
Feature Transition Charts for Visualization of Cross-Project Scope Evolution
in Large-Scale Requirements Engineering for Product Lines

Krzysztof Wnuk1, Björn Regnell1, Lena Karlsson2
1{krzysztof.wnuk,bjorn.regnell}@cs.lth.se, Lund University, Sweden

2 lena.karlsson@dnv.com, Det Norske Veritas, Sweden

Abstract

In large-scale multi-project software engineering it is
a challenge to provide a comprehensive overview of
the complexity and dynamics of the requirements
engineering process. This paper presents a
visualization technique called Feature Transition
Charts (FTC) that gives an overview of scoping
decisions involving changes across multiple projects
based on previous work on within-project visualization
of feature survival. FTC is initially validated using
industrial data from the embedded systems domain in a
multi-project product line engineering context in
dialogue with practitioners. The initial validation
provided specific improvement proposals for further
work and indicated a positive view on the general
feasibility and usefulness of FTC.

1. Introduction

Requirements for software intense embedded systems
can often be counted in thousands and often describe
cutting edge functionality which can have many
complex dependencies with other parts of the system.
In this case, the decision about which candidate
requirements should be included into the scope of the
project and which should not is not always obvious. It
is strongly emphasized by researchers, like for example
Boehm et al. [1] and Boehm and Huang [2], that the
inclusion process should be value-based, while others,
for instance Wohlin et al., argue that a good
understanding of the underlying decision-making
process is needed so that researchers can support it in
the best possible way [3].

 In product line engineering, the selection process is
often called scoping and is considered crucial for
achieving economic benefits [31]. Furthermore, many
embedded systems companies are releasing their
products to an open market in a mode often called
Market-Driven Requirements Engineering (MDRE)

[4]. In this case, the complexity and uncertainty of
scoping decisions may increase even more and may
result in a situation where the decisions have to be
made a priori with limited knowledge about their
market value and their cost for implementation.
Decisions often need to be revised due to changes in
the market situation [5] or other unplanned constraints.
Therefore, some requirements are deferred to later
releases for a number of reasons [18]. In de-scoping
there can be both rejected requirements (that for
example are out of scope of the current strategy) and
postponed requirements (that for example are delayed
because of lack of resources). Large scope changes
with many deferred requirements may significantly
delay a project’s overall business value, and are thus
interesting to track in project and product management.

In one of our previous papers, [18], we have
analyzed three large platform projects to test the
applicability of our visualization technique denoted
Feature Survival Charts (FSC) on empirical data. In
the case of the company under study, the decision
process is based on bundles of requirements, called
features, rather than single requirements. A single
scoping decision may concern one or many features
and their dependencies. In our earlier work, we have
experienced a very large number of features that were
de-scoped from analyzed projects [16]. Due to one of
the limitations in our previous work, namely the fact
that the Feature Survival Charts only show a single
project during analysis, it is not possible to analyze if
some of de-scoped features are moved to another
projects. In a real product development setting, we can
assume that many scope changes span across several
projects. Scope changes that seem to result in rejected
features may in fact concern postponed features that
appear in later projects. Based on these observations,
the presented work addresses the following two
research questions (Q2 is a refinement of the more
general Q1):

Q1: How can scope changes across projects be
visualized?

Q2: Which visualization mechanisms are effective
in providing an overview of the timing and magnitude
of feature transitions across projects in a large-scale
setting?

The main contribution presented in this paper case
study is a prototype visualization technique called
Feature Transition Charts (FTC) that can show
features transitions across projects, while scaling to
hundreds of features. FTC has been initially validated
using real data from a large-scale product line
engineering case in the domain of embedded systems,
and iteratively refined in dialogue with domain
practitioners.

The paper is structured as follows: Section 2
provides related work. Section 3 describes background
information about the context of our industrial case
study. Section 4 describes the methodology used in this
study. Section 5 explains our visualization technique.
Section 6 describes the results from applying our
technique to two industrial projects. Section 7 defines
and evaluates the results. Section 8 provides
conclusions and discusses their limitations.

2. Related Work

Current state-of-the-art research in software
engineering has established an opinion that decision
processes are the driving forces to organize a
corporation’s success [6]. Researchers have already
contributed in creating better support for decision
making based on best knowledge and experience,
computational and human intelligence, as well as a
suite of sound and appropriate methods and techniques
[7]. The decision-making process has also been
addressed by researchers working in the requirements
engineering field, since it is dependent on
requirements being captured, analyzed and specified
before any decision about implementation can be
made. The contributions in this area are visible within
different aspects of requirements management, namely
prioritization [8,9] or understanding of requirements
dependencies [4,10]. Others have worked on
connecting requirements engineering processes to
decision making [11,12,13]. Finally some effort has
already been dedicated to the understanding of release
planning [14], while others proposed the usage of
generic algorithms to plan for different releases [15].

The reasons behind scope changes have been
discussed in [3,16]. Others have investigated the root
cause for changing requirements, namely requirements
uncertainty [17]. Selecting the appropriate set of
requirements has also been addressed by researchers
related to the product line community. However, the
main research stream is, according to Schmid [19],

focused on the identification aspect of scoping [20,21]
and does not address changes beyond formal decision
to approve the scope of the project.

 In the requirements visualization field, the research
effort is focused mainly on three aspects of
requirements engineering [22]. The first aspect is
addressing the problem of creating a visual
representation of requirements and their attributes
based on a formal language [23,24] or even visualizing
these representations [25]. The second aspect
addressed in the requirements visualization literature is
focusing on visualization of the structure and
relationships between requirements [26,27,28]. Finally,
the third aspect, which is most relevant to the work
presented in this paper, is addressing elicitation [29]
and decision-making activities [30].

 Thus the work has been conducted on release
planning itself, and scoping as its vital part. However,
to our best knowledge no studies have actually looked
into the phenomenon of postponing features for the
next release, and no studies have made an attempt to
create a visual support for this aspect of product
development that may help to assess its scale in real
projects.

3. The case of the company under study

Our results are based on empirical data from
industrial projects at a large company that is using a
product line approach. The company has more than
5000 employees and develops embedded systems for a
global market. There are several consecutive releases
of the platform, a common code base of the product
line, where each of them is the basis for several
products that reuse the platform’s functionality and
qualities. A major platform release has approximately a
two year lead time from start to launch, and is focused
on functionality growth and quality enhancements for a
product portfolio. Minor platform releases are usually
focused on the platform’s adaptations to the different
products that will be launched with different platform
releases. This approach enables flexibility and
possibilities for adaptation of the platform project,
while the major release is dedicated to address
functionality of the highest importance.

The company uses a stage-gate model with several
increments [32]. There are Milestones (MS) and
Tollgates (TG) to control the project progress. In
particular, there are four milestones for the
requirements management and design before the
implementation starts: MS1-MS4. The scope of the
project is constantly changing during this process. In
this case, the project management makes scoping
decisions based on groups of requirements that

constitute new functionality enhancements to the
platform, called features. The scope of each project is
maintained in a document called the Feature List, that
is regularly updated each week after a meeting of the
Change Control Board (CCB). The role of the CCB is
to decide upon adding or removing features according
to changes that happen. The history of scope changes is
the input data for the visualization technique described
in this paper.
 According to the company guidelines, most of the
scoping work should be finished before reaching the
second milestone of the process. After this milestone,
the content of the main release of the platform project
should be well defined and remain stable so that more
effort can be addressed towards the preparation for the
implementation phase. Therefore, minor releases are
introduced to enable necessary adaptations that related
product projects require. The product projects start
approximately at MS2.

After MS4, the project starts its implementation
phase. Even though the scope of the platform projects
together with their minor releases should be defined
and approved at this stage, some important changes
may still happen and decisions about how to address
them must be made. The changes may be related to
unplanned issues with the development of previously
approved features or they may be requested by
important customers as a result of a rapidly changing
market situation. These late changes or adaptations are
usually handled by adaptations of the platform required
by certain platform project releases.

4. Research Methodology

 At the beginning of this study, a set of research
questions and assumptions was formulated by the
researchers. Researchers assumed in this case that the
feature transition is a phenomenon that can have a
significant representation in real life projects. It was
also assumed that there is an impact of these types of
changes on the quality attributes of the requirements
management processes and the resulting products that
should not be neglected in conscious product
management. As a result, three types of transitions
were defined as the most important and they are
discussed in section 5. As a next step, the empirical
investigation of previously derived assumptions in the
given company context. In this step, we have analyzed
two large platform projects. The projects under
consideration contained hundreds of features, and they
were related in such as way that the first one was a
direct ancestor of the following one. On a set of two
large projects, a name matching algorithm, checking
for multiple occurrences of the same feature id among

the analyzed projects, was applied to find possible
reoccurrences of the same features between the
projects. The result is visualized in Figure 1, a
distinction between forward and backward transitions
has been made, and it (the distinction) is followed by a
description of the transitions in section 6.1. In the next
step, each single project was analyzed for possible
internal transitions. Many transitions were discovered
and they are visualized in Figure 2 and 3 followed by
analysis in section 6.2. Finally a multiple-step feature
transition graph was proposed and it is presented in
section 6.3.
 As the final step of the methodology, an interview
study with two practitioners, namely one requirements
management process manager and one requirements
engineer, was performed. The interviews lasted for
about one hour each and were semi-structured. Before
conducting interviews, the list of questions to ask was
prepared based on the initial assumptions described in
this section and in section 1. Researchers have
evaluated their pre-understanding of the feature
transitions phenomenon, and feedback from
practitioners in the form of their suggestions for
improvements was thus collected. Some of the
important aspects of the discussion were the usefulness
of the visualization technique presented and the
importance of the need to quickly spot feature
transitions in the case of the company under study. The
results from this step are presented in Section 7.

5. Feature Transition Types

In this section, different types of transitions are
discussed. For each platform project, there is one
release, called the major release that provides the main
part of the functionality, while other minor releases
focus on adaptations and additional functionalities
needed for certain products associated with them. In
this context, the distinction can be made between
within-project, cross-project and multiple transitions.
Each type of transition is defined and described
respectively in the following sections.

5.1 Cross-project Feature Transitions

A cross-project transition occurs when a feature is
moved between two platform projects in one step. In
case that a feature is moved to the following platform
project, it may be included into the earliest possible
release of the next platform project (the main release).
However, the destination release may not always be the
main release. There may also be a situation where one
feature first gets internally moved to another release of
its original platform project and then later moved to

another platform project. This type of transition is
defined in section 5.3.

There may be various reasons that cause cross-
project transitions. Firstly, features may simply be
moved to the next platform project due to resource
constraints, secondly due to a lack of proper hardware.
Thirdly because of the unfinished functionality it is
difficult to minimize all non-functional issues so
features may be rescheduled for a later project where
they can possibly be mitigated. The decision to
perform a cross-project transition should be made after
a careful analysis of the impact of the transition on the
included features’ market-values and possible efforts
for implementation. Cross-project decisions also
require impact analyses to ensure that for example
other features that enable new functionality to work in
a new context are available. The decision should also
be confirmed with a business plan for the considered
functionality so that no crucial market opportunities
will be missed by a decision.

5.2 Within-project Feature Transitions

 This type of transition occurs between two releases
within one platform project. Features are moved
between releases in one step. Each platform project has
in our case a set of consecutive releases that differs in
providing functionality. Apart from the main release,
always scheduled at the beginning of the platform
project, all other releases are introduced and scheduled
later in the project. Internal transitions may be caused
for reasons similar to those for the external transitions:
lack of resources, dependencies on suppliers or other
constraints. The basic difference is that a feature
internally moved is staying in the scope of its platform
project while being rescheduled to a usually later
release. From a business value perspective, we believe
that this type of transition can be considered as less
critical and to some extent positive since it enables a
quicker and more flexible response to rapidly changing
market situations or unplanned project difficulties.

5.3 Multi-step Feature Transitions

 The last type of transition may happen both between
platform project releases and the platform projects. The
main difference between the previously described
types of transitions and this type is that a transition is
made multiple times either within one project or
between different projects. The situation where a
feature is moved multiple times only between the
platform project’s releases or between platform
projects can also be classified as a multi-step transition,
but we assume that it may be rare in industrial projects.

Multi-step transitions can significantly influence the
market-value of moved features and their cost of
implementation. The management of a project can
benefit from careful analysis of this type of transitions
and tries to assess the impact of the transition on
involved features’ market value and, if applicable, their
implementation cost. This type of transitions is
visualized in section 6.3.

6. Visualizing Feature Transition on the
Industrial Example

 In order to confirm or reject our pre-understanding
about described types of feature transitions, we applied
a new visualization technique to data from an empirical
set of two large platform projects. The characteristics
of analyzed projects are presented in Table 1. The
projects differ significantly in the number of features
ever considered in their scope, but have a similar
number of associated technical areas.
Table 1. Characteristics of analyzed projects.

Project Nbr. of
features

Percentage of
internal feature
transitions

Percentage of
external feature
transitions

A 206 17% 8%
B 568 6% 0,5%

An initial analysis of transitions present revealed that
internal transitions represent 17% of all scope changes
for project A, and 6% of all scope changes for project
B. On the other hand, external transitions turned out to
be 8% of all scope changes for project A and only
0,5% of all scope changes for project B. The numbers
presented are, however, influenced by the fact that
only two projects were analyzed. In general, each
project will have two, or even more, associated
projects; one from which the project is receiving
backward transitions from and one or more to which
forward transitions are sent to.
 All types of transitions are visualized using a
modified concept of Feature Survival Chart (FSC)
presented in [18], namely Feature Transition Chart
(FTC). The FSC, shows scope changes over time,
which is illustrated on the X-axis. Each feature is
positioned at a specific place along the Y-axis so that
the complete lifecycle of a single feature can be
followed by looking at the same Y-axis position over
time. The various scope changes are visualized using
different colors. As a result, each scope change can be
viewed as a change in color. Based on discussions with
practitioners, we decided to use the following coloring
scheme: green for features considered as a part of the
primary flow, red for features considered as de-scoped
and, if applicable, orange, yellow, pink and cyan for
other flows. After sorting the features according to how

long they were present in the scope, we get a graph
where several simultaneous scope changes can be seen
as ‘steps’ with areas of different colors. The larger the
red areas are, the more features are de-scoped in the
particular time of the project. At the top of the graph
we can see features that we called ‘survivors’. These
features represent functionality that was included early,
while lasting until the end of the scoping process.
 The FTC is complementing the original FSCs by
marking transitions of features together with their
departure and arrival points. In order to find external
transitions, we have searched feature identifiers
involved in both projects for exactly matching names.
This technique resulted in a significant fraction of
features transmitted between the projects. In order to
indicate the transitions’ departure and arrival points, a
set of the following symbols is used. The departure
points are marked by 45◦ lines leaning down if the
transition is forward, or leaning up if the transition is
backward. The destination points are marked by a
rectangle. This technique enables the representation of
the magnitude of concurrent changes in analyzed

projects, which pure lines can not adduce. It may
however be inefficient when many changes happen at
the same time due to the overlap of symbols. Various
releases within the analyzed projects are represented by
various colors. Features removed from the scope of the
release that they finally arrived at, or even belonged to,
are marked red.

6.1. Cross-projects Feature Transitions

 We have found 21 forward transitions (from Project
A to Project B) in the analyzed dataset and only 4
backwards transitions (from Project B to project A).
The results are depicted in Figure 1. The backward
transitions are interesting to analyze since they mean
that features were moved to an earlier platform project.
The lines depicting transitions are not always
orthogonal, which means that there has been a delay in
transitions.
 In order to analyze the reasons for external feature
transitions, we have checked the decision logs for both
projects for the descriptions of proposed changes. The

Figure 1. Cross-project transitions between the project A and B (see section 5.1). The full-size color figure
can be found at http://www.cs.lth.se/home/Krzysztof_Wnuk/REV09/Figure1.bmp

analysis of forward transitions revealed that seven
transitions were caused by stakeholders business
decisions. The decision in these cases was to refine the
features and accept only a limited scope in the next
project. In three other cases, lack of development
resources caused the features to be moved to the next
project. On the contrary, in two other cases the
resources were available, but the time schedule was too
tight to be ready with the implementation of given
features. In two other cases, dependencies on either
suppliers or other features caused the external
transitions. In one case, the feature failed compliance
testing with a certain standard required by the customer
so it had to be moved to the next release of the project
for improvements. Finally, in two cases features were
only partly ready for the original project deadline and
therefore were moved to the next release. The
interesting information here is that most of the
functionality was available, but the company decided
to postpone the commercial availability of features
until the complete feature implementations were ready.
The analysis of backward transitions revealed that for
all cases there was a request to provide the
functionality in an earlier project. The requests were
accepted after checking that the development teams

were capable of meeting the new deadlines and that the
new features were technically compatible with the
destination project’s source code.

6.2 Within-projects Feature Transitions

 Next we have visualized internal transitions within
both projects A and B. The results are depicted in
Figures 2 and 3. Various platform project releases are
placed next to each other in the graphs. The time offset
is not present in this case, so that all transitions are
represented by orthogonal lines and transition symbols
similarly to across-project transition visualization. Due
to the doubling of data points (only for the features that
have been moved within-project) in this type of graph,
the data has been minimized by removing data points
from after the transition for the source project and
before the transition for the destination project. As a
result, a more accurate picture of the size of various
platform project releases can be achieved.
 In the case of project A, we experienced in total 34
within-project transitions. 18 of them turn out to be
originating from R1 and 15 from R2. All mentioned
transitions are targeted to later releases. On the other
hand, one transition is originating from R4 and is

Figure 2. Within-project transitions for project A (see section 5.2). The full-size color figure can be found
at http://www.cs.lth.se/home/Krzysztof_Wnuk/REV09/Figure2.bmp

directed towards an earlier scope release. In the case of
project B, 36 within-project transitions were found in
total. The interesting observation here is that 19
transitions are originating from release R5, another 10
from release R2. Both groups of transitions are
targeted to earlier releases. In this case, only five
transitions originated from release R1 and only two
from release R2.

6.3 Visualizing multiple transitions.

 The last type of visualization is representing only
features that have been transferred multiple times. Due
to the fact that these transitions are complex, the
visualization used here considers only mentioned
transitions. All single transitions, as well as features
that were not moved anywhere, are excluded from the
graph. The results from visualizing this type of
transitions on the industrial data are depicted in Figure
4. In our case, only five features happened to behave in
this way. For all discovered cases the scenario is the
same, the features were first moved internally to an

early project release within the same platform project,
and then moved to the second release of the following
project. To emphasize multiple transitions, a new
symbol was added to the graph, namely the interim
transition symbol. As a result of its design, this view
cannot visualize the magnitude of multiple transitions
compared with all transitions in the project. It is
instead focusing on paths for multiple transitions.

7. Initial validation

 As an initial validation step, interviews were
conducted with two practitioners from the case of the
company under study, one person working with
requirements engineering process improvement and
one person working with scope management. The
questions were asked to confirm or reject the
assumptions that the researchers had before applying
visualizations to the empirical data. As one of the first
questions, interest in visualizing feature transitions was
discussed. Both responders expressed their interest in
visualizing cross-project transitions and also reported

Figure 3. Visualizing within-project transitions for project B (see section 5.2). The full-size color figure can
be found at http://www.cs.lth.se/home/Krzysztof_Wnuk/REV09/Figure3.bmp

that current tool support cannot provide this
functionality. Neither of the responders could give an
accurate estimate of the scale of this phenomenon in
the case of the company under study, but they agreed
that there are many changes that would be valuable to
visualize and analyze.
 Our responders confirmed our assumptions that
feature transitions may sometimes heavily influence
the market value of affected features. This is because
for each feature there is an optimal market window for
an estimated profit. If, for some reasons, a feature is
delivered to the market outside its optimal market
window new estimations of its market value need to be
made. In addition, cost of implementation may be
affected, although market value implications were
considered more important. The relation to the cost of
implementation is, according to one of our responders,
dependent on when the feature was moved (to which
project) since that may either reduce or increase the
cost for implementation. Both responders expressed
that it is crucial to visualize the transitions because of
so called enablers: features that are prerequisites of
other valuable features, but that might not have a great
market value on their own. Enablers often have to be
implemented before, or in conjunction with, the
features that rely on them. Therefore, all backward
feature transitions should be analyzed to ensure that
dependencies to required enablers related to moved
features are available. In some cases, feature transitions
may involve large architectural changes while the
impact may be minimal in others. For forward
transitions, enablers should not be rejected in order to

make sure that support for the transferred features still
persists. In the event of backwards transitions, it is
important to check that support for the new
functionality is available and thus may also require the
backward transition of related enablers. Being able to
trace features between the projects was considered as
very valuable and desired.
 Questions regarding usefulness and applicability of
each type of the visualization were also asked. The
external transitions graph was considered useful by our
responders (by one responder the most useful graph).
The meaning of the backward transitions was discussed
together with the time delay between the exclusion and
inclusion. As our responders mentioned, sometimes it
is undesirable to remove the feature from the original
scope until the final decision to transfer is made. For
the backward transitions, the lead-time can be shown
(Figure 1) representing the time needed to analyze the
feature. The internal transition visualization turned out
not to be as useful as the external version. Responders
mentioned that the fact that each data point is placed
twice on the graph (to distinguish among releases) may
lead to wrong conclusions. It was also mentioned that
in their company only one person is responsible for
one project meaning that this person would usually be
aware about the number of internal transitions in the
project under his or her management.
 Finally, the multiple transitions view was discussed.
The responders found it less useful than the external
transitions graph. One responder would like to have all
features in the graph, not only the transitions, to be

Figure 4. Multiple transitions between projects A and B visualized with the exclusion of non-transitions. The
full-size color figure can be found at http://www.cs.lth.se/home/Krzysztof_Wnuk/REV09/Figure4.bmp

able to compare the scale of the project to the overall
size of the project.

8. Conclusions

 In this paper, we present a technique for
visualization of the scope dynamics of changes within
and across multiple projects called Feature Transition
Charts (FTC), an extension of Feature Survival Charts
(FSC) [18]. We have applied FTC post-mortem to real-
world data from two large projects. FTC was initially
validated in dialogue with practitioners, indicating that
while FTC may be both feasible and useful, additional
research could enhance the features in terms of
interactive zooming and enhanced user configurability.
The main findings are summarized in relation to
research questions from Section 1:

 (Q1) FTC can visualize scope changes across
the projects by aligning a set of FSC and
depicting transfers using special markers and
lines. The visualization can scale to large
projects (at least in the projects we have
tested), which can be counted as its
advantage over a textual representation of
scope dynamics The practitioners believe that
FTC can give a comprehensive overview of
scoping dynamics that have not previously
been made explicit, and that the concept of
FSC [16,18] is extended in a useful way. FTC
can be used by both requirements engineers
and process managers to gain valuable
information about the presence and nature of
scope changes across projects or projects’
releases.

 (Q2) The proposed visual symbols for
departure and arrivals of feature transitions
can be useful in providing an effective
overview of the timing and magnitude of
feature transitions. However, in a very large
scale projects, many adjacent transitions can
overlap and future work thus may include
experiments with interactive zooming and
filtering features.

 Limitations. Our study has some limitations.
Firstly, even if the case of the company under study is
large and develops technically complex products, it
cannot be taken as a representative for all types of
large companies and hence the results should be
interpreted with some caution. Secondly, our initial
validation of FTC is limited to a static post-mortem
analysis and because of that it could not be applied in a
proactive manner and no feedback from ongoing
projects could be gathered. Thirdly, when the size of

the projects grows, our visualization technique should
be complemented by zooming and interactive features
so that the holistic picture can be perceived, while the
details are available on demand.
 Further work. Additional studies of scope
dynamics visualization in other cases would further
increase our understanding of their usefulness.
Enhanced tool support, with the possibility of zooming
interactively, may be useful. Other means of marking
the departure and arrival points should be evaluated.
Finally, additional work should be performed to
address the applicability of FTC in other contexts, for
example other domains, such as information systems,
and other development modes, such as single product
development or agile development.

Acknowledgements. This work is supported by VINNOVA
(Swedish Agency for Innovation Systems) within the UPITER
project. Special acknowledgements to Thomas Olsson for valuable
help with section 7, and to Lars Nilsson for valuable language
comments.

9. References

[1] B. W. Bohem, “Value-based software engineering”,
Software Eng. Notes 28(2), ACM SIGSOFT, 2003, pp. 1-12.
[2] B.W. Bohem, L. G. Huang, “Value-based software
engineering: A case study.”, Computer, IEEE Computer
Society, March 2003, pp. 33-41.
[3] C. Wohlin, A. Aurum, “What is Important when Deciding
to Include a Software Requirements in a Project or
Release?”, 2005 International Symposium on Empirical
Software Engineering, ISESE 2005, IEEE Computer Society,
Piscataway, NJ 08855-1331, United States, 2005, pp. 246-
255.
[4] P. Carlshamre, B. Regnell, “Requirements lifecycle
management and release planning in market-driven
requirements engineering processes”, Proceedings 11th
International Workshop on Database and Expert Systems
Applications, IEEE Computer Society, Los Alamitos, CA,
USA, 2000, pp. 961-965.
[5] J.-M. DeBaud, K. Schmid, “A systematic approach to
derive the scope of software product lines”, Proceedings of
the 21st International Conference on Software Engineering,
ACM, Los Angeles USA, 1999, pp. 34-43.
[6] G. De Gregorio, “Enterprise-wide Requirements and
Decision Management”, Proc. 9th International Symposium
of the International Council on System Engineering,
Brighton, 1999, pp. 1-7.
[7] G. Ruhe, “Software Engineering Decision Support – A
new Paradigm for Learning Software ”, Lecture Notes in
Computer Science, vol. 2640, Springer-Verlag, Berlin, 2003,
pp. 104-113.
[8] J. Karlsson, K. Ryan , “Cost-value approach for
prioritizing requirements”, IEEE Software, IEEE, Los
Alamos, Sept-Oct 1997, pp. 67-74.
[9] J. Karlsson, C. Wohlin, B. Regnell, “An evaluation of
methods for prioritizing software requirements.” Information

and Software Technology, 39 (14-15), 1997-1998 pp. 939-
947.
[10] Å. Dahlstedt, A. Persson, „Requirements
interdependencies – Moulding the state of research into a
research agenda.” Proceedings Ninth International Workshop
on Requirements Engineering (REFSQ’03),
Klagenfurt/Velden, Austria, 2003, pp. 71-80.
[11] A. Aurum and C. Wohlin, “Applying decision-making
models in requirements engineering.”, Proceedings of
Requirements Engineering for Software Quality, Information
and Software Technology 45(14), Elsevier, Essen Germany,
December 2002, pp. 2-13.
[12] A. Aurum, C. Wohlin, “The fundamental nature of
requirements engineering activities as a decision-making
process”. Information and Software Technology, 45(14),
2003, pp. 945-954.
[13] B. Regnell, M. Host, J. Natt och Dag, and A. Hjelm,
”Case study on distributed prioritization in market-driven
requirements engineering for packaged software.”,
Requirements Engineering 6(1), Springer-Verlag, London,
2001, pp. 51-62.
[14] P. Carlshamre, “Release planning in market-driven
product development: Provoking an understanding”,
Requirements engineering 7(3), Springer-Verlag, London,
2002, pp. 139-151.
[15] G. Ruhe, D. Greer, “Quantitative studies in software
release planning under risk and resource constraints”,
Proceedings of International Symposium on Empirical
Software Engineering (ISESE), IEEE, Los Alamitos CA,
2003, pp. 262-271.
[16] K. Wnuk, B. Regnell and L. Karlsson, “What Happened
to Our Features? Visualization and Understanding of Scope
Change Dynamics in a Large-Scale Industrial Setting”,
Accepted as a publication for the 17th International
Requirements Engineering Conference, RE09, Atlanta,
Georgia, USA, 2009.
[17] C. Ebert, J. De Man, “Requirements Uncertainty:
Influencing Factors and Concrete Improvements”,
Proceedings - 27th International Conference on Software
Engineering, ICSE 2005, IEEE Computer Society, Saint
Louis, MO, United States, 2005, pp. 553-560.
[18] K. Wnuk, B. Regnell, L. Karlsson, ” Visualization of
Feature Survival in Platform-Based Embedded Systems
Development for Improved Understanding of Scope
Dynamics”, Third International Workshop on Requirements
Engineering Visualization (REV’08), IEEE, Spain, 2008,
pp.41-50.
[19] K. Schmid, “A Comprehensive Product Line Scoping
Approach and Its Validation”, 24th International Conference
on Software Engineering (ICSE 2002), IEEE Computer
Society, Orlando USA, May 19-25 2002, pp. 593-603.
[20] T. Kishi, N. Noda and T. Katayama, ”A Method for
Product Line Scoping Based on Decision-Making
Framework”, Proceeding Second International Conference,
SPLC 2002, Springer Berlin / Heidelberg, San Diego, CA,
USA, August 19–22, 2002, pp. 53-65.
[21] J. Savolainen, M. Kauppinen and T. Mannisto,
“Identifying key requirements for a new product line”,
Proceedings - 14th Asia-Pacific Software Engineering
Conference APSEC 2007, IEEE Computer Society, Nagoya,
Japan, 2007, pp. 478-485.

[22] O. C.Z. Gotel, F. T. Marchese, S.J. Morris “On
requirements visualization”, Second International Workshop
on Requirements Visualization (REV 2007), IEEE Computer
Society, New Delhi India, 2007, pp. 80-9.
[23] Teyseyre, A. “A 3D Visualization Approach to Validate
Requirements”, Proc. Congreso Argentino de Ciencias dela
Computacion, Argentina, October 2002.
[24] Unified Modeling Language webpage, www.uml.org
last visited July 2008.
[25] S. Konrad, H. Goldsby, K. Lopez, B. H.C. Cheng,
“Visualizing Requirements in UML Models”, First
International Workshop on Requirements Visualization
(REV 2006), St. Paul MN United States, September 2006.
[26] C. Duan and J. Cleland-Huang, “Visualization and
Analysis in Automated Trace Retrieval”, First International
Workshop on Requirements Visualization (REV 2006), St.
Paul MN United States, September 2006.
[27] O. Ozakaya, “Representing requirements relationships”,
First International Workshop on Requirements Visualization
(REV 2006), St. Paul MN United States, September 2006.
[28] D. Sellier, M. Mannion, “Visualizing Product Line
Requirements Selection Decision Inter-Dependencies”,
Second International Workshop on Requirements
Visualization (REV 2007), IEEE, New Delhi India, 2007,
pp. 1-10.
[29] M. Pichler, H. Humetshofer, “Business Process-based
Requirements Modeling and Management”, First
International Workshop on Requirements Visualization
(REV 2006), St. Paul MN United States, September 2006.
[30] M. S. Feather, S. L. Cornford, J. D. Kiper, T. Menzies,
“Experiences using Visualization Techniques to Present
Requirements, Risks to Them, and Options for Risk
Mitigation”, First International Workshop on Requirements
Visualization (REV 2006), St. Paul MN United States,
September 2006.
[31] Pohl, C., G. Böckle, and F. J. van der Linden, Software
Product Line Engineering: Foundations, Principles and
Techniques, Springer-Verlag, New York USA, 2005.
[32] R.G. Cooper, “Stage-Gate Systems: A New Tool for
Managing New Products”, Business Horizons, May-June
1990, pp. 44-54.

