only bringing new products to the market. The Organisation
for Economic Co-operation and Development (OECD) Oslo manual [4], which is
used to guide national statistics collection on innovation, distinguishes between
four categories of innovation, i) product, ii) process, iii) marketing, and iv) orga-
nizational. These categories are defined as follows: A product innovation is the
introduction of a good or service that is new or significantly improved with re-
spect to its characteristics or intended uses [4, §156], while a process innovation
is the implementation of a new or significantly improved production or delivery
method [4, §163]. In the context of software engineering, we also count software
development processes and practices as “production" methods in the process in-
novation category. A marketing innovation is the implementation of a new market-
ing method involving significant changes in product design or packaging, product
placement, product promotion or pricing [4, §169]. Note that this involves the
whole concept of bringing a product or service to the market, a kind of innovation
we have seen in the software and internet domain, for example, using information
or advertising instead of money as a trade for services. Finally, an organizational
innovation is the implementation of a new organizational method in the firm’s busi-
ness practices, workplace organization or external relations [4, §177]. This is also
prevalent in software, where for example open source software, outsourcing and
offshoring significantly has changed the game in many lines of business.

Given these categories of innovation, we were interested in studying to what
extent these were known and integrated in the culture of a large company, which
is under rapid change, and where innovation is a key survival factor, due to the
volatility of the market. In particular, we wanted to study the awareness of the in-
novation concepts, and the interplay between the four types of innovation; which
types precedes the other? There is a similarity to the software process improve-
ment trinity of people, process and technology, much discussed in the 1990’s [69].
More specifically, this study formulates three research question:

RQ1 What are the general perceptions of the term innovation?

RQ2 What relations are assumed between product innovation and process, orga-
nizational and marketing innovation, respectively?

RQ3 Which challenges exist with respect to the four types of innovation?

To address the research questions we launched an internal online survey [46]
in a local branch of a multi-national corporation. The target population consisted

2 Related work 69

of approximately 900 employees. On a global level the company employs approx-
imately 5,000.

We found that the understanding of the innovation concept is somewhat nar-
row, and mostly related to product innovation. A majority of respondents indicate
that product innovation triggers process, business, and organizational innovation,
rather than vice versa. However, there is a complex inter-dependency between the
types.

The paper is outlined as follows. In Section 2 we summarize empirical studies
on people’s attitudes to innovation in software engineering. Section 3 describes
the methodology and design of the survey, as well as threats to validity and a
characterization of the case company. In Section 4, we report our findings from
the survey, and analyze the data. Section 5 concludes the paper.

2 Related work

Innovation related to information technology (IT) has become vital part of most
organizations’ success, primarily for two reasons: i) growing importance of in-
novation for organizational life, and ii) the introduction of IT into almost every
business unit of organizations [45]. Lee and Xia [89] addressed the process bot-
tlenecks to innovation, where development teams are inefficient and reactive in
most cases. Consequently, this causes problems with lack of support for business
adaptions to shifting demands. Agile development seem to offer remedy to make
the whole process more innovative for product development and help development
teams to quickly deliver innovative, high quality solutions to an ever increasing
demand of business innovation [65].

On the other hand, research evidence [29] also suggest that agile could also
be a hindrance for product innovation. It creates barrier in transferring the ideas
outside the team boundaries due to short iterations and feature backlog reduced
the amount of time that teams could spent trying new things or sharing new ideas
across different teams. Wnuk et al. [149] also hinted the fact that existing require-
ments processes are designed to handle mature features and consequently, raises
the question of process innovation by having a separate requirements engineering
process to make room for innovative features (other than featured backlog) in the
products.

Lund at al. [99] conducted a survey to explore the effects that reutilization
have on innovation. Results revealed that standardization of process will free up
time for innovation and most interestingly, routines are capable of having positive
impact on occurrence of ideas and follow through on ideas. Furthermore, paring
routines with openness to continuously improve the existing routines leverage pos-
itive effects on innovation. Therefore, take away from the study for managers is to
take a look at existing routines with the spectacle of improving them, which will
not only improve the efficiency but also the innovation aspect.

70 A Survey on the Perception of Innovation in a Large Product-focused . . .

Moreover, another study was found where Harrison et al. [58] conducted a
survey with 170 Finnish software organizations to explore the impact of human
capital on open innovation. Therefore, it can be used as an example where people
are affecting the innovation activities in the organization. The study findings sug-
gest that software companies with the larger academically educated staff are more
likely to apply open innovation business strategies to accelerate their internal in-
novation process. The study further argued that this could be due the strong ties
between communities and universities. Similarly, Nirjar [108] also performed a
survey with 121 software companies across India to explore the impact of work-
force commitment on the innovation capability of the software enterprises. The
study findings highlighted that the commitment of the managers of software firms
can significantly enhance the innovation productivity by creating certain policies
(i.e. open business model) [24] and practices/processes.

3 Methodology

In this section we describe the surveyed company more thoroughly and elaborate
on the survey design, analysis and threats to validity.

3.1 About the company

The company, which is a multi-national corporation with approximately 5,000 em-
ployees globally, develop embedded devices and the studied branch is focused on
software development for communication hubs and additional connected devices
in an internet of things (IoT) fashion. We consider the studied company a rep-
resentative case [122] for similar ones, and hypothesize that the findings have a
much broader generality than just this company. The studied branch of the com-
pany has 1,600 employees, of which 800 work on software development for the
devices, and 100 work on connected devices.

The company develops software in an agile fashion and uses software prod-
uct line management (SPL) [114]. The company has defined more than 20,000
features and system requirements across all the product lines. Considering the in-
novation aspect, the company is moving from a closed innovation model to an open
innovation model [24], through the use of open source software to exploit the ex-
ternal resources to accelerate their innovation process. The open source solution,
referred to as the platform, is the base for their software product line projects and
derived products. New projects on the product line typically entails 60 to 80 new
features with an average of 12 new system requirements per feature. There are
more than 20 to 25 development teams develop these features.

3 Methodology 71

3.2 Survey design
An internal online survey [46] was designed in collaboration between the re-
searchers and company representatives, running an internal project, aimed at as-
sessing and improving the innovation climate in the company. The questionnaire
is composed of three major parts:

1. Factors that contribute to the innovation climate, based on Ekvall’s scheme [41].

2. Questions on the four types of innovation (product, process, organizational
and marketing) and their relation, based on the OECD model [4].

3. Factors that hinder and help innovation, based on Jansen et al.’s Open Soft-
ware Enterprise model [73].

In addition to ranking and preference questions, the survey had fields for free
input for most questions. The questions were defined in several iterations between
researchers and company representatives, particularly to make the terminology of
the survey understandable for the participants. Further, the survey was piloted to a
small group of company representatives before the final launch.

One particular term was given certain care, namely marketing innovation. The
original definition is that a marketing innovation is the implementation of a new
marketing method involving significant changes in product design or packaging,
product placement, product promotion or pricing [4, §169]. However, in the com-
pany context, the term was perceived to be only related to what the marketing
department was responsible for, and thus too narrow. Therefore, we replaced the
term with business innovation and extended it to cover the process where the needs
of the customers are captured as input for the product planning. This extends busi-
ness innovation into the area of Requirements Engineering, which can be seen as a
software engineering process, i.e. is covered by the process innovation definition.
This area is therefore somewhat overlapped, but with the general distinction that
high level capturing of requirements is mainly covered by the business innovation
definition.

The survey was launched via the company intranet in October and November
2013 to about 900 employees via a census sampling, most of them being develop-
ers, of which 229 responded, i.e. a response rate of 25%.

3.3 Survey analysis
As the surveyed company is product-focused the surveys had a main focus on
determining the level and perception of product innovation. Due to the attempt to
address the more general innovation questions, the analysis focuses on three of the
questions, connecting product innovation to process, business and organizational
innovation.

The respondents were asked to “select the more likely scenario” in the follow-
ing questions:

72 A Survey on the Perception of Innovation in a Large Product-focused . . .

• The product innovation triggers the process innovation, or vice versa

• The product innovation triggers the business innovation, or vice versa

• The product innovation triggers the organizational innovation, or vice versa

This gave an ordinal scale with two options to answer which makes any attempt
of drawing conclusions limited, although a general pattern was observed, as shown
in Figure 1. The survey generated 469 free text comments. Except for the three
earlier mentioned questions, comments were mainly gathered from four questions
where the respondents were asked how innovative (s)he perceived the organization
to be with respect to the four types of innovation.

Qualitative analysis with a thematic approach [31] was used to analyze the
data, which was codified in up to three levels. Based on the codified data and
the comments in general, perception of innovation concepts were analyzed (Sub-
section 4.1) and the connections between product innovation and process, busi-
ness and organizational innovation, respectively were identified (Subsections 4.2–
4.4). Further on, based on the themes and comments in general, challenges were
then identified and generalized in regards to the four types of innovations (Subsec-
tions 4.5–4.8).

3.4 Threats to validity
The construct validity [79], refers to whether the survey measured what it was
intended to. This can be addressed through e.g. pilot studies, which was performed
before the official launch. Further on, the questions were developed iteratively and
based on established literature.

In regards to the analysis, a threat to the construct validity is the risk of re-
searcher subjectivity as the first author performed the mapping and main analysis.
This was addressed by having the second and third authors perform their own in-
dividual analysis of the data, and could compare their findings with that of the first
author.

External validity regards whether the results be generalized to outside of the
surveyed sample [122]. In this paper, we analyze the questions, which can be pub-
lished from the company’s confidentiality perspective. Thus, we do not focus on
their perceived current innovation status, but rather on the general understanding
of innovation factors and their relations. Thereby, we also focus on the most gen-
eralizable aspects, which we hypothesize are valid for other companies of similar
characteristic to the studied one, as a representative case [122].

A surveys reliability [79] concerns whether the same results can be obtained
if the survey process was repeated. As the sample was obtained through a census
sampling frame and had a response rate of 25% we regard this optimistically. Al-
though, this cannot be strengthened until follow-up surveys are performed. This
is something that will be done in the future as the company wants to measure how
the internal perception of innovation develops over time.

4 Results 73

Figure 1: Triggering relation between the four types of innovation: product, pro-
cess, business and organizational. Percentage value shows the share of respondents
that select X→ Y as the most likely scenario.

4 Results

In this section we present our findings from the qualitative analysis of the sur-
vey responses. First the general perceptions of innovation is presented based on
survey responses in Fig.1. Then connections between product innovation and pro-
cess, business and organizational innovation is presented respectively. Direction
of arrows show the innovation type triggering the leading innovation (see fig. 1).
For instance, the arrow from process innovation to product innovation shows that
28.9% respondents think that process innovation leads to product innovation. Sim-
ilarly, the arrow from product innovation to process innovation suggest that 71.1%
respondents think that product innovation lead to process innovation and the same
arrow pattern applies for other innovation types. Finally, the challenges identified
in regards to each innovation type is listed. As the types of innovation relate to
each other, the challenges are structured accruing to the type where it relates the
most, although a challenge may affect more

4.1 Perceptions of innovation

Although not general, it was observed among the comments that some had trouble
relating to the term innovation as such. The borderline between when something
goes from being an improvement or common functionality to an innovation is
fluid. “I recognize that [company] does this often [. . .] But I’m not sure if it’s
really innovative or just mindless changes.”

Some respondents consider innovation as part of their everyday work, while
others are a bit more unclear on the distinction between their everyday work and
innovative activities, or just creativity as a process. “As a designer the largest part
of the task when bringing forward is to be creative. However there is a difference
between being creative and being innovative.”

A reason could be unawareness of what the company counts as innovations
and examples of different types of innovations. “I don’t know much about the

74 A Survey on the Perception of Innovation in a Large Product-focused . . .

innovations that we do. I didn’t know about the [example feature] for instance”.
Some may not be aware of what they do could actually count as an innovative

activity. “I work with support systems and not product development. Some part of
the time goes into improving how we produce products.”

Further on, some believed that they were not able to perform any innovative
activities as it was not a part of their work description or role. A tester expressed
how he was not able to innovate as he assumed this was a task dedicated to de-
velopers. Another tester reasoned similarly. “Working with testing so not much
improvement in the product besides some ideas that pops up occasionally.”

This thinking was present on a general level in connection to all of the four
types of innovation. As mentioned, this could be due to that the awareness is
limited of how and where they can innovate. A better understanding needs to be
achieved for the different types of innovations and how these interplay. “Most of
all, I would say that I have only minor insight and understanding of this field [of
organizational innovation].”

A consequence may be that some believe innovation is not possible. “I don’t
think it is possible to be innovative in this area [organizational innovation].”

Apart from spreading awareness and knowledge, another important factor that
needs consideration is the mindset. “Since I’m not involved in this part of our
business then it’s not in my mindset, but when you now mentioned it I will take it
into my consideration of innovation.”.

4.2 Product innovation vs Process innovation

On the question whether product innovation triggers process innovation, or the
other way around, 71 percent answered the former (see fig.1). Although the per-
centage points in one direction, it is clear from the free text answers that this
question is more complex than so.

Processes can be strict and complex, creating overhead and distraction, occu-
pying time that could have been focused on creative thinking, as pointed out by
a respondent. “If the development process is driven as a rigid framework that is
complex and difficult to understand who decides what and why, then you do not
get in the dynamics of ideas.”

This is also identified as a challenge of process complexity in Subsection 4.6.
Although processes can force a static frame on employees, it can help to bring
structure to the innovation process and thereby still encourage innovation and
creative thinking. “. . . well defined and established processes leads to innovative
products.”

Another challenge is idea tracing and execution uncertainty (see Subsection 4.5),
which is an area where we hypothesize that well-designed processes can help to
clarify what happens to ideas and the roadmap for how innovations can be pushed
through. Similarly, processes can also help to increase the awareness of the prod-
uct scope and the innovation strategies in the organization.

4 Results 75

Process innovation may help the organization become more efficient and re-
duce waste as can be interpreted by the OECD definition [4] and as pointed out by
a respondent: “. . . process innovation improve performance, simplifies and speeds-
up development process - thus allowing to have more resources in true product in-
novation”. This aligns with the area of Software Process Improvement [59], which
includes possible implications from new or improved tools and techniques. As put
by another respondent: “. . . We need to have the proper techniques, equipment and
SW in order to develop new and improved products.”

The resources made available can be defined as freed-up budget-hours, which
can be used for other purposes, such as time dedicated to activities focused on
rendering product innovation. An organizational and cultural challenge in this
case is to actually make this dedication which demands a committed management.
“The process innovations are often meant to make development faster with more
quality, but I’m not sure the gained resources are spent on product innovation.”

Beneficial factors from a process change, other than freed up resources, may
also include an increase in performance and quality as confirmed by the respon-
dents. Although, it is a matter of definition how software quality relate to product
innovation [115], this will hopefully render in a better product offering which fur-
ther down the release ladder may prove to be a trigger of future product innova-
tions.

Hence, by innovating and improving the processes in the correct way and dedi-
cating the freed up resources to product innovation, process innovation can be seen
as a trigger for product innovation. This is in line with findings by Lund and Mag-
nusson [99]. On the other hand, processes are not decoupled from the products.
There needs to be an awareness of product roadmaps and an adaptive mindset as
some processes may require continuous tailoring as a consequence. “I think the
general mindset is "keeping the eye on the prize", you see the upcoming releases
in the horizon and you adjust the process to meet those releases.”

The need to adapt is not a simple task and requires both resources and ded-
ication. Keeping pace with new features and products can be very demanding
for an organization as pointed out by the respondents. Process changes needs to
be quickly adopted for the organization not to fall behind or get confused, as de-
scribed in the process innovation challenges (Subsection 4.6).

Just as new products may create a demand for new processes and tools, they
can also be an inspiration for new techniques and solutions. “On the other hand,
new products can also inspire new techniques and HW/SW solutions.”.

4.3 Product innovation vs Business innovation

On the question whether product innovation triggers business innovation, or the
other way around, 75 percent answered the former (see fig.1). As with the previous
question, although there is a clear majority in one direction, this does not give the
complete answer.

76 A Survey on the Perception of Innovation in a Large Product-focused . . .

Some see product innovation as the driver with respect to business innovation
due to that “Innovative products are a great source for new business opportunities
and marketing”. Innovative features affects which consumer groups that should
be targeted, and in effect which marketing channels that can be used. The nature
of the innovative features also has implications on how the marketing message can
be phrased and communicated. From this point of view, the products both enable
and set a demand for a continuous business innovation that can adapt to changing
functionality and feature sets. A good product as foundation, can even be seen
as a source of inspiration to excel business innovation as hinted by the following
respondent. “I think everything starts with the product. If you are a company with
"Wow!"-products then the rest will come. A consumer will see through (eventually)
if the company is only selling a mediocre product but have brilliant marketing.
However, if we have good products, it will be more motivating bringing it to the
market, which will inspire us to excel also in business innovation”

From the other perspective, innovative marketing may be a requirement for
what otherwise would be considered a normal product. Competitive products,
which are technically inferior, may very well prove more popular compared to
a technically superior product, due to the awareness and visibility towards the
customers, as identified by the respondents. Business innovation can create the
hype needed to tell about what the innovative features are, how they differentiate
and how they fit in the customers’ context. However, as pointed out by the previous
quote, if the product does not fill the expectations, innovative marketing will not
be a viable solution in the long run.

New innovative ways are continuously needed to keep pace and capture the
demands from the existing and emerging customer channels, e.g. through end-
user feedback [10]. An awareness of what needs the customers have today and
will have tomorrow, is an important input from business and marketing to push the
product innovations forward in the right directions. “Because business innovation
brings in new experience directly from market, new demands and requirements
and thus giving a product a right direction”

This creates a challenge for the organization in terms of synchronization. The
view of what features are to be considered game-changers and prioritized in the
release planning process [20], may prove troublesome due to internal communi-
cation gaps between marketing and product development [75], which may lead
to wrong features being promoted as a consequence. “Scope/product planning,
business side and development [should be] in sync regarding both our innovation
initiative [. . .] and how to drive innovations all the way to product.”

As explained, there is a dual sided relationship. There is a dependency going
in both directions where one can trigger the other. One respondent provided a
concrete example which summarizes the relationship. “It is pretty much both.
Look at the music and film business which has invented new ways of marketing
and distribution, but I believe the wish of distribute TV via satellite has created
new products for making it possible and to get paid for it. Then again we have the

4 Results 77

Google glasses. Right now they are cool, but not very useful until we find a useful
feature for them and that itself will create a business for them.”

4.4 Product innovation vs Organizational innovation

On the question whether product innovation triggers organizational innovation, or
the other way around, 55 percent answered the former (see fig.1). Opposed to
the previous questions, this was not as clear majority for the product innovation
centric view.

Improving and innovating the way in which a company collaborates and in-
teracts with external parties and stakeholder, can trigger product innovations in
several ways. Application of open innovation business strategies is one way to ac-
celerate their internal innovation process [58]. Crowdsourcing ideas, engaging in
Open Source communities, welcoming third-party developers, acquiring promis-
ing startups and starting joint-ventures or ecosystems are a couple of activities that
falls into the open innovation paradigm originally defined by Chesbrough [24],
that may render in new product innovations.

Creating a more innovative organizational environment with committed em-
ployees is another way that can lead to more product innovations [108], as de-
scribed by a respondent: “With a flexible and happy organization that makes peo-
ple get looser boundaries I believe we can get a more innovative climate” Bringing
people from different backgrounds and functional areas creates diversity and en-
ables for new discussion to arise and to discuss ideas from new angles [19, 81], or
as put by the following respondent: “Connecting colleagues which hadn’t possibil-
ity to communicate before allows to discuss more problems and ideas.”. Calantone
et al. [19] adds that this cross-functional integration also allows for the employ-
ees to evolve their skills by learning and sharing knowledge amongst each other,
which is important for product development.

This connects to a need for a general awareness of what has been done, and
what is being worked on. “. . . more often than not these innovations are "hidden"
in small segments of the company, not actively promoted and spread (and that’s
both good and bad, many projects dies when they need to become too big).” By
communicating items such as features, functionality, experienced problems and
related solution across internal borders, cross-functional views can be established
more automatically. A solution in one project may turn out to solve the same issue
or create new ideas in another project, which could either be considered a process
or a product innovation. This relates to the concept of inner source [94] and how
it can help organizations work more open and cross-functional, and in the end
become more innovative [?].

Organizational barriers and communication issues is another area, where orga-
nizational innovation may trigger product innovation in the long term perspective.
When products or processes stretch over multiple business units or projects, this
can create room for bureaucracy, different prioritization schemes, culture and pol-

78 A Survey on the Perception of Innovation in a Large Product-focused . . .

itics, to mention a few factors [81]. “Some sections within the company are quite
innovative, but when it comes to cross-functional agreements and alignment, there
always seems to be a resistance to change and adapt to new ways of working and
safeguarding what seems to the best for "me/my team" is more important than
what’s best for the company.”

Pushing through and spreading an idea across these borders require a high
level of internal permeability. “Organization organized for better collaboration
(=no filtering, no proxies, smaller proximity, time zone, etc. . .) is more likely to
produce more innovative ideas. Layering, direct reporting, micro management,
and similar old-school practices are killing innovation.”

Looking from the other perspective, new product innovations will create new
demands and implications which will give rise for possibilities and triggers for or-
ganizational innovation [19]. “New and exciting products means we have to adapt
how we work to support these in the best-possible, not only from an engineering
or software perspective, but for example from the launch projects etc.”

As has been discussed in regards to previous sections on the matter of product
innovation versus process and business innovation, there exists a dual relationship
here as well as exemplified by the response: “Organizational innovation increases
our capability to handle new and complex tasks. Innovative products will require
us to handle new or more complex tasks and without room for growth, product
innovation will fizzle.”

4.5 Product innovation challenges

In the responses, several aspects were mentioned as challenges to the product in-
novation.

a) Idea tracing and execution uncertainty – Even though there may be a rich
pool of innovative ideas being produced and a general will to contribute, it is im-
portant to maintain and support it. Knowledge and awareness of what happens
to ideas contributed to the innovation development process is important for the
contributors to feel that they are taken seriously and that it is worth to continue
contributing, which in turn gives an increased innovation capacity for the com-
pany [81]. When the ideas come bottom-up there needs to be a feedback loop
top-down that stimulates this need of information as confirmed by Koc and Cey-
lan [82], and Wnuk et al. [149].

b) Short term perspective – By having a narrowed foresight, release planning
tend to prioritize non-unique features which renders in low diversity in the product
range, thus making the company being a follower of competitors rather than a
leader. A longer time perspective needs to be integrated into the company culture,
together with a positive mindset for game changers and innovative features to be
created.

c) Product scope and innovation strategy – Uncertainty about the product
roadmap and feature scope leads to risks that the creative minds of the company

4 Results 79

are misdirected. A common and established innovation strategy can help defin-
ing the product scope and frame where ideas are needed suggested by Koc and
Ceylan [82], and Wnuk et al. [149].

d) Limiting environment and mindset – Soft factors such as employees feeling
that they can have a free mindset and share ideas openly is important for an inno-
vative environment. It must be okay to test new ideas, but also to fail. These are
factors, triggered by Ekvall’s innovation climate model [41].

e) Restriction by external stakeholders – A commercial product company can
have many stakeholders, some not being the end customer. This may include dis-
tributors and service providers further down the value chain, adding value and
modifications to the product before they reach the final buyers. These stakeholders
put requirements that may prevent and limit the feature scope possible to address.
This filter risks to kill ideas inside the company and ignore needs, both identified
and unidentified, from the end customers. This challenge is in line with Conboy
and Morgan’s findings [29].

f) Limited time for innovation activities – Tight project budgets and short dead-
lines are two factors that can restrict time available for idea creation. Developers
usually have pet projects and ideas they would like to work on, some even dedicate
their spare time for this purpose. By allowing the time, this can prove a valuable
source of product innovation as suggested by Conboy and Morgan [29].

g) Cross-functional resources – Bringing new people together creates new
product ideas and can boost innovation development. Cross-functional labs-sections
and dedicated innovation team are two examples suggested by Conboy and Mor-
gan [29], and Koc [81].

4.6 Process innovation challenges

This section presents the challenges, directly related to process innovations.
a) Process change too slow – The introduction of a new process may be cum-

bersome for several reasons, with the effect that the changes are implemented
slowly. This can cause confusion for employees being caught between two states
– before and after the change – and also result in an unsynchronized organization
as different parts may adapt faster than others.

b) Process change too often – Another issue with respect to process change is
that they may happen too often. This can be a cause effect relationship with an
adoption process, as old processes risk being outdated once introduced if done in
a too slow and inefficient manner. When the environment changes, for example
technology and dependencies towards partner’s progress, so does the requirements
on the internal tools and processes have to change at the same pace. This can also
relate to organizational innovation.

c) Process change top down – Problems can arise when a process is introduced
top-down instead of bottom-up. Managers may not always know what is the most

80 A Survey on the Perception of Innovation in a Large Product-focused . . .

efficient way to work compared to those actually performing the work. This chal-
lenge is also in line with the findings of Qin [116], and Wnuk et al. [149].

4.7 Business innovation challenges

Challenges related to business innovation are about alignment with the market and
end users.

a) Reaching the end-customers – When there are layers between the producer
and end-customer, for example, distributors and service providers, promotion of
new ideas and product innovations to end-customers gets complicated. As tech-
nology and social habits evolve, new innovative ways are needed to keep pace with
the different forums for communication used by the end-customers of today and
tomorrow. Examples of such phenomena are software ecosystems [151].

b) Product and marketing synchronization – The views on what the top inno-
vative features are may differ between different parts of the company. A misalign-
ment like this can create confusion between marketing and product development.
This could render in the wrong features being promoted. The suggested needs of
the end customers should be communicated and synchronized to all relevant parts
of the organization, e.g. product planning, marketing and development.

4.8 Organizational innovation challenges

Organizational innovation challenges relate to collaboration, communication and
change.

a) Closed organizational borders – If the organization is too introvert and
closed, opportunities, possible collaborations, sources of ideas and other possi-
ble inputs to their internal innovation process might be missed. By opening up the
company borders for external collaboration and influence, new possibilities can
arise both in regards to new innovations and markets, as described by the Open
Innovation paradigm [24].

b) Intra organizational collaboration – Barriers and layers can prevent oth-
erwise prosperous and potential collaborations between business units in organi-
zations. Examples may be different sub-priorities of features between projects
and multiple number of mangers creating a complex and bureaucratic hierarchy as
identified among the respondents and confirmed by Koc [81]. These are related
to what Bjarnason et al refer to as “gaps” [14]. Koc further points out that such
cross-functional integration demands a high level of coordination, otherwise it will
rather have a negative impact on the product innovation.

c) Intra organizational learning – Unawareness of what has been done in other
parts of the company can create inefficiency and missed possibilities. In regards
to process innovation, tools, technologies and processes from one part may prove
its self superior or complementary to those used in other parts. And in regards to
product innovation, a commoditized good or service from one business unit may

5 Conclusions 81

turn out as innovative if added to the value proposition in another business unit’s
product chain. This is a challenge in-common with inner source [94], but also one
of the ways in how it can help organizations become more innovative by using it
as a type of intra-organizational open innovation [101].

5 Conclusions

The view on what innovation is and where it can be performed is a diversified
topic. OECD [4] differentiates between four types: product, process, market and
organizational innovation. These were adopted in the survey on which this paper
is based on, with a redefinition of market innovation into business innovation.
The original definitions are general and applicable on a multiple number of fields.
This paper puts them in the context of software engineering characterized by the
opinions of people involved in different levels of a large software development
organization.

The perception of the term innovation, to answer the first research question
(See RQ1, Section 1), is diversified. Even though it is not general, some had
trouble relating to the term innovation as such and when a feature or certain work
can be classified accordingly. Some believed that they were not able to perform
any innovative activities as it was not a part of their work description or role,
which was present in connection to all of the four types of innovation. Apart from
awareness and knowledge, another important factor that also needs consideration
is the mindset of the employees that innovation is possible and something that they
can help to create.

The different types cannot be considered isolated or decoupled which answers
the second research question (See RQ2, Section 1). Connections between prod-
uct innovation and process, business and organizational innovation exists in both
directions. Introduction of product innovations creates demand and possibilities
for processes, marketing and organization to adapt and optimize as the conditions
has been changed. Interdependencies may require tailoring being done, either as
a direct consequence or as a side effect. On the other way around, introduction
of a process, business or organizational innovation can change the environment
and conditions for how product development is being done. Inputs such as new
technologies, ideas, resources and know-how are example factors which can be
considered a cause behind a product innovation effect. Open innovation could
be classified as an organizational innovation that can render inputs to the internal
innovation process [24].

Challenges correlated to the different innovation types were also identified,
with respect to the third research question (See RQ3, Section 1). These give a
context to the term of innovation that covers parts other than the more normal
conception of innovation in regards to just products. Some challenges may target
more than one type of innovation, e.g. internal communication which can cause

82 A Survey on the Perception of Innovation in a Large Product-focused . . .

issues for introduction on new processes and organizations as well as hinder ideas
to be spread and discussed.

For future research it would be interesting with studies confirming and ex-
emplifying the connections described, for example how process innovation could
trigger product innovation. An anticipated challenge will be to trace a cause effect
relationship and connecting the two areas. Another area also includes confirming
the challenges identified, and further characterizing the innovation types from a
software engineering perspective.

CHAPTER III

OPEN INNOVATION THROUGH
THE LENS OF OPEN SOURCE

TOOLS: AN EXPLORATORY
CASE STUDY AT SONY

MOBILE

Abstract

Context: Open Innovation (OI) is an emerging paradigm in software engineer-
ing and still little is known about what triggers software-intensive organizations
to adopt it and how this affects SE practices. The OI model can be applied in
numerous of ways, including organizations involvement in Open Source Software
(OSS). Outcomes from the OI model are not restricted to product innovation but
also includes process innovation, e.g. improved SE practices and tools.
Objective: This study explores the use of OSS and the involvement of Sony Mo-
bile in OSS communities from an OI perspective. Furthermore, the study also
highlights the innovative outcomes attached to OI participation and how SE prac-
tices have been adapted in relation to OI.
Research Method: An exploratory embedded case study design is used to target
the objective in a real-world setting by investigating how Sony Mobile use and
contribute to Jenkins and Gerrit, which are two central OSS tools in their contin-
uous integration tool chain. Quantitative analysis is performed by extracting the
change log data from source code repositories in order to identify the top con-
tributors. Data from five semi-structured interviews are analyzed qualitatively to
explore the nature of the contributions.
Conclusion: The findings of the case study include five major themes. i) The pro-
cess of opening up towards the tool communities correlates in time with a general

84 Open Innovation through the Lens of Open Source Tools: An . . .

adoption of OSS in the company. ii) Assets which are not competitive advantage
nor a source of revenue are left open, and gradually, the company turns more and
more open. iii) The requirements engineering process towards the community is
informal and based on engagement. iv) The need for systematic and automated
testing is still in its infancy, but the needs are identified. v) The innovation out-
comes include the “free” features, maintenance and time, but increased speed and
quality are also counted as OI outcomes.

1 Introduction

Organizations developing software-intensive products have recently been exposed
to new facets of openness that go beyond their experience and provide opportu-
nities outside their current ways of working. The shift from proprietary software
engineering to Open Source Software (OSS) is well acknowledged and experi-
enced by many companies, but the emerging new facets of openness stretch the
transparent boundaries beyond the source code. Consequently, it leads organi-
zations to consider openness in regards to their processes, business models and
artifacts. Chesbrough [24] coined the term open innovation (OI) for this general
phenomenon as “a paradigm that assumes that firms can and should use external
ideas as well as internal ideas, and internal and external paths to market, as they
look to advance their technology”.

Increased openness poses significant challenges to software-intensive organi-
zations in terms of securing their competitive advantage in relation to their com-
petitors and thereby, challenges both on the operational and strategic levels. Specif-
ically, as a continuously growing share of product and service innovation is im-
plemented in software, the implications for software development is essential to
explore. Existing research highlights different strategies such as open business
models [21], organizations engaging in OSS communities [32] by adopting selec-
tive revealing [62] and values gained as a result of such involvement. However, it
should be noted that OSS is not equivalent to OI in software-intensive organiza-
tion, but only for certain cases an example of OI, and has so been for the past 20
years [22]. The main criteria for OSS to fit inside the OI model is that it is used
in alignment with the company’s business model and takes part in a generation of
innovative outcomes, creating or capturing value for the company [24].

Companies intending to engage in OSS communities need to adapt their soft-
ware development strategies to, for example, correcting bugs and actively partici-
pating in discussions and contributing new features back to the community. Sub-
sequently, they might reduce maintenance cost compared to commercial software
development, but require different modes of working [87, 121, 148] (process ad-
justment) and OSS governance mechanisms [90] to facilitate their software devel-
opment once the organization decides to adopt OI. As consequence of adjusting
their processes, companies are given better control over Research and Develop-

1 Introduction 85

Figure 1: Study Objectives in the intersection between proprietary organizations
and open source software.

ment (R&D) departments, how output is shared with its collaborators [16]. It is
often discussed how OSS is a part of product offerings, either internal or external,
or as a pool for R&D, with different strategies attached [132, 139].

However, existing literature does not go into detail reporting how OSS involve-
ment may be utilized as an enabler and support for further innovation spread inside
an organization, e.g. process or organizational innovations. Additionally, as has
been shown in the intersection of OI and SE [107], little is known on how SE
practices should be structured in order to support and optimize the output for a
company involved in OI.

In this study, we present an exploratory case study [122] at Sony Mobile aim-
ing to investigate OSS tools usage and involvement in the communities from an OI
perspective. We seek to identify innovative outcomes and how SE practices have
been adapted (see Fig. 1). The units of analysis are Jenkins and Gerrit, which are
two central OSS tools in Sony Mobile’s continuous integration tool chain. This
study further investigates how value is captured externally via OSS tools develop-
ment and how the gained value is transferred into the product development teams
of the company (see Fig. 2).

We started by mining the Jenkins and Gerrit repositories, to characterize Sony
Mobile’s contributions, and to identify active participants for interviews. The
found Interviewees were belonged to an internal Tools department, responsible
for the development, support and maintenance of their continuous integration tool
chain. Qualitative analysis of the interviews showed that the company had opened
up as a consequence of a move from a proprietary to an OSS platform in their
products. This had in turn set the company on a course towards a more open mind-
set with an OSS continuous integration tool chain and a continuous involvement
in the related communities, causing a need of SE practices to be adjusted.

86 Open Innovation through the Lens of Open Source Tools: An . . .

Figure 2: Study context

More explicitly, this study contributes by studying how OSS may be used to
not only for leveraging product innovation in the tools themselves, but also how
these tools can be used as enablers for process innovation in the form of improved
SE practices and tools intra-organizationally.

This paper is structured as followed. Section 2 highlights the related work and
Section 3 states the research methodology. In Sections 4 and 5 results from the
quantitative and qualitative analysis are presented respectively. Finally, Section 6
explicate discussion in regards to the results followed by the conclusion in Section
4.

2 Related work

While there is a lack of studies on OI in software engineering [107], there is an
abundant literature on the use of OSS in the development of proprietary software.
OSS is used as an enabler for OI in an organization in order to create and capture
value [26,33,62,64]. Source code management repositories of large OSS projects
can be a source of valuable data about the organizational structure, evolution,
and knowledge exchange in the corresponding development communities [52,98].
However, the volume of information that OSS offers requires efficient methods for
highlighting the relevant information for a given aspect of the project. In order to
extract the information from OSS code repositories, a tool called CVSAnalY [119]
supports automatic and non-intrusive measurement and analysis, providing a real
time and historical data about projects details and its contributors. Several stud-
ies have been conducted where OSS projects are analyzed by mining their source
code change logs and mailing list archives to be able to understand the behavior of
their respective communities [44,52,56,111]. The studies either focus on an entire

2 Related work 87

portal, hosting hundreds of open source projects, or standalone projects [67]. The
current study uses CVSAnalY to extract change log data for our unit of analysis,
see Section 3.2. This lead to the identification of top stakeholders for the units of
analysis in the study and identification of the key interviewees.

As far as the theoretical background for this study is concerned, Henkel et
al. [62] studied 212 firms that manufactured embedded Linux drivers. Henkel et
al. argued that OI is facilitated by Intellectual Property Rights (IPRs) and selec-
tive revealing of IPRs may be beneficial for their business. In addition, one of
the biggest triggers for revealing IPRs was the customer demand. Moreover, in
another case study of embedded Linux Henkel et al. [139] found that developers
associated with universities and hobbyists reveal all their code in contrast to many
other firms. On the other hand, Heck et al. [61] investigated the requirements engi-
neering process in OSS projects websites and found that issue trackers are used to
communicate requirements. Their idea was to improve the tool support for deal-
ing with feature requests in issue trackers and give users of these issues trackers an
overview of the project, including relationships between already existing feature
requests. Höst et al. [66] conducted a study to understand how large organizations
collaborate on the Android project. The results indicate that the project is highly
influenced by Google’s development effort. In addition, Alexy et al. [6] studied
the impact of individuals on OSS adoption. In terms of technical dimensions, find-
ings suggest that giving roles by management are less effective than taking roles
(volunteers) since OSS is a novel process of innovation in software development.

Krogh at al. [136] investigated the strategies and processes by which new peo-
ple (individual level OI) join the existing community of software developers, and
how they initially contribute code. The study developed a construct entitled join-
ing script, and proposed that contributors who follow joining scripts (offer bug fix,
report bugs, discussion, feedback etc.) are more likely to obtain access to the com-
munity. Consequently, a developer is granted access to a privileged source code
commit regime. Talking about OI at individual level, Dahlander [34] claimed that
initiating OSS projects is often a good way of attracting the most pragmatic de-
velopers from the communities. Moreover, having an employee in the community
seems to be the key enabler for the firms to not only gain a good reputation but
also to influence the direction of the development towards the firms’ own interests.
West et al. [144] examined the complex ecosystem surrounding Symbian Ltd. and
identified three inherent difficulties for firms leading an OI ecosystem: 1) prioritiz-
ing the conflicting needs of heterogeneous ecosystem participants, 2) knowing the
ecosystem requirements for a product that has yet to be created, and 3) balancing
the interests of those participants against those of the ecosystem leader.

West and Gallagher [139] mention strategies that firms deploy to generate
external knowledge, incorporating the external innovation into firms capabilities
and exploiting the IPRs by selective revealing. These strategies are comprised of
pooled R&D, spin-outs, selling complement and donating complements. Linden
et al. [96] argued that software products lose value with the passage of time due to

88 Open Innovation through the Lens of Open Source Tools: An . . .

ever growing and improving software components, and thereby products become
a good candidate for OSS development. Stuermer et al. [132] conducted a study
on implementing a private collective model at Nokia to identify the incentives for
firms and individuals in investing OSS. The study examined the development of
the Nokia Internet Tablet which builds on a hybrid of OSS and proprietary soft-
ware development. The results indicated that cost of the model in terms of diffi-
culty to differentiate, guarding business secrets, reducing the community barriers
and giving up organizational control. On the other hand, Nokia reaped benefits in
terms of low knowledge protection costs, learning effects, reputation gain, reduces
development and innovation costs.

Given the scarce literature on OI in SE, it remains unclear what triggers software-
intensive organizations to open up and what are the key factors organizations con-
sider before opening up a project. Moreover, it also needs to be investigated
whether or not the existing requirements engineering and testing process of SE
are fit enough to deal with the challenges of OI. Finally, the study also highlights
the innovation outcomes attained as a result of the openness.

3 Case study design

The aim of this study is to explore how large software-intensive organizations use
and develop OSS tools in support of their product development. The objective is
then to investigate how product innovation is captured in the tools and how this can
be used as enablers for process innovation in the form of improved SE practices
and tools intra-organizationally. The case company is Sony Mobile and the units
of analysis are Gerrit [3] and Jenkins [2], both OSS tools part of their continuous
integration tool chain.

1. Gerrit is an OSS code review tool created by Google in connection with
Android in 2007. It is tightly integrated with the software configuration
management tool GIT, working as a gatekeeper, i.e. a commit needs to be
reviewed and verified before its allowed to be merged into the main branch.

2. Jenkins is an open source build server that runs on a standard servlet con-
tainer e.g. Apache TomCat. It can handle Maven and Ant instructions, as
well as execute custom batch and bash scripts. It was forked from the Hud-
son build server in 2010 due to a dispute between Oracle and the rest of the
community.

3.1 Research questions

All research questions are formulated to study the OI phenomenon of Sony Mo-
bile in an exploratory manner. To be more specific, we are investigating how Sony
Mobile use OSS in their continuous integration process to enable OI. As presented

3 Case study design 89

Table 1: Research questions with description
Research Questions Objective
RQ1: How and to what extent is Sony
Mobile involved in the communities of
Jenkins and Gerrit?

To characterize Sony Mobile’s involve-
ment and identify potential intervie-
wees.

RQ2: What is the motivation for Sony
Mobile to adopt an OI approach?

To explore the transition from a closed
innovation process to an OI process of
Sony Mobile

RQ3: How is the process behind the de-
cision to go open with a project or fea-
ture structured?

To investigate what factors affect the
decision process when determining
whether or not the Sony Mobile should
contribute functionality.

RQ4: What are the innovation out-
comes as a result of OI participation?

To explore the vested interest of Sony
Mobile as they moved from a closed in-
novation model to an OI model

RQ5: How do the requirements engi-
neering and testing processes interplay
with their OI adoption?

To investigate the Requirements Engi-
neering and Testing process and how
they deal with the special complexities
and challenges involved due to OI.

in the figure 2, we started investigating the OI phenomena by identifying the the
key contributors of Jenkins and Gerrit, and that lead to a more focused exploration
of how, when and what triggers Sony Mobile to utilize OI. Most importantly, what
innovation outcomes Sony Mobile gain as a result of adopting OI. RQ1 addresses
the extent to which Sony Mobile is involved in the Jenkins and Gerrit community
and its key contribution areas (i.e. bug fixes, new features, documentation. etc.).
RQ2 and RQ3 explore the rationale behind Sony Mobile’s transition from closed
innovation to OI. Furthermore, RQ4 highlights the key innovation outcomes re-
alized as a result of the openness. The final research question (RQ5) aimed at
understanding whether or not the existing requirements engineering and testing
processes have the capacity to deal with the OI challenges in SE. All research
questions under investigation are stated in Table 1 with their objectives. RQ1 was
answered with the help of the quantitative analysis of repository data, while the
remaining four research questions (RQ2, RQ3, RQ4, RQ5) were investigated using
qualitative analysis of interview data.

90 Open Innovation through the Lens of Open Source Tools: An . . .

3.2 Case selection and Units of analysis

Sony Mobile is a multinational corporation with roughly 5,000 employees glob-
ally, developing embedded devices. The studied branch is focused on development
of Android based devices. Moreover, the branch under investigation is comprised
of 1,600 employees and 900 of them are involved in the development of these com-
munication devices. Sony Mobile develops software in an agile fashion and uses
software product line management with a database of more than 20,000 features
suggested or implemented across all product lines [114].

The continuous integration tool chain used by Sony Mobile is developed, main-
tained and supported by an internal Tools department. The teams working on Sony
Mobile’s core products are thereby relieved of this technical overhead. During the
later years, it has been recognized by Sony Mobile that they are becoming more
open in the sense that they mature in usage and involvement in OSS communities.
This maturity can be compared to going from a closed innovation model to OI
model [24], given that business values are created or captured as an effect.

From an OI perspective, there are interactions between the Tools department
and the communities surrounding Jenkins and Gerrit (see Fig. 2). The in- and
outgoing transactions, visualized by the arrows, are data and information flows,
e.g. ideas, support and contributions, can be termed as a coupled innovation pro-
cess [42]. The exchange is continuous and bi-directional, and brings product in-
novation into the Tools department in the form of new features and bug fixes to
Jenkins and Gerrit.

The Tools department can in turn be seen as a gate between external know-
ledge and the other parts of Sony Mobile (see Fig. 2). The purpose of the Tools
department is to access, adapt and integrate the knowledge they obtain externally
from Jenkins and Gerrit, into the product development teams of Sony Mobile. This
creates another set of transactions inside the domain of Sony Mobile which can be
labeled as process innovation [4] in the sense that new tools and adapted ways of
working bring a higher quality and efficiency to the development process. This
relates to the need of internal complementary assets that is mentioned as an area
for future research by Chesbrough et al. [22]. Therefore, Sony Mobile is chosen
as a suitable case for OI in software engineering.

We utilized the case study design with Jenkins and Gerrit as units of analy-
sis [122] as these are the products in which the exchange of data and information
enable further innovation inside Sony Mobile, see Fig. 3.

3.3 Case study procedure

We performed the following steps (see Fig. 4).

1. Preliminary investigation of Jenkins and Gerrit repos.

2. Mine the identified project repositories.

3 Case study design 91

Figure 3: Units of analysis

3. Extract the change log data from the source code repositories.

4. Analyze the change log data (i.e. stakeholders, commits etc).

5. Prepare and conduct semi-structured interviews to answer RQ2, RQ3, RQ4
and RQ5.

6. Summarize the findings from the change log data to answer RQ1.

7. Data synthesises

8. Answers to RQ1, RQ2, RQ3, RQ4 and RQ5.

3.4 Methods for quantitative analysis
To get an initial understanding of Sony Mobile’s involvement in the Open Source
tools (RQ1), we started with quantitative analysis of commit data in the source
code repositories of Jenkins and Gerrit.

Preliminary investigation of Jenkins and Gerrit

During the initial screening, we mined the source code repositories of Jenkins
and Gerrit using a unified procedure. After cloning the repositories locally, we
extracted the commit id, date, contributor name, contributor email and commit de-
scription message for each commit, with the help of the CVSAnly tool [119]. The
extracted data was stored in a relational database which scheme is standardized in
the tool, independently of which source code repository is analyzed.

The structure of the database allows a quantitative analysis to be done by writ-
ing specific SQL queries. To get an overview of the contributors to the communi-
ties, the number of commits per contributor were added together with the name and

92 Open Innovation through the Lens of Open Source Tools: An . . .

Figure 4: Case study procedure

email of the contributor as keys. We extracted the affiliations of the contributors
from their email addresses.

Sony Mobile turned out to be one of the main contributors to Gerrit while
limited evidence of contributions to the Jenkins community was identified. The
reason for this was that Jenkins is a plug-in-based community, i.e. there is a core
component and then about 1,000 plug-ins of which each has a separate source
code repository and community. Our initial screening had only covered the core
component. After analyzing forum postings, blog posts and reviewing previously
identified contributors on Ohloh.net1 and LinkedIn2, a set of Jenkins plug-ins, as

1https://www.openhub.net/
2https://www.linkedin.com

3 Case study design 93

well as two Gerrit plug-ins, were identified which then were screened with the
same process as applied earlier.

The following Open Source projects are included for further analysis.

• Gerrit

• PyGerrit (Gerrit plug-in)

• Gerrit-Events (Gerrit plug-in)

• Jenkins-Gerrit trigger (Jenkins plug-in)

• Build-Failure-Analyzer (Jenkins plug-in)

• External resource viewer (Jenkins plug-in)

• Team views (Jenkins plug-in)

Classification of commit messages

Further quantitative analysis was applied to the Jenkins and Gerrit commit data
available through the databases created in section 3.4. Smaller amounts of commits
were re-assigned to a different organization as these could be connected to earlier
identified contributors with non-affiliated email addresses. After this, the list of top
contributors were compiled as well as a time series analysis with commits added
together per year in order to see how Sony Mobile’s involvement evolved. As a
next step, we characterized the contributions made by Sony Mobile to the com-
munities. Afterwards, all issues (bugs and feature requests) available for Gerrit on
the community’s online issue trackers were collected into a comma separated file.
The ones that could be traced to Sony Mobile were filtered out. Each issue has
a unique id which was used as a key and searched for in the commit description
messages. This filtration however only rendered in a smaller subset of commits,
not close to the total number, which had been previously identified.

As an alternative solution we manually analyzed the commit description mes-
sages. The criteria mentioned by Hattori et al. [60] were used to classify the com-
mits made by Sony Mobile. The classification is as follows:

Forward engineering activities refer to the incorporation of new features and
implementation of new requirements including the writing new test cases to verify
the requirements.

Re-engineering activities deal with re-factoring, redesign and other actions to
enhance the quality or the code without adding new features.

Corrective engineering activities refer to handling defects, errors and bugs in
the software.

Management activities are related to code formatting, configuration manage-
ment, cleaning up code and updating the documentation of the project.

94 Open Innovation through the Lens of Open Source Tools: An . . .

Multiple researchers were involved in the commit message classification pro-
cess. After defining the classification categories, Kappa analysis was performed
to calculate the inter-rater agreement level. First, a random sample of 34% of to-
tal commit messages were taken to classify the commit messages and Kappa was
calculated to be 0.29. Consequently, disagreement were discussed and resolved
since the inter-rater agreement level was below substantial agreement range. Af-
terwards, Kappa was calculated again and found to be 0.94.

3.5 Methods for qualitative analysis

The quantitative analysis along with archival analysis of related forums, blog posts
and community related online sources had given a solid foundation to understand
the relation between Sony Mobile and Jenkins and Gerrit communities. Therefore,
in the next step we added a qualitative view by interviewing relevant people inside
Sony Mobile in order to address RQ2–RQ5.

Interviewee selection

The selection of interviewees was based on the contributors identified in the initial
screening of the projects. Three candidates were identified and contacted by mail
(Interviewees 1-3, see Table 1). Interviewees 4-5 were proposed during the initial
three interviews. The first three are top contributors to the Jenkins and Gerrit com-
munities, giving the view of Sony Mobile’s active participation and involvement
with the communities. It should be noted that I3, when (s)he was contacted, had
just left Sony Mobile for a smaller company dedicated to Jenkins development.
(S)he held his position as a tools manager for Jenkins was filled later by an I1.
I4 is a Software Architect in the Tools department involved further down in Sony
Mobile’s continuous integration tool chain and gives an alternative perspective on
the OSS involvement of the Tools department as well as a higher, more architec-
tural view of the tools. I5 is an upper-level manager responsible for Sony Mobile’s
overall OSS strategy, which could contribute with a top-down perspective to the
qualitative analysis.

Analysis procedure

The interviews were semi-structured, meaning that interview questions were de-
veloped in advance and used as a frame for the interviews, but still allowing the
interviewers to dig deeper into findings during the interview wherever needed. The
two first authors were present during all five interviews, with the addition of the
third author during the first and fifth ones. Each interviewer took turns asking
questions, whilst the others observed and took notes. Each interview was recorded
and transcribed. A summary was also compiled and sent back to the intervie-
wees for a review. Any misunderstandings or corrections could then be sorted out.

3 Case study design 95

Table 2: Interviewees demographics
Anonymous
name

ID Tools involvement Years of
experience

Role

Interviewee
1

I1 Jenkins 8 Years Tools manager for
Jenkins

Interviewee
2

I2 Jenkins and Gerrit 6 Years Team lead, Tools
manager for Gerrit

Interviewee
3

I3 Jenkins 7 Years Former tools man-
ager Jenkins

Interviewee
4

I4 Second line after Jenk-
ins and Gerrit Build ar-
tifacts and channel dis-
tribution

8 years Software Architect

Interviewee
5

I5 Open Source policy in
general

20+ Years Upper-level man-
ager responsible
for overall Open
Source strategy

The interview findings were discussed and if relevant, interview questions were
updated for upcoming interviews.

The two first authors individually conducted the qualitative analysis using a
thematic analysis approach [30,31] followed by a review from the third, fourth and
fifth authors in the study. This resulted in two sets of themes and characteristics
based on the five interviews. These were then summarized under five main themes
(see Table 3), which is presented in the results section.

3.6 Validity Threats

This section highlights the validity threats related to the case study. Four types of
validity threats [122] are addressed with their mitigation strategies.

Internal Validity

Internal validity concerns casual relationships and is primarily used for explana-
tory studies. It was found out in the study that Sony Mobile does not use any gen-
eral innovation metrics. Therefore researchers had to rely on qualitative data to
infer the possible unconsciously used metrics. This leads to the risk of introducing
an element of subjectivity from researchers while inferring innovation outcomes
as a result of OI adoption. In order to minimize this risk, the first two authors per-
formed the analysis independently and the remaining authors reviewed it to make

96 Open Innovation through the Lens of Open Source Tools: An . . .

the synthesis more objective. Moreover, findings were sent back to interviewees
to validate the findings drawn from qualitative data.

External Validity

The external validity refers to the extent it is possible to generalize the study find-
ings to other contexts. The scope of this study was limited to software-intensive or-
ganization utilizing the notion of OI to accelerate their innovation process. The se-
lected case company is a large scale organization with an intense focus on software
development for embedded devices. Moreover, Sony Mobile is a direct competi-
tor of all the main stream companies making Android phones. Like Sony Mobile,
the involvement of all stakeholders in the units of analysis (Jenkins and Gerrit)
indicate their adoption of Google’s tool chain to improve their continuous integra-
tion process. Therefore, the findings of this study may be generalized to major
stakeholders identified for their contributions to Jenkins and Gerrit.

Construct Validity

Construct validity deals with choosing the right measures for the concepts under
study. In this study this relates to the selection of interviewees. First we con-
ducted a preliminary quantitative analysis of the repositories before selecting the
interviewees. In addition, the selection was performed based on the individuals’
contributions to the units of analysis (Jenkins or Gerrit). Some of the key factors
considered before selecting interviewees were process knowledge, role, and visible
presence in the community. Second, the presence of researchers at Sony Mobile
was a threat that could affect the outcome of the study. This threat was limited as
there has been a long research collaboration of between the university and Sony
Mobile. Third, multiple researchers validated the interview questionnaire followed
by a pilot interview in order to avoid misinterpretation of interview questions. Fi-
nally, in order to avoid subjectivity, the authors opted for the objective criterion
proposed by Hattori et al. [60] to classify the commits messages. During the dis-
cussion, the disagreements were identified using Kappa analysis and resolved to
achieve a substantial agreement.

Reliability

The reliability deals with the ability to replicate the same study with same re-
sults in other settings. There is always a risk of introducing subjectivity from
researchers. To mitigate this risk, multiple researchers individually transcribed
and analyzed the interview data to make the findings more objective. In addition,
multiple data sources were considered in the study followed by quantitative and
qualitative analysis to ensure the correctness of the findings. All interviews were
recorded, transcribed and sent back to interviewees for validation. The commit
database analysis was highly automated and therefore the subjectivity risks are

4 Quantitative analysis 97

minimized. Finally, this study was not performed to get an approval from Sony
Mobile to explore its OI activities instead, the idea was to to keep the study design
and findings as transparent as possible without making any adjustments in the data
except for the anonymous interviewees. Later on, results were shared with Sony
Mobile.

4 Quantitative analysis

This section presents the classification of Sony Mobile’s commit messages (see
Fig. 5) and time series analysis (see Fig. 6).

Figure 5: Bubble plot for Sony Mobile commits by classification

4.1 Gerrit

The time series analysis of the Gerrit commit data indicates that a large portion of
the commits, generated by Sony Mobile was made during 2012, which is subject
to further investigation (see Fig. 6)

PyGerrit

Pygerrit is a Python library that provides a way for clients to interact with Gerrit
Code Review via ssh or the REST API 3. As can be seen in Fig. 4, Sony Mobile
initiated this plugin and is the biggest contributor to it. Time series analysis shows

3REST (REpresentational State Transfer) is a simple stateless architecture that generally runs over
HTTPS/TLS. The REST style emphasizes that interactions between clients and services are enhanced
by having a limited number of operations

98 Open Innovation through the Lens of Open Source Tools: An . . .

Figure 6: Time series analysis of Sony Mobile’s contributions

Figure 7: Analysis of Sony Mobile’s contributions.

4 Quantitative analysis 99

a steady growth of Sony Mobile’s contributions since its introduction from 2011
on-wards (see Fig. 6)

Gerrit-Event

Gerrit-Event is a Java library used primarily to listen to stream-events from Gerrit
Code Review and to send reviews via the SSH CLI or the REST API. It was orig-
inally a module in the Jenkins Gerrit Trigger plug-in and is now broken out to be
used in other tools without the dependency to Jenkins. Apart from Sony Mobile,
HP, SAP, Ericsson and Intel contributions reveal that they are also using Gerrit-
Event in their continuous integration process. Sony Mobile started contributing to
Gerrit-Event in 2009 and since then seem to be the largest contributor along with
its competitors (see Fig. 6).

4.2 Jenkins

Contributions from Sony Mobile to Jenkins could not be identified in the core
product but to a various set of plug-ins. The ones identified are:

• Gerrit Trigger-plug-in

• Build-Failure-Analyzer-plug-in

• External resource-dispatcher-plug-in

• Team-views-plug-in

Gerrit Trigger

This plug-in triggers builds on events from the Gerrit code review system by re-
trieving events from the Gerrit command "stream-events", so the trigger is pushed
from Gerrit instead of pulled as scm-triggers usually are. Multiple builds can be
triggered by one change-event, and one consolidated report is sent back to Gerrit.
This plug-in (see Fig. 6) seem to attract the most number of contributions from
Sony since 2009 with most number of contributions (607) in the year 2014.

Build failure analyzer

This plug-in scans build logs and other files in the workspace for recognized pat-
terns of known causes to build failures and displays them on the build page for
quicker recognition of why the build failed. As can be seen in Fig. 6, Sony Mobile
came out as the largest contributor in build failure analyzer. Moreover, commits
contribution have declined after 2012 and one possible explanation for this is that
it could be very specific to the needs of Sony Mobile since they are by far the
largest contributor(see fig. 4).

100 Open Innovation through the Lens of Open Source Tools: An . . .

External resource viewer

This plug-in adds support for external resources in Jenkins. An external resource is
something external attached to a Jenkins slave and can be locked by a build, which
thus gets exclusive access to it, then released after the build is done. Examples of
external resources are phones, printers and USB devices.

Team views

This plug-in provides teams, sharing one Jenkins master, to have their own area
with views similar to a User’s my-views. The least number of commits were found
in the team views with Sony Mobile turned out to be the only contributor for this
tool (see Fig. 4).

5 Qualitative analysis
In order to analyze the qualitative data collected through interviews, we conducted
thematic analysis [30, 31] to find recurring patterns. The following steps were
performed in the process.

1. Extract data from interviews through transcription

2. Identify the common themes in the data

3. Define and group themes into distinct categories

4. Summarize findings

This resulted in five themes listed in Table 3, which are further presented in the
following subsections.

5.1 Opening up

This theme is related to RQ2, see Table 3. The process of opening up for exter-
nal collaboration and maturing as an open source company, can be compared to
moving from a closed innovation model to an OI model [22]. The data suggest
that the trigger for this process was a paradigm shift around 2010 when Sony Mo-
bile moved from the Symbian platform (developed in a joint venture), to Google’s
open source Android platform in their products [145]. Switching to Android corre-
lates to a general shift in the development environment, moving from Windows to
Linux. This concerned the tools used in the product development as well. A tran-
sition was made from existing proprietary solutions, e.g. the build-server Electric
commander, to the tools used by Google in their Android development, e.g. GIT
and Gerrit. As stated by I2, “. . . suddenly we were almost running pretty much ev-
erything, at least anything that touches our phone development, we were running

5 Qualitative analysis 101

Table 3: Thematic analysis
Theme name Definition
Opening up (RQ2) Sony Mobile’s transition process from closed

innovation model to OI model

Determinants of openness
(RQ3)

Factors that Sony Mobile considers before in-
dulging themselves into OI

Requirements engineering
(RQ5)

How Sony Mobile manages their requirements
while working in OI context.

Testing process (RQ5) How Sony Mobile manages their testing pro-
cess while working in OI context

Innovation outcome (RQ4) The outcomes for Sony Mobile as a conse-
quence of adopting OI

on Linux and open source”. This was not a conscious decision from manage-
ment but rather something that grew bottom-up from the engineers. The engineers
further felt the need for easing off the old and complex chain of integration and
building process.

At the same time, a conscious decision was made regarding to what extent
Sony Mobile should invest in the open source tool chain. As stated by I5, “. . . not
only should [the tool chain] be based on OSS, but we should behave like an OSS
good citizen and start to contribute, in the ways we can control it, understand it
and even steer it up to the way we want to have it”. This vision was concurrent
with the internal paradigm shift at Sony Mobile and demanded organizational and
process changes from both self-emergent bottom-up and top-down directions. The
biggest hurdle concerned the notion of giving away internally developed IP rights,
which could represent competitive advantages. The legal department took time in
understanding the benefits and license aspects, which caused the initial contribu-
tion process to be extra troublesome. In this case, Sony Mobile benefited of having
an internal champion and OSS evangelist (I5). (S)he helped to drive the initiative
from the management side, explained the issues and clarified concerns from differ-
ent functions and levels inside Sony Mobile. Another obvious success factor was
the creation of an OSS review board, which included different stakeholders such
as legal department representatives, user experience (UX) design, product devel-
opment and product owners. This allowed for management, legal and technology
representatives to meet in an open forum. The OSS contribution process now in-
cludes submitting a form for a review, which promotes it further after successful
initial screening. Next, the OSS review board gives it a go or no-go decision. As
this would prove bureaucratic if it would be needed for each and every contribution
to an OSS community, frame-agreements are created for open source projects with
a high-intensity involvement, e.g. Jenkins and Gerrit. This creates a simplified and

102 Open Innovation through the Lens of Open Source Tools: An . . .

more sustainable process allowing for a day to day interaction between developers
in the Tools department and the communities surrounding Jenkins and Gerrit.

5.2 Determinants of openness

This theme is related to RQ3, see Table 3. Several factors interplay in the decision
process of whether or not a feature or a new project should be made open. Jenkins
and Gerrit are neither seen as a part of Sony Mobile’s competitive advantage nor as
a revenue source. This is the main reason why developers in the Tools department
can meet with competitors, go to conferences, give away free work etc. This,
in turn, builds a general attitude that when something is about to be created, the
question asked beforehand is if it can be made open source. There is also a follow-
up question, whether Sony Mobile would benefit anything from it, for example
maintenance, support and development from an active community. If a feature or
a project is too specific and it is deemed that it will not gain any traction, the cost
of generalizing the project for open use is not motivated. Another factor is whether
there is an existing community for a feature or a project. By contributing a plug-in
to the Jenkins community or a feature to Gerrit there is a chance that an active
workforce is ready to adopt the contribution, whilst for new projects this has to be
created from scratch which may be cumbersome.

Another strategic factor concerns having a first-mover advantage. Contribut-
ing a new feature or a project first means that Sony Mobile as the maintainer gets
a higher influence and a greater possibility to steer it in their own strategic inter-
est. If a competitor or the community publishes the project, Sony Mobile may
have a lesser influence and will have to adapt to the governance and requirements
from the others. A good example here is Gerrit Trigger. The functionality was
requested internally at Sony and therefore undergone development by the Tools
department during the same period, it became known that there was similar devel-
opment ongoing in the community. As stated by I3, “. . . we saw a big potential
of the community going one way and us going a very different route”. This led
to the release of the internal Gerrit Trigger as an open source plug-in to Jenkins,
which ended up being the version with gained acceptance in the Jenkins and Gerrit
communities. The initial thought was however to keep it closed according to I3,
“. . . We saw the Gerrit trigger plug-in as a differentiating feature meaning that it
was something that we shouldn’t contribute because it gave us a competitive edge
towards our competitors [in regards to our continuous integration process]”. It
should be noted that this was in the beginning of the process of opening up in
Sony Mobile and a positive attitude was rising. A quote from I3 explains the posi-
tive attitude of the organization which might hint about future directions, “. . . In 5
years time probably everything that Sony Mobile does would become open”.

5 Qualitative analysis 103

5.3 Requirements engineering process

This theme is related to RQ5 (see Table 3) and provides insights about require-
ments engineering practices in an example OI context. The requirements process
in the Tools department towards the Jenkins and Gerrit communities does not seem
"very rigid" as is a common characteristic for OSS [124]. The product develop-
ment teams in Sony Mobile are the main customers of the Tools department. These
are, however, quite silent with the exception of one or two power users. There is
an open backlog for internal use inside Sony Mobile where anyone from their
product development may post feature requests. However, a majority of the fea-
ture requests are submitted via e-mail. The developers in the Tools department
started arranging monthly workshops where they invited the power users and the
personnel from different functional roles in the product development organization.
An open discussion is encouraged allowing for people to express their wishes and
issues. An example of an idea sprung out from this forum is the Build Failure An-
alyzer4 plug-in. Most of the requirements are, however, elicited internally within
the Tools department in a dialogue between managers, architects and developers.
They are seen to have the subject matter expertise in regards to the tool function-
ality. According to I2, there are “. . . architect groups which investigate and col-
laborate with managers about how we could take the tool environment further”.
This is formulated as focus areas, and “. . . typical examples of these requirements
are sync times, push times, build times and apart from that everything needs to be
faster and faster”. These requirements are high level and later delegated to the
development team for refinement.

The Tools team works in an agile Scrum-like manner with influences from
Kanban for simpler planning. The planning board contains a speed lane which
is dedicated for severe issues that need immediate attention. The importance of
being agile is highlighted by I2, “. . . We need to be agile because issues can come
from anywhere and we need to be able to react”.

The internal prioritization is managed by the development team itself, on del-
egation from the upper manager, and lead by two developers which have the as-
signed role of tool managers for Jenkins and Gerrit respectively. The focus areas
frame the areas which need extra attention. Every new feature is prioritized against
existing issues and feature requests in the backlog. External feature requests to
OSS projects managed by the Tools department (e.g. the Gerrit Trigger plugin)
are viewed in a similar manner as when deciding whether to make an internal fea-
ture or project open or not. If it is deemed to benefit Sony Mobile enough it will be
put in the backlog and it will be prioritized in regards to everything else. As stated
by I3, “. . . We almost never implemented any feature requests from outside unless
we think that its a good idea for [Sony Mobile]”. If it is not interesting enough but
still a good idea, they are open for contributions from the community.

4https://wiki.jenkins-ci.org/display/JENKINS/Build+Failure+Analyzer

104 Open Innovation through the Lens of Open Source Tools: An . . .

An example regards the Gerrit Trigger plugin and the implementation of dif-
ferent trigger styles. Pressing issues in the Tools department backlog kept them
from working on the new features. At the same time, another software intense
organization with interest in the plug-in contacted the Tools department about fea-
tures they wanted to implement. These features and the trigger style functionality
required larger architectural reconstruction. It was agreed that the external organi-
zation would perform the architectural changes with a continuous discussion with
the Tools department. This allowed for a smaller workload and possibility to im-
plement this feature earlier. This feature-by-feature collaboration is a commonly
occurring practice as highlighted by I1, “It’s mostly feature per feature. It could
be "[Company] wants this feature and then they work on it and we work on it". But
we don’t have any long standing collaborations”. I3 elaborates on this further and
states that “. . . its quite common for these types of collaboration to happen just
between plugin maintainer and someone else. They emailed us and we emailed
back” as was the case in the previous example.

In the projects where the Tools department is not a maintainer, community
governance needs more care. In the Gerrit community, new features are usually
discussed via mailing lists. However, large features are managed at hackathons by
the Tools department where they can communicate directly with the community
to avoid getting stuck in tiny details [101]. As brought up by I2, “. . . with the
community you need to get people to look at it the same way as you do and get an
agreement otherwise it will be just discussions forever”. This is extra problematic
in the Gerrit community as the inner core team with the merge rights consists
of only six people, of which one is from Sony Mobile. One of the key features
received from the community was the tagging support for patch sets. I2 stated,
“. . . When developers upload a change which can have several revisions, it enabled
us to tag meta-data like what is the issue in our issues handling system and change
in priorities as a result of that change. This tagging feature allows the developers
to handle their work flow in a better way". This whole feature was proposed and
integrated during a hackathon, and contained more than 40 shared patch sets. Prior
to implementing this feature together with the community (I3 quoted) “. . . we tried
to do it with the help of external consultants but we could not get it in, but meeting
core developer in the community did the job for us". This explains yet another
reason for Sony Mobile to open up [70].

As hackathons may not always be available, an alternative way to communi-
cate feature suggestions more efficiently is by mock-ups and prototypes. I3 de-
scribed how important it is to sell your features and get people excited about it.
Screenshots is one way to visualize it and show how it can help end-users. In the
Jenkins community, this has been taken further by hosting official web casts where
everyone is invited to present and show new development ideas. Apart from us-
ing mailing lists and existing communication channels, Sony Mobile creates their
own channels, e.g. with public blogs aimed at developers and the open source
communities.

5 Qualitative analysis 105

This close collaboration with the community is important as Sony Mobile does
not want to end up with an internal fork of any tool. An I2 quoted, “If we start di-
verging from the original software we can’t really put an issue in their issue tracker
because we can’t know for sure if it’s our fault or theirs system and we would lose
the whole way of getting help from community to fix stuff and collaborate on is-
sues”. Another risk would be that “. . . All of sudden everybody is dependent on
stuff that is taken away from major version of Gerrit. We cannot afford to re-work
everything”. Due to these reasons, the Tools department is keen on not keeping
stuff for themselves, but contributing everything [134, 148]. An issue in Jenkins
is that there exists numerous combinations and setting of plug-ins. Therefore, it
is very important to have backward compatibility when updating a plug-in and
planning new features.

5.4 Testing process

This theme highlights the testing process aspects associated with RQ5, see Table 3.
As with the requirements process, the testing process does not seem very rigid
either. I3 quoted, “. . . When we fix something we try to write tests for that so we
know it doesn’t happen again in another way. But that’s mostly our testing process
I think. I mean, we write JUnit and Hudson test cases for bugs that we fix”.

Bugs and issues are, similarly to feature requests, reported internally either via
e-mail or an open backlog. Externally, bugs or issues are reported via the issue
trackers available in the community platforms. The content of the issue trackers
is based on the most current pressing needs in the Tools department. Critical is-
sues are prioritized via the Kanban speed lane which refers to a prioritized list of
requirements/bugs based on the urgent needs of Sony Mobile. If a bug or an issue
has low priority, it is reported to the community. This self-focused view correlates
with the mentality of how the organization would benefit from making a certain
contribution, which is described to apply externally as well, “. . . Companies take
the issues that affect them the most”. However, it is important to show to the com-
munity that the organization wants to contribute to the project as a whole and not
just to its parts, as mentioned by Dahlander [34]. In order to do so, the Tools de-
partment continuously stays updated about the current bugs and their status. It is
a collaborative work with giving and taking. “Sometimes, if we have a big issue,
someone else may have it too and we can focus on fixing other bugs so we try to
forward as many issues as possible” [63].

In Gerrit, the Tools department is struggling with an old manual testing frame-
work. Openness has lead them to think about switching from the manual to an
automated testing process. I2 stated, “. . . It is one of my personal goals this year
to figure out how we can structure our Gerrit testing in collaboration with the com-
munity. Acceptance tests are introduced greatly in Gerrit too but we need to look
into and see how we can integrate our tests with the community so that the whole
testing becomes automated”. In Jenkins, one of the biggest challenges in regards

106 Open Innovation through the Lens of Open Source Tools: An . . .

to test is to have a complete coverage as there are many different configurations
and setups available due to the open plug-in architecture. However, Gerrit still has
some to catch up as stated by I2, “it is complex to write stable acceptance tests
in Gerrit as we are not mature enough compared to Jenkins”. A further issue is
that the test suites are getting bigger and therefore urges the need for automated
testing.

Jenkins is considered more mature since the community has an automated test
suite which is run every week when a new version of the core is released. This test
automation is very recent. Selenium, which is an external OSS test framework,
is used to facilitate the automated acceptance tests. It did not get any traction
until recently because it was written in Ruby, while the Jenkins community is
mainly Java-oriented. This came up after a discussion at a hackathon where the
core members in the community had gathered, including representatives from the
Tools department. It was decided to rework the framework to a Java-based version,
which has helped the testing to take off although there still remains a lot to be done.

I3 highlighted that Sony Mobile played an important part in the Selenium Java
transition process, “The idea of an Acceptance Test Harness came from the com-
munity but [Sony Mobile] was the biggest contributor to actually getting traction
on it”. From Sony Mobile’s perspective, it can contribute its internal acceptance
tests to the community and have the community execute what Sony Mobile tests
when setting up the next stable version. Consequently, it requires less work of
Sony Mobile when it is time to test new stable version. From the community per-
spective I3 stated, “an Acceptance Test Harness also helps the community and
other companies to understand what problems that big companies have or small
companies in terms of features or in terms other requirements on the system. So
it’s a tool where everyone helps each other”.

5.5 Innovation outcomes
This theme is related to RQ4 (see Table 3). In terms of measuring process and
product innovation outcomes, Sony Mobile does not have any metrics. However,
valuable insights were found during the interviews regarding what Sony Mobile
has gained from the Jenkins and Gerrit community involvement. Following inno-
vation outcomes are identified in the study.

1. Free features

2. Free maintenance

3. Freed up time

4. Knowledge retention

5. Flexibility

6. Increased turnaround speed

5 Qualitative analysis 107

7. Increased quality assurance

8. Improved new product releases and upgrades

9. Inner source initiative

The most distinct innovation outcome is the notion of obtaining free features from
the community, which have different facets [33, 132]. For projects maintained by
Sony Mobile, such as the Gerrit Trigger plug-in, a noticeable amount of external
contributions can be accounted for. Similarly, in communities where Sony Mobile
is not a maintainer, they can still account for free work, but there requires a higher
effort in lobbying and actively steering the community in order to maximize the
benefits for the organization. Along also comes the free maintenance and quality
assurance work, which renders better quality in the tools. Consequently, other than
product innovations in tools as Jenkins and Gerrit, freed up time may be spent on
other matters of high importance to Sony Mobile.

Correlated to the free work is the acknowledgement that the development team
of six people in the Tools department will have a hard time keeping up with the
external workforce, if they were to work in a closed environment. “. . . I mean
Gerrit has like lets say we have 50 active developers, it’s hard for the tech company
to compete with that kind of workforce and these developers at Gerrit are really
really smart guys. Its hard to compete for commercial companies”. Further on,
“. . . We are mature enough to know that we loose the competitive edge if we do not
open up because we cannot keep up with hundreds of developers in the community
that develops the same thing”.

An organizational innovation outcome of opening up is the knowledge reten-
tion which comes from having a movable workforce. People in the community
may move around geographically, socially and professionally but can still be part
of the community and continue to contribute. I3, who took part in the initiation of
many projects, recently left Sony Mobile but is still involved in development and
reviewing code for his former colleagues which is in-line with the findings of the
previous studies [101,132]. In a another case, the knowledge tied to I3 would have
risked being lost for Sony Mobile.

An outcome on software development in general after opening up is that when
entering a new functional area or there is a need of a library, the mentality is to
always look for open source first or co-develop. Developers try to make use of
existing open source solutions to start with as an initial solution. The biggest
challenge usually regards scaling the software to an enterprise level.

Before the paradigm shift and opening up of Sony Mobile, many tools were
proprietary. Adapting these tools, such as the build server Electric commander,
was cumbersome and it took long time before even a small fix would be imple-
mented and delivered by the supplier. This created a stiffness whereas open source
brought flexibility. I2 quoted, “. . . Say you just want a small fix, and you can fix
that yourself very easily but putting a requirement on another company, I mean

108 Open Innovation through the Lens of Open Source Tools: An . . .

it can take years. Nothing says that they have to do it”. This increase in the
turnaround speed was besides the absence of license fees, a main argument in
the discussions when looking at Jenkins as an alternative to Electric commander.
As a result, the continuous integration tool chain could be tailored specifically to
the needs of the product development team. I1 stated that “. . . Jenkins and Gerrit
have been set up for testers and developers in a way that they can have their own
projects that build code and make changes. Developers can handle all those parts
by themselves and get to know in less than 3 minutes whether or not their change
had introduced any bugs or errors to the system". Ultimately, it provides quality
assurance and performance gains by making the work flow easier for software de-
velopers and testers. Prior to the introduction of these tools there was one engineer
who was managing the builds for all developers. In the current practice everybody
is free to extend on what is given to them from tools department. It offers more
scalability and flexibility [102].

I1 stated that besides the flexibility, the Tools department is currently able to
make a “. . . more stable tools environment in [Sony Mobile] and that sort of makes
our customers of the tools department, the testers and the engineers, to have an
environment that actually works and does not collapse while trying to use it”. I2
mentioned that “. . . I think its due to the part of open source and we are trying
to embrace all these changes to our advantage. I think we can make high quality
products in less time and in the end it lets us make better products. I think we
never made as good product as we are doing today”. Further exploration of this
statement revealed the background context where Sony Mobile has improved in
terms of handling all the new releases and upgrades in their phones compared to
their competitors and part of its credit is given to the flexibility offered by the open
source tools Jenkins and Gerrit.

The external knowledge obtained, in the form of different parts in the contin-
uous integration tool chain, enabled better product development. However, the
Tools department has to take the responsibility for the whole tool chain and not
just its different parts, e.g. Jenkins and Gerrit, described by I5 as the next step in
the maturity process. The tool chain has the potential to function as an enabler in
other contexts as well, seeing Sony Mobile as a diversified company with multiple
product branches. By opening up in the way that the Tools department has done,
effects from the coupled OI processes with Jenkins and Gerrit may spread even
further into other product branches, possibly rendering in further innovations on
different abstraction levels [95]. A way of facilitating this spread is the creation
of an inner source initiative which will allow for knowledge sharing across the
different borders inside Sony Mobile, comparable to an internal OSS community,
or as a bazaar inside a cathedral [138]. The tool chain is even seen as the foun-
dation for a platform which is supposed to facilitate this sharing [94]. The Tools
department is considered more mature in terms of contributing and controlling the
OSS communities. Hence, the Tools department can be used as an example of how
other parts of the organization could open up and work with OSS communities. I5

6 Discussion 109

uses this when evangelizing and working on further opening up the organization
at large, and describes how “. . . They’ve been spearheading the culture of being
active or in engaging something with communities”.

6 Discussion

6.1 Opening up

The move to Android took Sony Mobile from a closed context to a neutral external
arena for OI as described by Grotnes [55]. With this, the R&D was moved from
a structured joint venture and an internal vertical hierarchy to an OI community.
This novel way of using pooled R&D [143] can be further found on the opera-
tional level of the Tools department, which freely cooperates with both known and
unknown partners in the Jenkins and Gerrit communities. From an OI perspective,
these activities can be broken down into a number of outside-in and inside-out
transactions. The Tools department’s involvement in Jenkins and Gerrit and the
associated contribution process are repetitive and bidirectional. Thus, this interac-
tion can be classified as a coupled innovation process [50]. This also complies with
Grotnes’ description of how an open membership renders in a coupled process, as
Jenkins and Gerrit communities both are free for anyone to join, compared to the
Android platform and its Open Handset Alliance, which is invite-only [55].

The quantitative results provide further support for the hypothesis that both in-
cumbents and small scale software-intensive organizations are involved in the de-
velopment of Jenkins and Gerrit. This confirms that others than Sony Mobile also
using these communities as external R&D resources and complimentary assets to
internal R&D processes which is in line with the findings of existing OI litera-
ture [63, 131]. One possible motivation for start-ups or small scale organizations
to utilize external R&D is their lack of in-house R&D capabilities. Incumbents
exploit communities to influence not only the development direction, but also to
gain a good reputation in the community as underlined by prior studies [34, 63].

Gaining a good reputation requires more than just being an active contribu-
tor. Stam [131] separates between technical (e.g. contributions and bug fixes) and
social activities (e.g. organizing conferences and actively promoting the commu-
nity), where the later is needed as complementary in order to maximize the benefits
gained from the former. Sony Mobile and the Tools department have evolved in
this vein as they are continuously present at conferences, hackathons and in online
discussions. Focused on technical activities, the Tools department have progres-
sively moved from making small to more substantial contributions. Along with the
growth of contributions, they have also matured in their contributions strategy. As
described in Section 5.2, the intent was originally to keep the Gerrit Trigger plug-
in enclosed. This form of selective revealing [62] has however been minimized
due to a more opened mindset. As a consequence of the openness more plug-ins
were initiated and development time reduced.

110 Open Innovation through the Lens of Open Source Tools: An . . .

Although the adoption of Jenkins and Gerrit came along with an adaption to
the Android development, it was also driven bottom-up by the engineers since they
felt the need for easing off the complex integration tool chain and building process
as mentioned by Wnuk et al. [148]. As described in Section 5.1, this process
was not free of hurdles, one being the cultural and managerial aspect of giving
away internally developed intellectual property [70]. The fear to reveal intellectual
property was removed thanks to the introduction of an OSS review board. Having
an internal champion to give leverage to the needed organizational and process
changes, convince skeptical managers [63], and evangelize about open source was
a great success factor, also identified in the inner source literature [97].

6.2 Determinants of openness

When discussing if something should be made open or contributed, an initial dis-
tinction within the Tools department regarding the possible four cases is made:

1. New projects created internally (e.g. Gerrit Trigger)

2. New features to non-maintained projects (e.g. Gerrit)

3. External feature requirement requests to maintained projects (e.g. Gerrit
Trigger)

4. External bug reports to maintained projects (e.g. Gerrit Trigger).

The first two may be seen as an inside-out transaction, whilst the two latter
are of an outside-in character. All have their distinct considerations, but one they
have in common, as described in Section 5.2, is whether Sony Mobile will benefit
from it or not. Even though the transaction cost is relative low, it still needs to be
prioritized against the current needs. In the case of the two former, if a feature is
too specific for Sony Mobile’s case it will not gain any traction, and it will be a
lost opportunity cost [92].

The fact that Sony Mobile considers their supportive tools, e.g. Jenkins and
Gerrit, as a non-competitive advantage is interesting as they constitute an essential
part of their continuous integration process, and hence the development process.
As stated in regards to the initial intent to keep Gerrit Trigger internally, they saw
a greater benefit in releasing it to the OSS community and having others adopt it
than keeping it closed. The fear that the community was moving in another direc-
tion, rendering in a costly need of patch-sets and possible risk of an internal fork,
was one reason for giving the plug-in to the community [134]. Wnuk et al. [148]
reasons in a similar manner in their study where they differentiate between con-
tributing early or late to the community in regards to specific features. By going
with the former strategy, one may risk losing the competitive edge, however the
latter creates poteniaally high maintenance costs.

6 Discussion 111

Sony Mobile is aware of the fact that increased mobility [22] poses a threat to
the Tools department as it is not possible for them to work in the OSS communi-
ties’ pace due to the limited amount of resources [22]. Consequently, it may end
up damaging the originally perceived competitive advantage by lagging behind.
On the other hand, openness gives Sony Mobile an opportunity to have an access
to pragmatic software development workforce and also, Sony Mobile does not
have to compete against the community. Additionally, by adopting a first mover
strategy [93] Sony Mobile can use their contributions to steer and influence the
direction of the community.

6.3 Requirements engineering and OI

The Tools department may be viewed as both a developer and an end-user, mak-
ing up a source of requirements as can often be seen in Open Source Software
Development (OSSD) [124]. This applies both internally (as a supplier and an ad-
ministrator of the tools), and externally (as a member of the communities). From
the RE perspective, they are their own stakeholder, competing with other stake-
holders (members) in ecosystems, e.g. Jenkins and Gerrit communities, e.g. in
the elicitation and prioritization processes. In regards to elicitation, the level of
influence the Tools department has may allow them to affect what sources require-
ments are taken from, e.g. themselves, but also from those with similar intents
with regards to features and the direction of the community. Same logic applies to
prioritization, as the level of influence affects how the Tools department gets their
plans realized compared to other stakeholders.

The power structure varies as their roles shift between being a maintainer and
an ordinary member with different levels of influence. A related concern suggested
by Alspaugh et al. [8] is that stakeholders who are not developers themselves are
often neither identified nor considered. This may lead to that certain areas are for-
gotten or neglected which is in contrast to Wnuk et al. [148] who state that adop-
tion of OI makes identifying stakeholder’s needs more manageable. Further, this
brings an interesting contrast to traditional RE where non-technical stakeholders
often need considerable help in expressing themselves. RE in OI applied through
OSS hence can be seen as quicker, light-weight and more technically oriented than
traditional RE [125].

For the Tools department, scalability was an overseen functional area in the
sense that both Jenkins and Gerrit had relatively weak support for large produc-
tion environments as was needed by Sony Mobile. No other stakeholder with a
similar environment size had stepped forward earlier. An interesting note in this
case is that even though the two tools were lacking functionality, Sony Mobile
still proceeded with them as issues could be fixed over time. In OSSD, one often
needs to have a high authority level or have a group of stakeholders backing up the
intent. Sony Mobile has been very successful in this aspect due to the Tools de-
partment involvement inside these communities [34]. This results in Sony Mobile

112 Open Innovation through the Lens of Open Source Tools: An . . .

employees being usually high up in the governance organization due to their high
commitment and good track record. The Tools department combines their position
in the communities together with openness in terms of helping competitors and in-
teracting in social activities [131] (e.g. developers conferences [80]) in order to
attract quiet stakeholders, both in terms of influencing the community [33], but
also to get access to others knowledge which could be relevant for Sony Mobile.
Communication in this requirements value chain [47] between the different stake-
holders, as well as with grouping, can be deemed very ad-hoc as OSS RE is in
general [125]. This correlates to the power structure and how influence may float
between different stakeholders.

Along with the intent to influence the community, social interaction between
the stakeholders is stressed as an important aspect to resolve conflicts and to co-
ordinate dependencies in distributed software development projects [109]. The
Tools department preference for live meetings over the otherwise available elec-
tronic options such as mailing lists, issue trackers and discussion boards, is due to
time differences and lag in discussions that complicate implementation of larger
features. Open source hackathons [126] is the preferable choice as it brings the
core stakeholders together which allows for informal negotiations [47] and a live
just-in-time requirements process [43], meaning that requirements are captured in
a less formal matter and first fully elaborated during implementation. As high-
lighted in section 5.3, feature-by-feature collaborations is also a common practice.
This is also due to the ease in communication as it may be performed between
two single parties. Hence, it may be concluded that communication in this type of
distributed development is a critical challenge, and in this case overcome by live
meetings and keeping the number of collaborators per feature low.

Another interesting reflection on the feature-by-feature collaborations is that
these may be performed with different stakeholders, i.e. relations between stake-
holders fluctuate depending on their respective interests. This objective and short-
term way of looking at collaborations imply a need of standardized practices in a
community for it to be effective. Furthermore, it highlights the need to continu-
ously analyze the present stakeholders in the community in order to identify those
with similar intents, both for possible collaborations and to find partners in order
to gain leverage in prioritization processes, for example.

Knauss et al. [80] highlighted the differences between two levels through which
requirements are communicated between stakeholders in an open-commercial soft-
ware ecosystem, namely a strategic and an emergent requirements flow. These may
also be transferred to the Jenkins and Gerrit communities. In the emergent flow,
end-users and developers continuously find new ways of using the software and
present their solutions for discussion on work-item level in the open communica-
tion channels available, i.e. this is similar to post-hoc assertions [8] through proto-
types and plug-ins, and communication practices that are generally performed in
OSS communities, including those surrounding Jenkins and Gerrit. The strategic
flow regards how business goals and strategies originating from different stake-

6 Discussion 113

holders are aligned and considered in an ecosystem. From Sony Mobile’s perspec-
tive, improved scaling possibilities of the production environments can be regarded
as a business goal which needed to be echoed and rallied for in the OSS communi-
ties for traction to be gained. This separation between an emergent and a strategic
flow may implicate the need for different practices. In the example where Sony
Mobile was in need of a more scalable production environment, a high degree of
social pressure and traction-creation was needed to steer the community and to
negotiate with other stakeholders. Features that are more narrow and low-level
may be implemented on post-hoc assertions and communicated with much less
effort through e.g. mailing lists or issue trackers [125]. This is an area that needs
further investigation in future research, especially how it relates to the different
sub-practices of RE, e.g. elicitation and prioritization.

The way in how requirements are elicited, analyzed, specified and stored in the
Jenkins and Gerrit communities include multiple instances, such as issue track-
ers, email-lists and bulletin board-discussions. Scacchi [125] labels these ways
of communicating and describing features as software "informalisms", where ar-
tifacts which capture the requirements are exposed to the community, to read, un-
derstand and discuss their implementation proposals. As identified in Section 5.3
a preferable way to present and sell such informalisms, i.e. feature suggestions,
is with prototyping as is commonly used in OSSD [8, 53], alongside referring to
the attributes in competing products or previous versions of a project. This way of
presenting requirements combines well with how the developers in the Jenkins and
Gerrit communities tend to present ready made solutions rather than specifying the
problem a priori.

With the highlighted use of live-meetings and social events to communicate
and discuss requirements, it is important that these are recorded as other infor-
malisms so that all stakeholders and members of the community gets to know
about what, how and why some things were implemented or decided. This im-
plies a higher importance of being socially present in a community other than just
online if a stakeholder wants to stay aware of important decisions and implemen-
tations. Another reason would be so that the stakeholder may maintain or grow its
influence and position in the governance ladder. Hence, firms might need to revise
their community involvement strategy and value what their intents are in contrast
to if an online presence is enough.

As the requirements are distributed among multiple "storages" in the Jenkins
and Gerrit communities, it is hard to maintain quality factors such as consistency,
completeness, correctness and traceability as in traditional RE (e.g. [88]). Even
though the Jenkins and Gerrit communities lack these features, the two tools are
still entrusted to act as critical parts of Sony Mobiles’ development process which
supports the general trend that OSSD can generate high quality applications even
for business critical applications [8].

114 Open Innovation through the Lens of Open Source Tools: An . . .

6.4 Testing process and OI
In both Jenkins and Gerrit the focus has in general been on manual test cases.
However, the maturity process has begun where the communities are moving more
towards automated testing, with the Jenkins community leading. The openness of
the Tools department led them to participate in the testing part of Jenkins com-
munity and to use its influence to rally the traction towards it amongst the other
stakeholders in the community. This is especially important for the Jenkins com-
munity due to the rich number of settings offered by the plugins.

Currently, the Gerrit community is following the Jenkins’ community patch,
as stressed by I2. With this move towards automated testing, quality assurance
will hopefully become better and enable more stable releases. These are important
aspects and business drivers for the Tools department as Jenkins and Gerrit consti-
tute the critical parts in Sony Mobile’s continuous integration tool chain. Seeing
from this perspective, a trend may be visualized in how the different communities
are becoming more professionalized in the sense that the tools make up business
critical assets for many of the stakeholders in the communities, which motivates a
continuous effort in risk-reduction [62, 105].

The move towards automated testing also allowed for the Tools department to
contribute their internal test cases. This may be viewed as profitable from two
angles. First, it reduces work load internally, and second, it secures that settings
and cases specific for Sony Mobile are addressed and cared for. The test cases
may to some extent be viewed as a set of informal requirements, which secure
quality aspects in regards to scalability for example which is important for Sony
Mobile [13]. Similar practices, but much more formal, are commonly used in
more traditional (closed) software development environments. From a community
perspective, other stakeholders benefit from this as they get the view and settings
from a large environment which enable them to grow as well.

As can be noted in Fig. 5, the focus is on forward and re-engineering. An
interested concern is when and how much one should contribute in regards to bug
fixes and what should be left for the community, because some bug fixes are very
specific to Sony Mobile and the community will not gain anything from it. As
discussed earlier, Sony Mobile has the strategy of focusing on issues which are
self-beneficiary. Although, to be able to keep the influence and strategic position
in the communities, the work still has to be done in this area as well.

6.5 Innovation outcomes
The focal point of the OI theory is value creation and capture [24]. In the studied
case, the value is created and captured through their involvement in the Jenkins
and Gerrit communities. However, measuring that value using key performance
indicators is a daunting challenge. Edison et al. [40] confirm a limited number
of measurement models, and that the existing ones neither model all innovation
aspects, nor say what metric can be used to measure a certain aspect. Furthermore,

6 Discussion 115

existing literature is scarce in regards to how data should be gathered and used
for the metrics proposed by literature. As expected, interviewees mentioned that
Sony does not have established mechanisms in place to measure their performance
before and after the Jenkins and Gerrit introduction. This confirms the findings
of Edison et al. [40]. However, from the qualitative data collected from the in-
terviews we specifically looked for two types of innovations, product innovations
in the tools Jenkins and Gerrit, and process innovation in Sony Mobile’s product
development. Other types, specifically market and organizational innovation were
considered but not identified. Further, we did not diffrentiate between different
impacts of innovation, such as incremental, really new or radical [48].

By taking an active part in the knowledge sharing and exchange process with
communities [33, 132], the Tools department enjoys the benefits of contributions
extending the functionality of their continuous integration tools. Another benefit
is the free maintenance and bug corrections and the test cases extension for further
quality assurance. These software improvements and extensions can to a varying
extent to labeled product innovations depending on what definition to be used [40].
This may also be viewed from the process innovation perspective [4] as Sony Mo-
bile gets access to extra work force and a broad variety of competencies, which
are internally unavailable [33]. The interviewees admit to that even a large scale
software-intensive organization cannot keep up the technical work force beyond
the organization’s borders and there is a huge risk of losing the competitive edge
by not being open. This is an acknowledgement to Joys law [86] “No matter who
you are, most of the smartest people work for someone else”. Hence, it is vital
to reach work force beyond organizations boundaries when innovating [24]. And
as earlier described, knowledge is still retained as people move around inside the
community.

Furthermore, these software improvements and product innovations affect the
performance and quality of the continuous integration process used by Sony Mo-
bile’s product development. Continuous integration as an agile practice [11] en-
ables early identification of integration issues as well as increases the developers’
productivity and release frequency [130]. With this reasoning, as reported else-
where [95], we deem that the product innovations captured in Jenkins and Gerrit
transfer on as process innovation to Sony Mobile’s product development. The
main reason behind this connection is viewed as the possibility to tailoring and
flexibility that the OSSD permits. By adapting the tool chain to the specific needs
of the product development the mentioned benefits (e.g. increased build quality
and performance) are achieved and waste is reduced in the form of freed up hours,
which product developers and testers may spend on alternative tasks as confirmed
by Moller [100]. The business impact in the end is a reduced time to market and
increased quality of products. This latter statement is however not confirmed as
metrics are not available and is out of scope of this paper.

Another process innovation, which could also be classified as an organizational
innovation outcome [4], is the inner source initiative where Sony Mobile wants to

116 Open Innovation through the Lens of Open Source Tools: An . . .

spread the tool chain, as well as to build a platform (i.e. software forge [94])
for sharing built on the tool, intra-organizationally to other business units within
Sony. This may be seen as an intra-organizational level OI as described by Morgan
et al. [101]. By integrating the knowledge from other domains, as well as opening
up for development and contributions, this allows a broader adoption and a higher
innovation outcome for Sony Mobile and neighboring business units, as well as
for communities. Organizational change in regards to processes and structures
and related governance issues, would however be one of many challenges needed
to address [101]. Seeing Sony Mobile as a multinational corporation with a wide
spread of internal culture this could prove to be a difficult task.

6.6 Openness of Tools software vs. Product software

An important finding of this study related to openness is that Sony Mobile only
opens up its non-competitive tools that are not the part of the revenue stream. I3
stated that “. . . Sony Mobile has learnt that even collaborating with its worst com-
petitors does not take away their competitive advantage, rather they bring help for
Sony Mobile and becomes better and better”. Consequently, Sony Mobile’s in-
ternal development environment has become more stable and gained access to the
skilled workers from the community that would otherwise have come with signif-
icant costs. As a result, the communities receive contributions from a large scale
software-intensive organization. This raises a discussion point of why Sony Mo-
bile limits its openness to non competitive tools, despite knowing that opening up
creates a win-win situation for all stakeholders involved. Furthermore, it remains
an open question why the research activity related to OI in SE is low as confirmed
by the results of a mapping performed on the area [107].

In the light of the mapping study conducted prior to this study, it would be
fair to state that the SE literature lacks studies on OI using software both with a
direct and indirect competitive advantage. Organizations have a tendency to open
proprietary products when they loose their value, and spinning off is a one way
of re-capturing the value by creating a community around it [96]. This implica-
tion paves way for future studies using proprietary solutions as units of analysis.
Moreover, it will lead to contextualization of OI practices, which may or may not
work under different circumstances. Therefore, the findings could also be used
to strengthen the OI theory weakness mentioned by Mowery [104] that the OI
phenomenon lacks contextualization. It is also important to note that this study
focuses on OI via OSS participation, which is significantly different from the situ-
ation where OI is based on open source code for the product itself (like Android or
Linux). The implication of this difference is that we need to explore that situation
to see if there are other patterns in these OI processes.

7 Conclusion 117

7 Conclusion

This study has focused on OI in SE at two levels: 1) innovation incorporated into
Jenkins and Gerrit as software products, and 2) how these software improvements
affect and innovate the continuous integration process used by Sony Mobile’s. By
keeping the development of the tools open, the in- and out-flows of knowledge
between the Tools department and the OSS communities bring improvement to
Sony Mobile and innovate the way how products are developed. This type of
openness should be separated from the cases where OSS is used as a basis for
the companies’ product or service offering, e.g. as a platform, component or full
product [134]. To the best of our knowledge, no study has yet focused on the
former version, which highlights the contribution of this study and the need for
future research of the area.

Our findings suggest that both incumbents and many small scale organizations
are involved in the development of Jenkins and Gerrit (RQ1). Sony Mobile may
be considered as one of the top contributors in the development of the two tools.
The main trigger behind adopting OI turned out to be a paradigm shift, moving
to an open source product platform (RQ2). Sony Mobile’s opening up process is
limited to the tools that are non-competitive and non-pecuniary. Furthermore, for
Sony Mobile to open up a project or e.g. to put effort into a feature implementation,
there needs to be a clear incentive or profit motivation (RQ3).

In relation to the main innovation outcomes from OI participation (RQ4), we
discovered that Sony Mobile lacks key performance indicators to measure its inno-
vative capacity before and after the introduction of OSS at the Tools department.
However, the qualitative findings suggest that it has made the development envi-
ronment more stable and flexible. One key reason, other than contributions from
communities, regards the possiblity of tailoring the tools to internal needs. Still, it
is left for future research efforts to further investigate in how OI adoption affects
product quality and time to market.

When looking at the impact of OI adoption on requirements and testing pro-
cesses (RQ5), Sony Mobile uses dedicated resources on the inside to gain influ-
ence, which together with an openness toward direct competitors and communities
is used to draw attention to issues relevant for Sony Mobile, e.g. scalability of tools
to large production environments. Social presence outside of online channels is
highly valued in order to manage communication challenges related to distributed
development. Another way of tackling such challenges regards co-creation on a
feature-by-feature basis between two single parties. Choice of partner fluctuates
and depends on feature in question and individual needs of the respective parties.
Further on, prioritization is made in regards to how an issue or feature may be
seen as beneficial, in contrast towards the pressing needs of the moment. Regard-
ing testing, much focus is directed towards automating test activities in order to
raise quality standards and professionalize communities to company standards.

Findings of the study are limited to software-intensive organizations with the

118 Open Innovation through the Lens of Open Source Tools: An . . .

similar context, domain and size as Sony Mobile. It is also worth mentioning
that stakeholders involvement in Jenkins and Gerrit suggest that their continuous
integration process is comparable to Sony Mobile thus, we believe that findings of
this study may also be applicable to incumbents as well as small software-intensive
organizations identified in this study (see Fig. 4).

For future work, it would be interesting to investigate whether or not OI de-
pends on the contextual factors such as domain, size and experience etc. Moreover,
one of the key findings of the study is that the testing process in OI is very much a
work in progress shifting from manual test cases to automated test cases in order to
test Jenkins plug-ins using an acceptance test harness. Therefore, An exploratory
study with the intention of understanding the acceptance test harness could be a
good candidate for the future work.

Regarding future work for RE in OI, it would be interesting to investigate how
RE practices (e.g. elicitation and prioritization) towards OSS communities differ
on a strategic and more practical lower level, and how these should be constructed
to optimise the innovation outcome and bridge with a firms internal RE process.
Also, account should be taken to the identified challenges of communication and
fluctuating short-term partnerships, and how this may demand a continuous anal-
ysis of present and up-coming stakeholders. Another interesting topic for future
work includes investigation of how stakeholders in a community should manage an
increased need for a social presence outside the traditional online communication
channels.

CHAPTER IV

SOFTWARE TESTING IN
OPEN INNOVATION: AN

EXPLORATORY CASE STUDY
OF THE ACCEPTANCE TEST

HARNESS FOR JENKINS

Abstract

Open Innovation (OI) has gained significant attention since the term was intro-
duced in 2003. However, little is known whether general software testing pro-
cesses are well suited for OI. An exploratory case study on the Acceptance Test
Harness (ATH) is conducted to investigate OI testing activities of Jenkins. As
far as the research methodology is concerned, we extracted the change log data
of ATH followed by five interviews with key contributors in the development of
ATH. The findings of the study are threefold. First, it highlights the key stakehold-
ers involved in the development of ATH. Second, the study compares the ATH
testing activities with ISO/IEC/IEEE testing process and presents a tailored pro-
cess for software testing in OI. Finally, the study underlines some key challenges
that software intensive organizations face while working with the testing in OI.

1 Introduction

Open Innovation (OI) is an emerging paradigm in Software Engineering (SE)
which lacks empirical evidence for software-intensive organizations. In 2003,
Chesbrough defined OI as follows [24]: “A paradigm that assumes that firms can
and should use external ideas as well as internal ideas, and internal and external
path to markets, as they look to advance their technology”. One of the most well

120 Software Testing in Open Innovation: An Exploratory Case Study of . . .

known ways for enabling OI in the software-intensive organizations is the use of
Open Source Software (OSS). However, it is important to acknowledge that OI
and OSS are not the same. In order for OSS to be used as an example of OI, firms’
OSS activities must be in line with their business model to create and capture value.
OI is more transactional in nature, compared to OSS, where firms try to leverage
external knowledge to accelerate their internal innovation process and in return,
contribute back to the community by adopting a selective revealing strategy [62].

Prior to this study, we conducted a systematic mapping study [107] on OI in
SE to identify the research in the field. The study shows that empirical studies
on the role of testing in OI are scarce. Furthermore, software testing in OI en-
tails a dual role: 1) to verify the functions and characteristics of open components
and services, supplied by the community, and 2) to verify the functions and char-
acteristics of services delivered to stakeholder higher up in the value chain (e.g.
internal customers, software developers and testers). Furthermore, it is still un-
known whether or not the general practices of software testing are feasible to deal
with the challenges of OI.

This paves way for this exploratory case study with the main focus of software
testing in OI. The object of study is Jenkins, an open source build server [2]. The
main objective of this study is to identify the top contributors to the Acceptance
Test Harness (ATH) which is part of the Jenkins project (see Section 3.1) and
explore the testing processes used to test Jenkins, using ATH. Furthermore, this
paper presents the key challenges faced by one of the key contributors to Jenkins
(see Section 3.3).

2 Research Design
In order to explore software testing activities in OI, we launched a case study [122]
of an OSS project, studied as an instance of OI. The focus of the study is on the
initiation and development of the ATH to test Jenkins in an automated fashion. We
conducted the following steps: first we mined the ATH source code repository and
extracted the change log data, using CVSAnly, to characterize the top ATH con-
tributors in the Jenkins community. Then, face to face semi-structured interviews
were conducted with the key software developers of ATH (see Table 1). Thirdly,
we analyzed the OI testing by relating the process to a general test process, and
identified key challenges for OI testing.

2.1 Research Questions

Our general interest in understanding OI aspects of software testing are detailed in
three research questions:

RQ1: Who are the top stakeholders involved in the development of ATH and are
those stakeholders the same as the contributors of Jenkins?

2 Research Design 121

RQ2: Do ATH testing activities adheres to ISO/IEC/IEEE 29119 testing stan-
dard?

RQ3: What are the key challenges associated with testing in OI?

As a point of reference for general test processes, we used the ISO/IEC/IEEE
29119 testing standard to compare the ATH testing process with (RQ2). This lead
to identifying the key contributors (RQ1) in ATH, followed by interviews with the
developers of ATH to find out the possible hurdles (RQ3) in the process. To be
more specific, RQ1 is formulated to investigate the homogeneity of the commu-
nity, to see whether or not the top contributors of ATH are the same as for the
core of Jenkins. RQ1 is answered by mining the change log data from the on-
line ATH GitHub repository. It is to be noted that the change log mining is also
used to identify the key contributors of ATH for interviews. RQ2 aims at explor-
ing the adherence of ATH to ISO/IEC/IEEE 29119 testing standard. In order to
analyze the OI test process, the ISO/IEC/IEEE standard is a reference model for
traditional testing. Abdou et al. [5] used ISO/IEC/IEEE standard to compare it
with the OSS testing process. However, we followed ISO/IEC/IEEE standard to
compare it with the OI testing process. There are number of standards available
for testing processes, such as ISO/IEC TR 19759, BS 7925-2 and ISO/IEC WD
29119-2 [1,5,17,118], while we used the latter since is is quite recent and interna-
tionally accepted as as standard. ISO/IEC/IEEE 29119 supports various software
development life cycles including spiral, waterfall and agile models. Unlike all
previously mentioned models, it covers non functional testing, risk based testing
and static testing. The change log data extracted to answer RQ1 helped us identi-
fying the key interviewees in order to explore the challenges associated with ATH.
RQ3 is used to explore the key challenges associated with OI in SE. RQ2 and RQ3
are answered using interviews with the key contributors from the Jenkins commu-
nity.

2.2 Case Selection and Unit of Analysis

Jenkins is the leading open source continuous integration server [2]. It offers more
than 1000 plugins to support building and testing virtually any project built in
Java. These tests can be also run with specific version of the Jenkins core and a
combination of plugins. Over the passage of time, the number of test cases for
Jenkins has steadily increased to over 300. In order to test Jenkins with automated
tests, one of the key contributors (referring to an anonymous company’s employee)
initiated the ATH together with the community. ATH consists of a reusable harness
that can be used by plugin developers and users to write functional test cases.
These test cases can be run against Jenkins plugins that are deployed in different
configurations. The focus of this case study is to explore OI activities in ATH from
the companies’ perspective rather than community’s perspective.

122 Software Testing in Open Innovation: An Exploratory Case Study of . . .

Table 1: Interviewees description
Anonymous
name

Involvement Experience Role

Interviewee 1 Jenkins and ATH 8 Years Tools manager for Jenkins and
contributing to ATH

Interviewee 2 Jenkins and and ATH 6 Years Team lead and ATH contributor

Interviewee 3 Jenkins 7 Years Former tools manager Jenkins

Interviewee 4 Responsible for Jenkins and
Gerrit build artifacts and chan-
nel distribution

8 years Software Architect

Interviewee 5 OSS policy maker More than 20
Years

Manager responsible for overall
OSS strategy

3 Results and Analysis

This section presents the findings from the change log data analysis and the semi-
structured interviews with the contributors of ATH.

3.1 Stakeholders in ATH

The associations of key contributors were identified using their email addresses
followed by checking their public profiles on GitHub. In Fig. 1, Cloudbees and
Redhat are the biggest contributors to the development of ATH. Surprisingly, the
third biggest contributor turned out to be Munich University which is an indication
of strong ties between the Jenkins community and academia [22]. It is to be noted
that the biggest contributor in Jenkins is not among the top for ATH. However, we
chose to interview key contributors to Jenkins, since they initiated the idea of ATH
and convinced the community to start testing Jenkins in an automated fashion.

Interview data suggests that the testing process of Jenkins is the least attended
process since the community was using an old manual approach for the testing of
Jenkins. Openness lead them to consider switching from the manual to an auto-
mated testing process. Initially, the idea of testing Jenkins in an automated fashion
came from the community. An interviewee 3 stated, “. . . the idea of acceptance
test harness came from the community but [our company] was the biggest contrib-
utor to actually getting traction on it”.

Selenium is a test harness that tests Jenkins from outside, using automated
tests. Originally it was written in Ruby, while Jenkins generally have unit test
cases written in HTML that only test a particular plug-in in a unit test manner.
In 2011, this became a significant problem for two reasons. Firstly, the HTML
solution did not scale up to a large number of plug-ins, and secondly, the commu-
nity primarily used Java, and thus the Ruby implementation became a bottleneck
regarding competence.

3 Results and Analysis 123

Figure 1: Key contributors to the Acceptance Test Harness.

Therefore, the main contributor took on the scaleability issue and together with
the Jenkins community decided to rework the test harness into Java. The ATH is
comprised of a reusable harness that can be used by users and plug-in developers to
write functional test cases. An interviewee 3 stated that, “. . . from [the company’s]
perspective, we can contribute our internal acceptance test cases to the community
and have the community actually to execute those tests when its time to test a
new stable version and upgrading. Similarly, it helps other companies and the
community to do the same. Therefore, it’s a tool that helps everyone”.

The programming language (Ruby) and scaleability issues of the Selenium(HTML)
test harness came up as a bottleneck to adopt it for the Jenkins testing, since the
Jenkins community works with Java. Therefore, the ATH is created to port sele-
nium test cases into Java unit test cases in order to test the Jenkins through auto-
mated acceptance test cases.

3.2 The ATH Testing Process

In this section we compare the ATH testing process to the ISO/IEC/IEEE 29119
testing standard. The structure below follow the main phases of the standard.

Test Design and Implementation

The OI testing is less formalized than described in the standard. ATH does not have
an explicit test plan and there is no formal identification of risks (see Fig. 2). The
features to be tested are prioritized according to the community’s or contributor’s

124 Software Testing in Open Innovation: An Exploratory Case Study of . . .

Table 2: Differences between ISO/IEC/IEEE 29119 and the OI testing process
Phases ISO/IEC/IEEE Test Process Acceptance test harness

framework
Test Design and Implementation • Identify Feature Sets

• Derive Test Conditions

• Derive Test Coverage
Items

• Derive Test Cases

• Assemble Test Sets

• Derive Test Procedures

• Identify Independently

• Derive Testable As-
pect(s)

• Derive Test Cases

• Documentation

Test Environment Set-Up and Main-
tenance

• Establish Test Environ-
ment

• Maintain Test Environ-
ment

• Select Test Environment

Test Execution • Execute Test Proce-
dure(s)

• Compare Test Results

• Record Test Execution

• Test thoroughness de-
pends on developers ex-
pertise

• Execute

• Submit

Test Incident Reporting • Analyze Test Result(s)

• Create Incident Report

• Review or Vote

• Accept

• Console reports

• Textfile reports

internal needs independently without consulting other stakeholders in the project.
Testable objects (plugins) are based on the specific interests from volunteers who
to choose take over the testing for a component (see Table 2).

Test Environment Set-Up and Maintenance

According to the ISO/IEC standard, test cases are derived by determining the pre-
conditions, post-conditions, input values and expected outcomes. However, in the
absence of a test plan, ATH does not have test completion criteria that measure
the test coverage of the Jenkins plugins. An interviewee 1 stated that, “. . . the ex-
istence of acceptance test cases does not guarantee that Jenkins would not blow
up every time we upgrade the core or its plugins since it is so volatile with with
different plugins and configurations. However, it can give us a fair indication what
went wrong and enable to fix the problem.’. In most OSS projects, testers move
directly to test execution from test design and implementation in order to execute
test procedures, since there are no specific requirements for the test environment
in ATH (see Fig. 2). However, ATH has an abstraction called JenkinsController

3 Results and Analysis 125

Figure 2: The ATH testing process

that allows using different logic for starting/stopping Jenkins. It is used to run
the same set of tests against many different ways of launching Jenkins, such as
through Java, JBoss, a Debian package, etc. To select a controller, run the test
with the TYPE environment variable set to the controller ID. Common configura-
tion of controllers can be done through environment variables, and the following
controllers are available in ATH.

• Winstone controller (TYPE=winstone)

• Winstone Docker controller (TYPE=winstone_docker)

• Existing Jenkins’ controller (TYPE=existing)

• Tomcat controller (TYPE=tomcat)

• JBoss controller (TYPE=jboss)

• Ubuntu controller (TYPE=ubuntu)

• CentOS controller (TYPE=centos)

• OpenSUSE controller (TYPE=opensuse)

Due to the open plug-in nature of the Jenkins it is difficult to have a one con-
troller for all the above mentioned configurations. Therefore, the ATH provides
different types of controllers to run the acceptance test suite against many differ-
ent environments by setting the environment variable.

126 Software Testing in Open Innovation: An Exploratory Case Study of . . .

Test Execution

The Test Execution process generally begins with a developer, testing the local
copy of Jenkins after checkout and the thoroughness of test cases depends on the
expertise and judgment of the developer (see Fig. 2). However, in order to ensure
the quality of acceptance test cases, a video tutorial is available on the Jenkins
web page that shows how to write an acceptance test case. ATH uses WebDriver
to execute tests, and the developers have the option to choose the browser by us-
ing the BROWSER environment variable. The following browser variables are
compatible with ATH to execute the test suite.

• firefox (default)

• ie

• chrome

• safari

• htmlunit

• phantomjs

Test Incident Reporting

Test incident reporting in ATH depends on the discussions in the mailing lists,
which solicit feedback from interested stakeholders, and the voting system. ATH
allows Console and Textfile reports. The Console Reporter logs the plugin and
its version to standard output. The Textfile Reporter creates a properties file in
the target folder containing a list of plugin names and their versions, prefixed by
the test name. It can be very useful when users want to be able to see which
plugins and their versions that were tested with a particular version of Jenkins
Core. Note that the reporting can be performed by any stakeholder involved in the
development of ATH. However, the community uses the voting system to prioritize
the most critical bugs (see Table 2). Moreover, test results are categorized into
three categories: 1) OK, 2) Warn, and 3) Fail. Test results are considered OK if the
tests passed without any problems. Warning indicates a functionality malfunction,
but it does not cause the whole Jenkins to fail. On the contrary, failure indicates a
fatal error of the whole Jenkins or a critical issue that affect all jobs, i.e. developers
have not been to start Jenkins or save the configuration of any job.

Interviewees stated that external bugs are reported through the JIRA tool and
internal bugs are reported using emails. The prioritization is based on the most
pressing needs of software developers at the contributor. Additionally, all the test
cases are written in Java using JUnit. An interviewee 3 stated, “. . . if it is sort of
a make or break we fix it ourselves and then make a pull request and if its not,
we report it. May be someone from the community in the future will fix it”. Other

4 Conclusions 127

stakeholders in the ATH also do the same, by taking the most important issues
according to their needs and fix them first. However, it is important to show to the
community that we want to contribute to the project as a whole and not just our
part, as mentioned by Dahlander [34]. An interviewee 3 stated “. . . sometimes, if
we have a big issue someone else may have it too and we can focus on fixing other
bugs so, we try to forward as many issues as possible.”. This finding is inline with
the findings of Henkel et al. [63].

3.3 Software Testing Challenges in OI

One of the biggest testing challenges is to have a complete coverage as there are
many different configurations and setups available due to the open plug-in nature
of Jenkins. As one interviewee 1 stated “. . . Jenkins is composed of so many small
plugins thereby, every time [company] upgrade core and plugins for master ser-
vices it blows up”. Therefore, running the ATH test suites before applying an
upgrade gives the team an indication about what might fail during the process. In
addition to this quote, the interviewee further elaborated that they have some ac-
ceptance tests and the test suite is getting bigger, and therefore urges for a need to
set up an automatic building (ATH) for every patch set. The second major chal-
lenge is related to the availability of resources, as an interviewee 3 stated “. . . the
hot shots in the community are really busy and do not have enough time to take
on some of the most daring challenges we face. Therefore, sometimes it is frus-
trating to get an answer from the community quickly.” as confirmed by Morgan et
al. [102]. This also traces back to our comparison (see Table 2) where stakeholders
prioritize and fix their issues independently, without taking other stakeholders into
account.

4 Conclusions

This case study explored testing activities in Jenkins, using ATH and compared the
testing activities of ATH with the ISO/IEC/IEEE testing standard. We extracted the
change log data of ATH in order to identify the major contributors (RQ1). In the
interviews, we found out that although the initial idea of ATH came from the com-
munity, the major Jenkins contributor brought ATH to the community’s attention
at hackathons. Additionally, along with Cloudbees and Redhat, Munich university
came out as a third biggest contributor, which suggests strong ties between the
Jenkins community and industry. Further, we compare the difference between the
ATH testing process and the ISO/IEC/IEEE testing standard (see Table 2). The
key difference is that the ATH does not have a test plan and therefore, there is no
test completion criteria that measures the test coverage of all Jenkins plugins. The
thoroughness of the acceptance test cases depends on the subjective judgment of
developers (RQ2). Finally, we identified key challenges for the testing process in

128 Software Testing in Open Innovation: An Exploratory Case Study of . . .

OI (RQ3). For example, due to the huge number (1000+) of open Jenkins plug-
ins and its nature with many settings, it is a daunting task to have a complete test
coverage. However, the ATH makes the whole Jenkins defect detection process
better by pointing to defects in faulty plugins and thereby, enables developers to
take corrective actions more efficiently.

It can be concluded that the ATH testing process does not strictly adhere to
the ISO/IEC/IEEE testing standard because testable features are identified by soft-
ware engineers independently without any formal test plan. The test coverage is
dependent on software engineers subjective judgment and hence, it is very diffi-
cult to achieve the complete test coverage. Furthermore, different controllers to
run acceptance test cases against many different environments is an indication that
the standard Software Engineering testing process needs to be adapted to deal with
challenges of OI. Finally, it is worth mentioning that Jenkins is a development in-
frastructure and ATH is used to test this infrastructure. In effect, ATH may not
necessarily a representative of regular software example.

BIBLIOGRAPHY

BIBLIOGRAPHY

[1] ISO/IEC/IEEE 29119 Software Testing Standard.

[2] The jenkins gerrit trigger plugin open source project on ohloh. Accessed:
2014-07-08.

[3] Source - gerrit - link to the source browser. - gerrit code review - google
project hosting. Accessed: 2014-06-24.

[4] Oslo Manual – Guidelines for collecting and interpreting innovation data.
OECD and Eurostat, 3rd edition, 2005.

[5] T. Abdou, P. Grogono, and P. Kamthan. A conceptual framework for open
source software test process. In 36th Annual Computer Software and Appli-
cations Conference Workshops (COMPSACW), pages 458–463, July 2012.

[6] Oliver Alexy, Joachim Henkel, and Martin W. Wallin. From closed to open:
Job role changes, individual predispositions, and the adoption of commer-
cial open source software development. Research Policy, 42(8):1325 –
1340, 2013.

[7] Robert C. Allen. Collective invention. Journal of Economic Behaviour and
Organization, 4(1):1 – 24, 1983.

[8] Thomas A Alspaugh and Walt Scacchi. Ongoing software development
without classical requirements. In Requirements Engineering Conference
(RE), 2013 21st IEEE International, pages 165–174. IEEE, 2013.

[9] K. Balka, C. Raasch, and C. Herstatt. How open is open source? - software
and beyond. Creativity and Innovation Management, 19(3):248–56, 2010.

[10] M. Bano. Aligning services and requirements with user feedback. In Re-
quirements Engineering Conference (RE), 2014 IEEE 22nd International,
pages 473–478, Aug 2014.

134 BIBLIOGRAPHY

[11] Kent Beck, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward
Cunningham, Martin Fowler, James Grenning, Jim Highsmith, Andrew
Hunt, Ron Jeffries, et al. The agile manifesto. 2001.

[12] Fiona Beyer and Kath Wright. Comprehensive searching for systematic
reviews: a comparison of database performance. 2011.

[13] Elizabeth Bjarnason, Michael Unterkalmsteiner, Emelie Engström, and
Markus Borg. An Industrial Case Study on Test Cases as Requirements.
2015.

[14] Elizabeth Bjarnason, Krzysztof Wnuk, and Björn Regnell. Requirements
are slipping through the gaps - A case study on causes & effects of commu-
nication gaps in large-scale software development. In RE 2011, 19th IEEE
International Requirements Engineering Conference, Trento, Italy, August
29 2011 - September 2, 2011, pages 37–46, 2011.

[15] J. Bosch. Achieving simplicity with the three-layer product model. Com-
puter, 46(11):34–39, Nov 2013.

[16] Kevin Boudreau. Open platform strategies and innovation: Granting access
vs. devolving control. Management Science, 56(10):1849–1872, 2010.

[17] P. Bourque, R. Dupuis, A. Abran, J.W. Moore, and L. Tripp. The guide to
the Software Engineering Body of Knowledge. IEEE Software, 16(6):35–
44, November 1999.

[18] S. Brad, M. Fulea, B. Mocan, A. Duca, and E. Brad. Software platform for
supporting open innovation. volume vol.3, pages 224 – 9, Piscataway, NJ,
USA, 2008.

[19] Roger J Calantone, S Tamer Cavusgil, and Yushan Zhao. Learning orienta-
tion, firm innovation capability, and firm performance. Industrial marketing
management, 31(6):515–524, 2002.

[20] Pär Carlshamre. Release planning in market-driven software product
development: Provoking an understanding. Requirements Engineering,
7(3):139–151, 2002.

[21] H Chesbrough. Why companies should have open business models. MIT
Sloan management review, 48(2), 2012.

[22] Henry Chesbrough, Wim Vanhaverbeke, and Joel West. Open innovation:
Researching a new paradigm. Oxford university press, 2006.

[23] Henry Chesbrough, Wim Vanhaverbeke, and Joel West, editors. New Fron-
tiers in Open Innovation. Oxford University Press, November 2014.

BIBLIOGRAPHY 135

[24] Henry William Chesbrough. Open innovation: the new imperative for creat-
ing and profiting from technology. Harvard Business School Press, Boston,
Mass., 2003.

[25] Sunita Chulani, Clay Williams, and Avi Yaeli. Software development gov-
ernance and its concerns. In Proceedings of the 1st International Workshop
on Software Development Governance, SDG 08, pages 3–6, New York, NY,
USA, 2008. ACM.

[26] Massimo G. Colombo, Evila Piva, and Cristina Rossi-Lamastra. Open inno-
vation and within-industry diversification in small and medium enterprises:
The case of open source software firms. Research Policy, 2013.

[27] K. Conboy and L. Morgan. Beyond the customer: Opening the ag-
ile systems development process. Information and Software Technology,
53(5):535–42, May 2011.

[28] Kieran Conboy and Lorraine Morgan. Beyond the customer: Opening the
agile systems development process. Information and Software Technology,
53(5):535 – 542, 2011.

[29] Kieran Conboy and Lorraine Morgan. Beyond the customer: Opening the
agile systems development process. Information and Software Technology,
53(5):535–542, May 2011.

[30] Daniela S. Cruzes and Tore Dybå. Research synthesis in software engineer-
ing: A tertiary study. Information and Software Technology, 53(5):440 –
455, 2011.

[31] Daniela S Cruzes, Tore Dybå, Per Runeson, and Martin Höst. Case studies
synthesis: A thematic, cross-case, and narrative synthesis worked example.
Empirical Software Engineering, 2014.

[32] Linus Dahlander and Mats Magnusson. Relationships between open source
software companies and communities: Observations from nordic firms. Re-
search Policy, 34(4):481 – 493, 2005.

[33] Linus Dahlander and Mats Magnusson. How do firms make use of open
source communities? Long Range Planning, 41(6):629 – 649, 2008.

[34] Linus Dahlander and Martin W. Wallin. A man on the inside: Unlocking
communities as complementary assets. Research Policy, 35(8):1243 – 1259,
2006.

[35] Jorge Calmon de Almeida Biolchini, Paula Gomes Mian, Ana Candida Cruz
Natali, Tayana Uchôa Conte, and Guilherme Horta Travassos. Scientific
research ontology to support systematic review in software engineering.

136 BIBLIOGRAPHY

Advanced Engineering Informatics, 21(2):133 – 151, 2007. Ontology of
Systems and Software Engineering; Techniques to Support Collaborative
Engineering Environments.

[36] Paul M. Di Gangi and Molly Wasko. Steal my idea organizational adoption
of user innovations from a user innovation community: A case study of dell
ideastorm. Decision support systems, 48:303–312, 2009.

[37] Koen Dittrich and Geert Duysters. Networking as a means to strategy
change: The case of open innovation in mobile telephony. Journal of Prod-
uct Innovation Management, 24(6):510 – 521, 2007.

[38] Peter F. Drucker. Post-Capitalist Society. HarperBusiness, New York,
reprint edition edition, April 1994.

[39] W. Ebner, J.M. Leimeister, and H. Krcmar. Community engineering for in-
novations: the ideas competition as a method to nurture a virtual community
for innovations. R&D Management, 39(4):342 – 56, Sept. 2009.

[40] Henry Edison, Nauman Bin Ali, and Richard Torkar. Towards innovation
measurement in the software industry. Journal of Systems and Software,
86(5):1390 – 1407, 2013.

[41] Göran Ekvall. Organizational climate for creativity and innovation. Euro-
pean Journal of Work and Organizational Psychology, 5(1):105–123, 1996.

[42] Ellen Enkel, Oliver Gassmann, and Henry Chesbrough. Open r&d and open
innovation: exploring the phenomenon. R&D Management, 39(4):311–316,
2009.

[43] Neil A Ernst and Gail C Murphy. Case studies in just-in-time requirements
analysis. In Empirical Requirements Engineering (EmpiRE), 2012 IEEE
Second International Workshop on, pages 25–32. IEEE, 2012.

[44] Robert Feldt. Do system test cases grow old? In Software Testing, Verifi-
cation and Validation (ICST), 2014 IEEE Seventh International Conference
on, pages 343–352. IEEE, 2014.

[45] Robert G. Fichman. Going beyond the dominant paradigm for information
technology innovation research: Emerging concepts and methods. Journal
of the Association for Information Systems, 5(8):11, 2004.

[46] Arlene Fink. The Survey Handbook. Sage, 2nd edition, 2003.

[47] Samuel Fricker. Requirements value chains: Stakeholder management and
requirements engineering in software ecosystems. In Requirements Engi-
neering: Foundation for Software Quality, pages 60–66. Springer, 2010.

BIBLIOGRAPHY 137

[48] Rosanna Garcia and Roger Calantone. A critical look at technological inno-
vation typology and innovativeness terminology: a literature review. Jour-
nal of product innovation management, 19(2):110–132, 2002.

[49] Oliver Gassmann. Opening up the innovation process: towards an agenda.
R&D Management, 36(3):223–228, 2006.

[50] Oliver Gassmann and Ellen Enkel. Towards a theory of open innovation:
three core process archetypes. pages 1–18, 2004.

[51] Oliver Gassmann, Ellen Enkel, and Henry Chesbrough. The future of open
innovation. R&D Management, 40(3):213–221, 2010.

[52] Crt Gerlec, Andrej Krajnc, Marjan Hericko, and Jan Boznik. Mining source
code changes from software repositories. In Software Engineering Con-
ference in Russia (CEE-SECR), 2011 7th Central and Eastern European,
pages 1–5. IEEE, 2011.

[53] Daniel M German. The gnome project: a case study of open source,
global software development. Software Process: Improvement and Prac-
tice, 8(4):201–215, 2003.

[54] T. Greenhalgh and R. Peacock. Effectiveness and efficiency of search meth-
ods in systematic reviews of complex evidence: audit of primary sources.
BMJ, 331(7524):1064–1065, 2005.

[55] Endre Grøtnes. Standardization as open innovation: two cases from the
mobile industry. Information Technology & People, 22(4):367–381, 2009.

[56] Kazuki Hamasaki, Raula Gaikovina Kula, Norihiro Yoshida, A. E. Cruz,
Kenji Fujiwara, and Hajimu Iida. Who does what during a code review?
datasets of oss peer review repositories. In Proceedings of the 10th Work-
ing Conference on Mining Software Repositories, pages 49–52. IEEE Press,
2013.

[57] Elad Harison and Heli Koski. Applying open innovation in business strate-
gies: Evidence from finnish software firms. Research Policy, 39(3):351 –
359, 2010.

[58] Elad Harison and Heli Koski. Applying open innovation in business strate-
gies: Evidence from finnish software firms. Research Policy, 39(3):351–
359, 2010.

[59] Donald E. Harter, Mayuram S. Krishnan, and Sandra A. Slaughter. Effects
of process maturity on quality, cycle time, and effort in software product
development. Management Science, 46(4):451–466, 2000.

138 BIBLIOGRAPHY

[60] L.P. Hattori and M. Lanza. On the nature of commits. In 23rd IEEE/ACM
International Conference on Automated Software Engineering - Workshops,
2008. ASE Workshops 2008, pages 63–71, September 2008.

[61] Petra Heck and Andy Zaidman. An analysis of requirements evolution in
open source projects: recommendations for issue trackers. page 43. ACM
Press, 2013.

[62] Joachim Henkel. Selective revealing in open innovation processes: The case
of embedded linux. Research Policy, 35(7):953–969, 2006.

[63] Joachim Henkel. Champions of revealing-the role of open source develop-
ers in commercial firms. Industrial and Corporate Change, 18(3):435–471,
December 2008.

[64] Joachim Henkel, Simone Schöberl, and Oliver Alexy. The emergence of
openness: How and why firms adopt selective revealing in open innovation.
Research Policy, September 2013.

[65] Jim Highsmith and Alistair Cockburn. Agile software development: The
business of innovation. Computer, 34(9):120–127, 2001.

[66] Martin Höst, Klaas-Jan Stol, and Alma Orucevic-Alagic. Inner Source
Project Management. Springer, 2014.

[67] James Howison, Keisuke Inoue, and Kevin Crowston. Social dynamics of
free and open source team communications. In Ernesto Damiani, Brian
Fitzgerald, Walt Scacchi, Marco Scotto, and Giancarlo Succi, editors, Open
Source Systems, number 203 in IFIP International Federation for Informa-
tion Processing, pages 319–330. Springer US, January 2006.

[68] Eelko K.R.E. Huizingh. Open innovation: State of the art and future per-
spectives. Technovation, 31(1):2 – 9, 2011.

[69] Watts S. Humphrey. Managing the software process. SEI Series in Software
Engineering. Software Engineering Institute, 1989.

[70] S. Husig and S. Kohn. Open cai 2.0 - computer aided innovation in the era
of open innovation and web 2.0. Computers in Industry, 62(4):407 – 13,
2011.

[71] M. Ivarsson and T. Gorschek. A method for evaluating rigor and indus-
trial relevance of technology evaluations. Empirical Software Engineering,
16(3):365–95, 2011.

[72] Samireh Jalali and Claes Wohlin. Systematic literature studies: database
searches vs. backward snowballing. In 2012 ACM-IEEE International
Symposium on Empirical Software Engineering and Measurement,(ESEM
2012), pages 29–38, 2012.

BIBLIOGRAPHY 139

[73] Slinger Jansen, Sjaak Brinkkemper, Jurriaan Souer, and Lutzen Luinen-
burg. Shades of gray: Opening up a software producing organization with
the open software enterprise model. Journal of Systems and Software,
85(7):1495 – 1510, 2012.

[74] Anders Jonsson and Gunilla Svingby. The use of scoring rubrics: Reliabil-
ity, validity and educational consequences. Educational Research Review,
2(2):130–144, 2007.

[75] Lena Karlsson, Åsa G. Dahlstedt, Björn Regnell, Johan Natt och Dag, and
Anne Persson. Requirements engineering challenges in market-driven soft-
ware development: An interview study with practitioners. Information and
Software Technology, 49(6):588 – 604, 2007.

[76] Mahvish Khurum, Tony Gorschek, and Magnus Wilson. The software value
map: An exhaustive collection of value aspects for the development of
software intensive products. Journal of Software: Evolution and Process,
25(7):711–741, 2013.

[77] Barbara Kitchenham, Pearl Brereton, and David Budgen. Mapping study
completeness and reliability - a case study. In Proceedings of the 16th Inter-
national Conference on Evaluation & Assessment in Software Engineering
(EASE 2012), pages 126–135, 2012.

[78] Barbara A. Kitchenham, David Budgen, and O. Pearl Brereton. Using map-
ping studies as the basis for further research - a participant-observer case
study. Inf. Softw. Technol., 53(6):638–651, June 2011.

[79] Barbara A Kitchenham and Shari L Pfleeger. Personal opinion surveys.
In Guide to Advanced Empirical Software Engineering, pages 63–92.
Springer, 2008.

[80] Eric Knauss, Daniela Damian, Alessia Knauss, and Arber Borici. Open-
ness and requirements: Opportunities and tradeoffs in software ecosystems.
In Requirements Engineering Conference (RE), 2014 IEEE 22nd Interna-
tional, pages 213–222. IEEE, 2014.

[81] Tufan Koc. Organizational determinants of innovation capacity in software
companies. Computers & industrial engineering, 53(3):373–385, 2007.

[82] Tufan Koc and Cemil Ceylan. Factors impacting the innovative capacity in
large-scale companies. Technovation, 27(3):105–114, 2007.

[83] Peter Kraljic. Purchasing must become supply management. Harvard busi-
ness review, 61(5):109–117, 1983.

[84] H.L. Kundel and M. Polansky. Measurement of observer agreement. Radi-
ology, 228(2):303, 2003.

140 BIBLIOGRAPHY

[85] Mikko O.J. Laine. Using knowledge from end-users online for innovations:
Effects of software firm types. volume 114 LNBIP, pages 70 – 78, Cam-
bridge, MA, United states, 2012.

[86] Karim Lakhani and Jill A. Panetta. The principles of distributed innova-
tion. SSRN Scholarly Paper ID 1021034, Social Science Research Network,
Rochester, NY, October 2007.

[87] Karim R Lakhani and Eric von Hippel. How open source software works:
free user-to-user assistance. Research Policy, 32(6):923 – 943, 2003.

[88] Soren Lauesen. Software requirements: styles and techniques. Pearson
Education, 2002.

[89] Gwanhoo Lee and Weidong Xia. The ability of information systems de-
velopment project teams to respond to business and technology changes: a
study of flexibility measures. European Journal of Information Systems,
14:75–92, March 2005.

[90] Gwendolyn K. Lee and Robert E. Cole. From a firm-based to a community-
based model of knowledge creation: The case of the linux kernel develop-
ment. Organization Science, 14(6):633–649, 2003.

[91] Sang-Yong Tom Lee, Hee-Woong Kim, and Sumeet Gupta. Measuring open
source software success. Omega, 37(2):426 – 438, 2009.

[92] Josh Lerner and Jean Tirole. Some simple economics of open source. The
journal of industrial economics, 50(2):197–234, 2002.

[93] Marvin B Lieberman and David Bruce Montgomery. First-mover (dis) ad-
vantages: Retrospective and link with the resource-based view. Graduate
School of Business, Stanford University, 1998.

[94] Johan Linåker, Maria Krantz, and Martin Höst. On infrastructure for facili-
tation of inner source in small development teams. pages 149–163, 2014.

[95] Johan Linåker, Hussan Munir, Per Runeson, Björn Regnell, and Claes
Schrewelius. A Survey on the Perception of Innovation in a Large Product-
focused Software Organization. 6th International Conference on Software
Business - ICSOB, 2015.

[96] Frank van der Linden, Björn Lundell, and Pentti Marttiin. Commodification
of industrial software: A case for open source. IEEE Software, 26(4):77–83,
2009.

[97] Juho Lindman, Matti Rossi, and Pentti Marttiin. Applying open source
development practices inside a company. In Open Source Development,
Communities and Quality, pages 381–387. Springer, 2008.

BIBLIOGRAPHY 141

[98] Luis Lopez-Fernandez, Gregorio Robles, Jesus M. Gonzalez-Barahona, and
Israel Herraiz. Applying social network analysis techniques to community-
driven libre software projects. International Journal of Information Tech-
nology and Web Engineering (IJITWE), 1(3):27–48, 2006.

[99] Katarina Lund and Mats Magnusson. The delicate coexistence of stan-
dardized work routines and innovation. In Proceedings of the 19th Inter-
national Product Development Management Conference, Manchester, UK,
June 2012.

[100] Charlotte Möller and Madeleine Wahlqvist. Critical Success Factors for
Innovative Performance of Individuals-A. Management, 39(5):1155–1161.

[101] Lorraine Morgan, Joseph Feller, and Patrick Finnegan. Exploring inner
source as a form of intra-organisational open innovation. Helsinki, Finland,
2011.

[102] Lorraine Morgan and Patrick Finnegan. Open innovation in secondary soft-
ware firms: An exploration of managers perceptions of open source soft-
ware. Databased for advances in Information Systems, 41(1):76–95, 2010.

[103] Barbara Moskal, Keith Miller, and LA King. Grading essays in computer
ethics: rubrics considered helpful. ACM SIGCSE Bulletin, 34(1):101–105,
2002.

[104] David C. Mowery. Plus ca change: Industrial R&D in the third industrial
revolution. Industrial and Corporate Change, 18(1):1–50, 2009.

[105] Neeshal Munga, Thomas Fogwill, and Quentin Williams. The adoption of
open source software in business models: A red hat and ibm case study.
pages 112 – 121, Vanderbijlpark, Emfuleni, South africa, 2009.

[106] Hussan Munir and Per Runeson. Software testing in open innovation: An
exploratory case study of the acceptance test harness for jenkins. ICSSP
2015, pages 187–191, New York, NY, USA, 2015. ACM.

[107] Hussan Munir, Krzysztof Wnuk, and Per Runeson. Open innovation in
software engineering: a systematic mapping study. Empirical Software En-
gineering, 2015.

[108] Abhishek Nirjar. Accruing innovation in software firms through employees
commitment. International Journal of Indian Culture and Business Man-
agement, 6(4):391–409, January 2013.

[109] Lucas D Panjer, Daniela Damian, and Margaret-Anne Storey. Cooperation
and coordination concerns in a distributed software development project. In
Proceedings of the 2008 international workshop on Cooperative and human
aspects of software engineering, pages 77–80. ACM, 2008.

142 BIBLIOGRAPHY

[110] Vinit Parida, Mats Westerberg, and Johan Frishammar. Effect of open in-
novation practices on SMEs innovative performance: An empirical study.
2011.

[111] Ralph Peters and Andy Zaidman. Evaluating the lifespan of code smells
using software repository mining. pages 411–416. IEEE, March 2012.

[112] Kai Petersen and Nauman Bin Ali. Identifying strategies for study selection
in systematic reviews and maps. In Proceedings of the 5th International
Symposium on Empirical Software Engineering and Measurement, ESEM
2011, Banff, AB, Canada, September 22-23, 2011, pages 351–354, 2011.

[113] Kai Petersen, Robert Feldt, Shahid Mujtaba, and Michael Mattsson. Sys-
tematic mapping studies in software engineering. In 12th International
Conference on Evaluation and Assessment in Software Engineering, vol-
ume 17, page 1, 2008.

[114] Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Prod-
uct Line Engineering: Foundations, Principles and Techniques. Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2005.

[115] CK Prahalad and MS Krishnan. The new meaning of quality in the infor-
mation age. Harvard business review, 77(5):109–18, 1998.

[116] Shaowen Qin. Managing process change in software organizations: Ex-
perience and reflection. Software Process: Improvement and Practice,
12(5):429–435, 2007.

[117] T. Rayna and L. Striukova. Large-scale open innovation: open source
vs. patent pools. International Journal of Technology Management, 52(3-
4):477 – 96, 2010.

[118] S.C. Reid. BS 7925-2: the software component testing standard. In Pro-
ceedings First Asia-Pacific Conference on Quality Software, pages 139–
148, 2000.

[119] G. Robles, S. Koch, and J.M. Gonzalez-Barahona. Remote analysis and
measurement of libre software systems by means of the CVSAnalY tool.
"W15S Workshop - 26th International Conference on Software Engineer-
ing, pages 51–5. IEEE, 2004.

[120] R. Rohrbeck, K. Holzle, and H.G. Gemunden. Opening up for competitive
advantage - how deutsche telekom creates an open innovation ecosystem. R
& D Management, 39(4):420 – 30, 2009.

[121] Bertil Rolandsson, Magnus Bergquist, and Jan Ljungberg. Open source
in the firm: Opening up professional practices of software development.
Research Policy, 40(4):576 – 587, 2011.

BIBLIOGRAPHY 143

[122] Per Runeson, Martin Höst, Austen Rainer, and Björn Regnell. Case Study
Research in Software Engineering - Guidelines and Examples. Wiley, 2012.

[123] Per Runeson and Mats Skoglund. Reference-based search strategies in sys-
tematic reviews. In Proceedings 13th International Conference on Empir-
ical Assessment & Evaluation in Software Engineering (EASE), Durham
University, UK, 2009. British Computer Society.

[124] Walt Scacchi. Understanding the requirements for developing open source
software systems. In Software, IEE Proceedings-, volume 149, pages 24–
39. IET, 2002.

[125] Walt Scacchi. Understanding requirements for open source software.
Springer, 2009.

[126] Walt Scacchi. Collaboration practices and affordances in free/open source
software development. In Collaborative software engineering, pages 307–
327. Springer, 2010.

[127] Leif Singer, Norbert Seyff, and Samuel A. Fricker. Online social networks
as a catalyst for software and IT innovation. In 4th International Workshop
on Social Software Engineering, SSE’11, September 5, 2011 - September
5, 2011, SSE’11 - Proceedings of the 4th International Workshop on Social
Software Engineering, pages 1–5, 2011.

[128] Dag I. K. Sjøberg, Tore Dybå, and Magne Jørgensen. The future of empir-
ical methods in software engineering research. In Workshop on the Future
of Software Engineering (FOSE 2007), pages 358–378, 2007.

[129] Dag I. K. Sjøberg, Jo Erskine Hannay, Ove Hansen, Vigdis By Kampenes,
Amela Karahasanovic, Nils-Kristian Liborg, and Anette C. Rekdal. A sur-
vey of controlled experiments in software engineering. IEEE Trans. Soft-
ware Eng., 31(9):733–753, 2005.

[130] Daniel Ståhl and Jan Bosch. Modeling continuous integration practice dif-
ferences in industry software development. Journal of Systems and Soft-
ware, 87:48–59, 2014.

[131] Wouter Stam. When does community participation enhance the perfor-
mance of open source software companies? Research Policy, 38(8):1288 –
1299, 2009.

[132] Matthias Stuermer, Sebastian Spaeth, and Georg Von Krogh. Extending
private-collective innovation: a case study. R&D Management, 39(2):170–
191, 2009.

144 BIBLIOGRAPHY

[133] Han van der Meer. Open innovation the dutch treat: Challenges in thinking
in business models. Creativity and Innovation Management, 16(2):192–
202, 2007.

[134] Kris Ven and Herwig Mannaert. Challenges and strategies in the use of
open source software by independent software vendors. Information and
Software Technology, 50(9):991–1002, 2008.

[135] G. von Krogh and S. Spaeth. The open source software phenomenon: char-
acteristics that promote research. Journal of Strategic Information Systems,
16(3):236 – 53, 2007.

[136] Georg Von Krogh, Sebastian Spaeth, and Karim R. Lakhani. Commu-
nity, joining, and specialization in open source software innovation: A case
study. Research Policy, 32(7):1217 – 1241, 2003.

[137] Yonggui Wang, Ruqiong Tong, and Shanji Yao. An empirical study on ex-
ternal influencing factors of user innovation performance. In Management
and Service Science, 2009. MASS ’09. International Conference on, pages
1–4, 2009.

[138] Jacco Wesselius. The bazaar inside the cathedral: business models for in-
ternal markets. Software, IEEE, 25(3):60–66, 2008.

[139] J. West and S. Gallagher. Challenges of open innovation: the paradox of
firm investment in open-source software. R & D Management, 36(3):319 –
31, 2006.

[140] Joel West. How open is open enough?: Melding proprietary and open source
platform strategies. Research Policy, 32(7):1259 – 1285, 2003.

[141] Joel West and Marcel Bogers. Leveraging external sources of innovation:
A review of research on open innovation. Journal of Product Innovation
Management, 2013.

[142] Joel West and Marcel Bogers. Leveraging external sources of innovation:
A review of research on open innovation. Journal of Product Innovation
Management, 2013.

[143] Joel West and Scott Gallagher. Challenges of open innovation: the paradox
of firm investment in open-source software. R&d Management, 36(3):319–
331, 2006.

[144] Joel West and David Wood. Creating and evolving an open innovation
ecosystem: Lessons from symbian ltd. Available at SSRN 1532926, 2008.

BIBLIOGRAPHY 145

[145] Joel West and David Wood. Evolving an open ecosystem: The rise and fall
of the symbian platform. Advances in Strategic Management, 30:27–67,
2013.

[146] Roel Wieringa, Neil Maiden, Nancy Mead, and Colette Rolland. Require-
ments engineering paper classification and evaluation criteria: a proposal
and a discussion. Requirements Engineering, 11(1):102–107, 2006.

[147] K. Wiklund, D. Sundmark, S. Eldh, and K. Lundvist. Impediments for
automated testing – an empirical analysis of a user support discussion board.
In Software Testing, Verification and Validation (ICST), 2014 IEEE Seventh
International Conference on, pages 113–122, 2014.

[148] K. Wnuk, D. Pfahl, D. Callele, and E. Karlsson. How can open source
software development help requirements management gain the potential of
open innovation: an exploratory study. pages 271 – 9, Piscataway, NJ, USA,
2012.

[149] Krzysztof Wnuk, Dietmar Pfahl, Davide Callele, and Even André Karlsson.
How can open source software development help requirements management
gain the potential of open innovation: an exploratory study. In Proceedings
of the 2012 6th ACM-IEEE International Symposium on Empirical Software
Engineering and Measurement (ESEM), pages 271 – 9, Piscataway, NJ,
USA, 2012.

[150] Krzysztof Wnuk and Per Runeson. Engineering open innovation–towards a
framework for fostering open innovation. pages 48–59. Springer, 2013.

[151] Krzysztof Wnuk, Per Runeson, Matilda Lantz, and Oskar Weijden. Bridges
and barriers to software ecosystem participation - a case study. Information
and Software Technology, 56(11):1493–1507, 2014.

[152] Claes Wohlin and Rafael Prikladnicki. Systematic literature reviews in
software engineering. Information & Software Technology, 55(6):919–920,
2013.

[153] Marvin V Zelkowitz, Dolores R Wallace, and D Binkley. Culture conflicts
in software engineering technology transfer. In NASA Goddard Software
Engineering Workshop, page 52, 1998.

