
Visualizing, Analyzing and Managing 
the Scope of Software Releases in 

Large-Scale Requirements 
Engineering 

                      

 

 

Krzysztof Wnuk 

 

 

 

 
 

Doctoral Thesis, 2012 
Department of Computer Science 

Faculty of Engineering 
Lund University 



ISSN 1404-1219
ISBN 978-91-976939-7-4
Dissertation 39, 2012
LU-CS-DISS:2012-2

Department of Computer Science
Faculty of Engineering
Lund University
Box 118
SE-221 00 Lund
Sweden
Typeset using LATEX
Printed in Sweden by Tryckeriet i E-huset, Lund, 2012
c© 2012 Krzysztof Wnuk
Email: ���������	
�����	���	��



Abstract

Large market-driven software companies face new challenges in require-
ments engineering and management that emerged due to their recent ex-
tensive growth. At the same time, the pressure generated by competitors’
and users’ expectations demands being more competitive, creative and
flexible to more quickly respond to a rapidly changing market situation. In
the pursuit of staying competitive in this context, new ideas on how to im-
prove the current requirements engineering practice are requested to help
maintaining the engineering efficiency while copingwith growing size and
complexity of requirements engineering processes and their products.

This thesis focuses on visualizing, analyzing and managing the scope
of software releases in large-scale requirements management for develop-
ing software products to open markets. In particular, this thesis focuses on
the following requirements management activities in the mentioned con-
text, namely: scope management, decision making, obsolete requirements
and requirements consolidation. The goals of the research effort in this
thesis are to provide effective methods in supporting mentioned require-
ments management activities in a situation when the size of them and their
complexity require large time and skills efforts.

Based on empirical research, where both quantitative and qualitative
approaches were utilized, this thesis reports on improved understanding
of requirements scoping in very-large projects by investigating factors af-
fecting decision making, causes and effects of overscoping and presents
visualization techniques to assist scope management for large-scale soft-
ware product development contexts. The technical solutions reported in
this thesis were empirically evaluated in case studies in a large-scale con-
text and designed in close collaboration with our industry partners. Ad-
ditionally, the benefits of using linguistic methods for requirements con-
solidation are investigated in a replicated experimental study based on a
relevant industry scenario. Finally, the phenomenon of obsolete software
requirements and their impact on industry practice is explored.

i



ii



Acknowledgements

The work presented in this thesis was funded by the Swedish Governmen-
tal Agency for Innovation Systems under the grants UPITER andUPITER2,
Efficient Requirements Architecture in Platform-Based RequirementsMan-
agement for Mobile Terminals.

First and foremost, I am particularly grateful to my supervisor, Professor
Björn Regnell, for his invaluable expertise and advice, inspiring and chal-
lenging discussions, and endless patience that supported me throughout
this work. I would also like to thank my assistant supervisor, Professor
Martin Höst, for his enthusiastic guidance and comments on my work.

The research presented in this thesis was conducted in close coopera-
tion between academia and industry. Therefore, I am particularly grateful
to Brian Berenbach from Siemens Corporate Research and Dr. Lena Karls-
son, Lic. Eng. Thomas Olsson, Dr. Even-André Karlsson from SonyMobile
for their commitment. I am grateful to all participants of the studies pre-
sented in this thesis.

Recognition must also be given here to the co–authors of my papers
and others who have helped writing and reviewing them. In particular, I
thank Professor Tony Gorschek for excellent collaboration and advise, Lic.
Eng. Markus Borg for checking the final print, Lic. Eng. Lars Nilsson, Dr.
David Callele and Leora Callele for their perfection in language reviews of
my articles and this thesis, which significantly improved their legibility.

I would like to thank my colleagues in the Software Engineering Re-
search Group for an inspiring and supporting collaboration atmosphere. I
want to thank all other colleagues at the Department of Computer Science
for for providing an excellent environment to work in.

Last but not least, I would like to thank my wife Agata, the rock of our
family, the light and love of my life, for her unwavering love and support.
Also, to my family and friends: thank you for constantly reminding me
what is the most important in life.

Krzysztof Wnuk
In the year of grace 2012

iii



iv



Contents

Introduction 1
1 Setting the Context . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Software and requirements engineering . . . . . . . . 7
1.2 Requirements management in a large-scale market

driven context . . . . . . . . . . . . . . . . . . . . . . . 11
2 Research Focus . . . . . . . . . . . . . . . . . . . . . . . . . . 14
3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Engineering and researching large-scale software sys-
tems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Requirements prioritization, product management,
release planning and roadmapping . . . . . . . . . . 28

3.3 Visualization in software and requirements engineer-
ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.4 Natural Language Processing techniques in require-
ments management . . . . . . . . . . . . . . . . . . . . 35

3.5 Obsolescence in software and requirements engineer-
ing, Obsolete Software Requirements (OSRs) . . . . . 36

3.6 Scoping in software projects and in requirements en-
gineering . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Research Methodology . . . . . . . . . . . . . . . . . . . . . . 39
4.1 Research design . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Research strategies used . . . . . . . . . . . . . . . . . 40
4.3 Data collection methods used . . . . . . . . . . . . . . 42
4.4 Research classification . . . . . . . . . . . . . . . . . . 44
4.5 Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5 Research Results . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.1 Main contribution of RQ1 . . . . . . . . . . . . . . . . 48
5.2 Main contribution of RQ2 . . . . . . . . . . . . . . . . 49
5.3 Main contribution of RQ3 . . . . . . . . . . . . . . . . 50
5.4 Main contribution of RQ4 . . . . . . . . . . . . . . . . 51
5.5 Main contribution of RQ5 . . . . . . . . . . . . . . . . 52
5.6 Main contribution of RQ6 . . . . . . . . . . . . . . . . 52

6 Further Research . . . . . . . . . . . . . . . . . . . . . . . . . 53

v



6.1 FR1: Scoping by Controlling Opportunity Losses . . 53
6.2 FR2: Providing Scalable Requirements Architectures 58
6.3 FR3: Additional investigations of possible usage of a

linguistic tool support for requirementsmanagement
related tasks. . . . . . . . . . . . . . . . . . . . . . . . 61

6.4 FR4: Methods for handling OSRs. . . . . . . . . . . . 68
6.5 FR5: Investigation of overscoping in other contexts

and the impact of agile practices on overscoping. . . 69
6.6 FR6: Investigation of additional factors that may af-

fect decision lead-times and decision outcomes. . . . 71
6.7 FR7: Extending the proposed visualization techniques

on the system requirements level visualization. Im-
proving the user interaction. Additional empirical
evaluations. . . . . . . . . . . . . . . . . . . . . . . . . 72

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Paper I: What Happened to Our Features? Visualization and Under-
standing of Scope Change Dynamics in a Large-Scale Industrial
Setting 95
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
2 The case company . . . . . . . . . . . . . . . . . . . . . . . . . 98
3 Research Methodology . . . . . . . . . . . . . . . . . . . . . . 99
4 Feature Survival Charts . . . . . . . . . . . . . . . . . . . . . 100
5 Evaluation results . . . . . . . . . . . . . . . . . . . . . . . . . 101
6 Scope tracking measurements . . . . . . . . . . . . . . . . . . 103

6.1 Definition of measurements . . . . . . . . . . . . . . . 104
6.2 Theoretical analysis of measurements . . . . . . . . . 105
6.3 Empirical application of measurements . . . . . . . . 106

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

Paper II: Replication of an Experiment on Linguistic Tool Support for
Consolidation of Requirements from Multiple Sources 119
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
2 Industrial Problem Description . . . . . . . . . . . . . . . . . 123
3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
4 Experimental Design . . . . . . . . . . . . . . . . . . . . . . . 128

4.1 Goals, Hypothesis, Parameters and Variables . . . . . 131
4.2 Subjects . . . . . . . . . . . . . . . . . . . . . . . . . . 132
4.3 Treatments . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.4 Requirements . . . . . . . . . . . . . . . . . . . . . . . 136
4.5 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
4.6 Correct Consolidation . . . . . . . . . . . . . . . . . . 140
4.7 Instrumentation . . . . . . . . . . . . . . . . . . . . . . 140
4.8 Data Collection Procedure . . . . . . . . . . . . . . . . 141

vi



4.9 Validity Evaluation . . . . . . . . . . . . . . . . . . . . 142
5 Experiment execution . . . . . . . . . . . . . . . . . . . . . . . 145
6 Experiment results analysis . . . . . . . . . . . . . . . . . . . 147
7 Experiment results interpretation and discussion . . . . . . . 152

7.1 Interpretation of this experiment . . . . . . . . . . . . 152
7.2 Interpretation of the results from both experiments . 157
7.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 158

8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

Paper III: Obsolete Software Requirements 173
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175
2 Background and Related Work . . . . . . . . . . . . . . . . . 176
3 Research methodology . . . . . . . . . . . . . . . . . . . . . . 178

3.1 Research questions . . . . . . . . . . . . . . . . . . . . 178
3.2 Research design . . . . . . . . . . . . . . . . . . . . . . 179
3.3 Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

4 Results and Analysis . . . . . . . . . . . . . . . . . . . . . . . 184
4.1 Demographics . . . . . . . . . . . . . . . . . . . . . . . 185
4.2 Defining obsolete requirements (RQ1) . . . . . . . . . 189
4.3 The potential impact of OSRs (RQ2) . . . . . . . . . . 192
4.4 Requirements types and OSRs (RQ3) . . . . . . . . . 195
4.5 Methods to identify OSRs (RQ4) . . . . . . . . . . . . 197
4.6 Handling of identified obsolete software requirements

(RQ5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
4.7 Context factors and obsolete software requirements

(RQ6 and RQ7) . . . . . . . . . . . . . . . . . . . . . . 203
4.8 Where in the requirements life cycle should OSRs be

handled (RQ7) . . . . . . . . . . . . . . . . . . . . . . 206
4.9 Existing processes and practices regardingmanaging

OSRs (RQ5) . . . . . . . . . . . . . . . . . . . . . . . . 208
4.10 Summary of results . . . . . . . . . . . . . . . . . . . . 211

5 Conclusions and Further Work . . . . . . . . . . . . . . . . . 213
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Paper IV: Are You Biting Off More Than You Can Chew? A Case
Study on Causes and Effects of Overscoping in Large–Scale Soft-
ware Engineering 223
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
3 The case company . . . . . . . . . . . . . . . . . . . . . . . . . 230

3.1 Organisational set-up . . . . . . . . . . . . . . . . . . 230
3.2 Phase-based process . . . . . . . . . . . . . . . . . . . 231
3.3 Agile development process . . . . . . . . . . . . . . . 232

4 Research method . . . . . . . . . . . . . . . . . . . . . . . . . 234

vii



4.1 Phase one: pre-study and hypothesis generation . . . 235
4.2 Phase two: an interview study at the case company . 237
4.3 Phase three: validation of results via questionnaire . 238

5 Interview results . . . . . . . . . . . . . . . . . . . . . . . . . 239
5.1 Causes of overscoping (RQ1) . . . . . . . . . . . . . . 239
5.2 Root cause analysis (RQ1) . . . . . . . . . . . . . . . . 243
5.3 Effects of overscoping (RQ2) . . . . . . . . . . . . . . 246
5.4 Impact of agile RE practices (RQ3) . . . . . . . . . . . 249

6 Validation questionnaire on interview results . . . . . . . . . 250
6.1 Causes and root causes (RQ1) . . . . . . . . . . . . . . 250
6.2 Effect of overscoping (RQ2) . . . . . . . . . . . . . . . 251
6.3 Impact of agile RE practices (RQ3) . . . . . . . . . . . 252

7 Interpretation and discussion . . . . . . . . . . . . . . . . . . 255
7.1 Causes of overscoping (RQ1) . . . . . . . . . . . . . . 255
7.2 The effects of overscoping (RQ2) . . . . . . . . . . . . 259
7.3 How agile RE practices may impact overscoping (RQ3)261
7.4 Threats to validity and limitations . . . . . . . . . . . 263

8 Conclusions and further work . . . . . . . . . . . . . . . . . . 265
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

Paper V: Factors Affecting Decision Outcome and Lead-time in Large-
Scale Requirements Engineering 275
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
3 Case Company Description . . . . . . . . . . . . . . . . . . . 280
4 Research Design . . . . . . . . . . . . . . . . . . . . . . . . . . 283

4.1 Research questions . . . . . . . . . . . . . . . . . . . . 284
4.2 Research methods . . . . . . . . . . . . . . . . . . . . 285
4.3 Validity . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

5 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . 289
5.1 Test Selection . . . . . . . . . . . . . . . . . . . . . . . 289
5.2 Survey Data Analysis . . . . . . . . . . . . . . . . . . 290
5.3 Factors that affect the decision lead–time: RQ1 . . . . 291
5.4 Factors that affect the decision outcome: RQ2 . . . . . 296
5.5 Effect of lead–time on the decision outcome - RQ3 . . 300

6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Paper VI: Scope Tracking and Visualization for Very Large-Scale Re-
quirements Engineering 315
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
2 Background and Related Work . . . . . . . . . . . . . . . . . 317
3 Case Study Description . . . . . . . . . . . . . . . . . . . . . . 322
4 Research methodology . . . . . . . . . . . . . . . . . . . . . . 324

4.1 Research questions . . . . . . . . . . . . . . . . . . . . 324

viii



4.2 Research design and methods used . . . . . . . . . . 324
4.3 Validity evaluation . . . . . . . . . . . . . . . . . . . . 327

5 Feature Survival Charts+ . . . . . . . . . . . . . . . . . . . . . 328
5.1 FSC+ as a visual technique for very-large agile-inspired

projects: RQ1 . . . . . . . . . . . . . . . . . . . . . . . 332
5.2 X-axis and Y-axis representations: RQ1a, RQ1b . . . . 333
5.3 Sorting and filtering FSC+s: RQ1c and RQ1d . . . . . 334

6 Feature decision patterns analysis and visualization: RQ2 . . 334
6.1 Decision archetypes: RQ2a . . . . . . . . . . . . . . . 336
6.2 Interview results regarding decision patterns analy-

sis: RQ2 . . . . . . . . . . . . . . . . . . . . . . . . . . 337
6.3 Visualizing decision patterns: RQ2b . . . . . . . . . . 337

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345

ix



x



Introduction

Software becomes more and more pervasive and gains more and more im-
portance in our lives. As a result, our dependence on software intensive
system in everyday life increases. At the same time, the intangible and
abstract nature of software artifacts demands revisiting and often redefin-
ing engineering approaches for constructing complex systems, established
originally in other than software domains. The constant need to esteem
new ways of achieving repeatability and quality control over the software
production process gets particularly important for large software systems.
In these systems, the adhered diversity and complexity may severely im-
pede themanagement of software development processes. Similarly, as the
size and complexity of software systems continues to increase, they result
in increasingly large and complex sets of requirements. Currently, many
companies are facing the problem of dealing with enormous complexity
of requirements engineering related artifacts, where current requirements
engineering technology can provide useful but only partial solutions.

This thesis focuses on visualizing, analyzing and managing the scope
of projects in large-scale requirements engineering contexts. The research
presented in this thesis aims for improving the understanding of large-
scale requirements engineering contexts, in particular the nature of require-
ments management related activities, as well as providing methods for
supporting some of these activities. The results from this thesis concern
scoping, managing obsolete requirements and requirements consolidation
tasks. The presented visualization techniques are applied to very-large
software projects, increasing the understanding and assisting in improv-
ing the scoping process at the case company.

This thesis includes a collection of six papers. This introduction pro-
vides a background for the papers and relationships between the studies.
Section 1 gives the introduction to the context of the thesis. Section 2 de-
fines the focus of this thesis. Section 3 provides related work in the related
subareas of requirements engineering. Section 4 describes the methodol-
ogy used in this thesis. Throughout this introduction, the papers included
in this thesis will be refereed to their roman number (see the list below).
Other references can be found at the end of this introduction section.

1



Included papers

The following six papers are included in the thesis:

I What Happened to Our Features? Visualization and Understand-
ing of Scope Change Dynamics in a Large–Scale Industrial Setting
Krzysztof Wnuk, Björn Regnell and Lena Karlsson
In Proceedings of the 17th IEEE International Requirements Engi-
neering Conference (RE’ 09), Atlanta, Georgia, USA, August 31 - Septem-
ber 04, IEEE, 2009, pp. 89–98

II Replication of an Experiment on Linguistic Tool Support for Con-
solidation of Requirements from Multiple Sources
Krzysztof Wnuk, Björn Regnell and Martin Höst
Empirical Software Engineering Journal (ESEJ), Springer, vol. 17, Jan.
2012, pp. 305–344

III Obsolete Software Requirements
Krzysztof Wnuk, Tony Gorschek and Shuiab Zahda
Under revision for Information and Software Technology journal, El-
sevier, 2012

IV Are You Biting Off More Than You Can Chew? A Case Study on
Causes and Effects of Overscoping in Large–Scale Software Engi-
neering
Elizabeth Bjarnason, Krzysztof Wnuk and Björn Regnell
Information and Software Technology (IST) journal, vol. 54, issue 10,
October 2012, Elsevier, pp. 1107–1124
This article is an extended version of the related article XVI presented
at the 4th International Workshop on Software Product Management
(IWSPM’ 2010) which received the best paper award

V What Decision Characteristics Influence Decision Making in Large–
Scale Market–Driven Requirements Engineering?
Krzysztof Wnuk, Jaap Kabbedijk, Sjaak Brinkkemper and Björn Regnell
under revision for the Software Quality Journal, Springer, 2012
This article is an extended version of the related article XIV presented
at the First International Workshop on Product Line Requirements
Engineering and Quality (PLREQ’ 10)

VI Scope Tracking and Visualization for Very Large-Scale Require-
ments Engineering
Krzysztof Wnuk, Tony Gorschek, Björn Regnell and Even-André Karlsson
submitted to the IEEE Transactions on Software Engineering Journal,
IEEE, 2012

2



Contribution Statement

Krzysztof Wnuk is the main author for five included papers. This means
responsibility for running the research process, dividing the work between
co–authors, and conducting most of the writing. The research in Papers
I,II,III, and VI was mainly performed by Krzysztof Wnuk, who designed
and conductedmost of thework, aswell as reported on the studies. Krzysztof
Wnuk wrote most of Papers I, II, III, V and VI, with the assistance from co-
authors. The execution of the study reported in Paper III was performed
by Shuiab Zahda and the execution of the study reported in Paper V was
performed by Jaap Kabbedijk.

For Paper IV, Krzysztof Wnuk actively participated in the study design
and wrote significant parts of the text. Most of the design was performed
together with the co–authors, while most of the execution and analysis was
performed by Elizabeth Bjarnason.

Related Publications

The following papers are related but not included in the thesis:

VII Can We Beat the Complexity of Very Large–Scale Requirements
Engineering?
Björn Regnell, Richard Berntsson Svensson, and Krzysztof Wnuk
In Proceedings of the 14th International Working conference on Re-
quirements Engineering: Foundation for Software Quality (REFSQ’08),
Montpellier, France, June 16-17, 2008, LNCS 5025, Springer-Verlag
Berlin, Heidelberg, pp. 123-128
This paper presents challenges faced in very large–scale requirements
engineering, which is the context of this thesis. This paper is partly
included in Section 3.1 of the Introduction.

VIII Scaling up requirements engineering – exploring the challenges of
increasing size and complexity in market-driven software develop-
ment
Krzysztof Wnuk, Björn Regnell and Brian Berenbach
In Proceedings of the 17th International Working Conference on Re-
quirements Engineering: Foundation for Software Quality (REFSQ’11),
Essen, Germany, March 28-30, 2011 , LNCS 6606, Springer-Verlag,
Berlin, Heidelberg, pp. 54-59
This paper presents challenges faced when scaling up requirements
engineering to very large projects, which is the context of this thesis.
This paper is partly included in Section 3.1 of the Introduction.

IX Visualization of Feature Survival in Platform–Based Embedded Sys-
tems Development for Improved Understanding of Scope Dynam-
ics

3



Krzysztof Wnuk, Björn Regnell and Lena Karlsson
In Proceedings of the 2008 International Requirements Engineering
Visualizationworkshop (REV’08), Barcelona, Spain, 8 September 2008,
IEEE, pp. 41-50

X Investigating Upstream versus Downstream Decision–Making in
Software Product Management
Krzysztof Wnuk, Richard Berntsson Svensson and Björn Regnell
Third InternationalWorkshop on Software ProductManagement (IWSPM
2009), Atlanta, Georgia, USA, September 01, 2009, IEEE, pp. 23-26

XI Feature Transition Charts for Visualization of Cross–Project Scope
Evolution in Large–Scale Requirements Engineering for Product
Lines
Krzysztof Wnuk, Björn Regnell and Lena Karlsson
In Proceedings of the Fourth International Workshop on Require-
ments Engineering Visualization (REV’09), Atlanta, Georgia, USA,
August 30, 2009, IEEE, pp. 11-20

XII An Industrial Case Study on Large–Scale Variability Management
for Product Configuration in the Mobile Handset Domain
Krzysztof Wnuk, Björn Regnell, Jonas Andersson, and Samuel Nygren
In Proceedings of the Third International Workshop on Variability
Modelling of Software-Intensive Systems (VAMOS’09), Seville, Spain,
January 28-30, Research Report 29 Universität Duisburg-Essen, 2009,
pp.155-164

XIII Architecting and Coordinating Thousands of Requirements – An
Industrial Case Study
Krzysztof Wnuk, Björn Regnell and Claes Schrewelius
In Proceedings of the 15th International Working Conference on Re-
quirements Engineering: Foundation for Software Quality (REFSQ
’09), Amsterdam, TheNetherlands, June 8-9 2009, LNCS 5512, Springer-
Verlag, Berlin, Heidelberg, pp. 118-123

XIV What decision characteristics influence decision making in market–
driven large–scale software product line development?
Jaap Kabbedijk, Krzysztof Wnuk, Björn Regnell and Sjaak Brinkkemper
In Proceedings of the International Workshop on Product Line Re-
quirements Engineering and Quality workshop (PLREQ’10), Essen,
Germany, July 3, 2010 Hildesheimer Informatik-Berichte, Volume:
2010, pp. 42-53

XV Guiding Requirements Scoping Using ROI: Towards Agility, Open-
ness and Waste Reduction
Krzysztof Wnuk, David Callele and Björn Regnell

4



In Proceedings of the 18th IEEE International Requirements Engi-
neering Conference (RE’10), Sydney, Australia, 27 September - 1 Oc-
tober 2010, IEEE, pp. 409-410

XVI Overscoping: Reasons and consequences: A case study on decision
making in software product management
Elizabeth Bjarnason, Krzysztof Wnuk and Björn Regnell
In Proceedings of the Fourth International Workshop on Software
Product Management (IWSPM 2010), Sydney, Australia, September
26, 2010, IEEE, pp. 30-39

XVII More than requirements: Applying requirements engineering tech-
niques to the challenge of setting corporate intellectual policy, an
experience report
David Callele and Krzysztof Wnuk
In Proceedings of the Fourth International Workshop on Require-
ments Engineering and Law (RELAW 2011), Trento, Italy, August 30,
2011, IEEE, pp. 35-42

XVIII A case study on benefits and side–effects of agile practices in large-
scale requirements engineering
Elizabeth Bjarnason, Krzysztof Wnuk and Björn Regnell
In proceedings of the 1stWorkshop on Agile Requirements Engineer-
ing (AREW 2011), Lancaster, UK, July 26 2011, ACM, New York, NY,
USA, pp. 1-5

XIX An empirical study on the importance of quality requirements in
industry
Jose Luiz de la Vara, Krzysztof Wnuk, Richard Berntsson Svensson, Juan
Sanchez and Björn Regnell
In the Proceedings of the 23rd International Conference Software En-
gineering and Knowledge Engineering (SEKE 2011), Miami Beach,
USA, 7 - 9 July, 2011, Knowledge Systems Institute Graduate School,
pp. 438-443

XX Requirements are slipping through the gaps: A case study on causes
and effects of communication gaps in large-scale software develop-
ment
Elizabeth Bjarnason, Krzysztof Wnuk and Björn Regnell
In the Proceedings of the 19th IEEE International Requirements Engi-
neering Conference (RE’11), Trento, Italy, August 29 - September 02,
2011, IEEE, pp. 37-46

XXI Requirements scoping visualization for project management
Krzysztof Wnuk and David Callele

5



In Proceedings of the 2nd International Conference on Software Busi-
ness (ICSOB 2011), Brussels, Belgium, June 8-10, 2011, Lecture Notes
in Business Information Processing, vol. 80, Springer-Verlag Berlin
Heidelberg, pp. 168-180

XXII Challenges in supporting the creation of data minable regulatory
codes: a literature review
Krzysztof Wnuk and Brian Berenbach
In the Proceedings of the 21st Annual International Symposium of
the International Council on Systems Engineering (INCOSE 2011),
INCOSE SanDiego, CA, June 20 - June 23, 2011, INCOSE-International
Council on Systems Engineering, pp. 1097-1114

XXIII How can Open Source Software Development help Requirements
Management gain the potential of Open Innovation: An Exploratory
Study
Krzysztof Wnuk, Dietmar Pfahl, David Callele and Even-André Karlsson
In print for the ACM / IEEE International Symposium on Empirical
Software Engineering and Measurement (ESEM), 19-20 September,
Lund, Sweden, 2012

XXIV Controlling Lost Opportunity Costs in Agile Development – the
Basic Lost Opportunity Estimation Model for Requirements Scop-
ing
Krzysztof Wnuk, David Callele, Even-André Karlsson and Björn Regnell
In print for the Third International Conference on Software Business,
ICSOB 2012, MIT Sloan School of Management, 18-20 June, 2012

XXV Industrial comparability of student artifacts in traceability recov-
ery research – An exploratory survey
Markus Borg, Krzysztof Wnuk and Dietmar Pfahl
In the Proceedings of the 16th European Conference on SoftwareMain-
tenance and Reengineering, Szeged, Hungary, March 27, 2012, IEEE,
pp. 181-189

XXVI Towards scalable information modeling of requirements architec-
tures
Krzysztof Wnuk, Markus Borg and Saïd Assar
In print for the First International Workshop on Modeling for Data-
Intensive Computing, October 15-18, 2012, Florence, Italy

XVII The Effect of Stakeholder Inertia on Product Management
Krzysztof Wnuk, Richard Berntsson Svensson and David Callele
In print for the Second International Workshop on Requirements En-
gineering for Systems and Systems-of-Systems (RESS’12), 25 Septem-
ber 2012, Chicago, IL, USA

6



1 Setting the Context

1.1 Software and requirements engineering

In 1960s, when the term Software Engineering (SE) was introduced, soft-
ware was just a small, marginal part of an expensive computing machine.
Changes over the last forty years have been remarkable, resulting in a situ-
ationwhere the software, not the hardware, is themain cost of a computing
machine. Over the last decades, software engineering gained importance
and is currently an engineering discipline that influences all aspects of soft-
ware production, from the initial idea recognition and its specification to
the post development software maintenance activities. The fact that soft-
ware engineering is an engineering discipline implies that its products are
things that work. As a result, software products are produced by apply-
ing theories and tools where these are appropriate (Sommerville, 2007).
The main focus of software engineering is the practical problems of pro-
ducing software. To build software, software engineers need to use their
knowledge of computers and computing to solve problems. Therefore, the
essential part in the definition of software engineering is understanding
the nature of the problem in order to be able to apply the right “comput-
ing machinery” to solve it (Pfleeger, 2001). Software engineering is also
considered as a part of system engineering discipline (Sommerville, 2007).

Today’s software solutions are often very large and complex. The size
and complexity explosion was partly the reason for establishing the soft-
ware engineering field at the NATO Software Engineering Conference in
1968 (Naur and Randell, 1968). Since then, software engineering contin-
ued as a profession and field of study dedicated to creating better quality
software that is more affordable, easier to maintain and quicker to build.
Thanks to that effort, it is possible today to produce software systems with
millions lines of code that can be robust, effective and secure. In a similar
manner, it can be stated that the Requirements Engineering (RE) field was
established partly due to extensively growing size of requirements specifi-
cations which created needs to provide engineering means to activities re-
lated with discovering system functionalities and constraints (Jacobs et al,
1994).

Producing large and complex software systems requires finding soft-
ware engineering methods and techniques that can demonstrate coping
with the scale and complexity of these systems. The scalability can be de-
fined as a possibility of using a certain method or technique on a much
bigger set of artifacts without an exponential, or other very significant, in-
crease of the cost of using this technique. The cost is defined here both in
terms of required effort and skills to tackle a given problem. Unsurpris-
ingly, computer science and programming scientific articles seem to report
scalable methods or paradigms more often than software engineering re-
search literature. The main difficulty of successfully researching scalable

7



software engineering mechanisms lies in the human-intense nature of soft-
ware engineering tasks that limit automatic analysis and transformation
possibilities.

Producing a software system includes a set of activities and associated
results which are called the software process. The high-level activities of soft-
ware specification, development, validation and evolution are parts of soft-
ware processes. Software process models are ways of abstracting, defining
and connecting these activities. Figure 1 depicts the first published soft-
ware development model, called the waterfall model (Royce, 1970). This
model is still used in 40% of the companies, according to the survey from
2003 (Neill and Laplante, 2003). The simplicity of this model is unques-
tionably one of its strong points (Pfleeger, 2001). The five principal stages
of the model contains the following activities (Sommerville, 2007; Royce,
1970):

Requirements
definitiondefinition

System andy
software design

Implementation
and unit testing

Integration and
system testingy g

Operation andOperation and
maintenance

Figure 1: The software life cycle waterfall model (Sommerville, 2007;
Royce, 1970)

• Requirements analysis and definition - in this phase, high level goals,
constrains and functionality are discussed are agreed on with system
users. The resulting agreement on the content of the software system
is often documented in a document called a system specification

8



• System and software design - the initial set of high-level requirements
is mapped onto an overall system architecture comprising both hard-
ware and software elements. At this stage, the fundamental software
system abstractions and their relationships are also defined

• Implementation and unit testing - in this phase, software developers
realize the software design into working software units. The accor-
dance of the functionality of eachworking unit with the requirements
is verified in unit testing

• Integration and system testing - the previously produced software units
are integrated, and the integration correctness is tested as a complete
system to ensure that the software requirements have been met

• Operation and maintenance - in the final phase, errors that were not
discovered in earlier stages of the life cycle are addressed, improv-
ing the implementation of system units and enhancing the system’s
services when requirements are discovered

The waterfall received many critics since being introduced. McCraken
and Jackson (1981) pointed out that the model imposes a project manage-
ment structure on system development. Furthermore, Curtis et al (1987)
noted that the waterfall model’s major shortcoming lies in its inability to
treat software as a problem-solving process and to consider software de-
velopment process as a manufacturing process rather than a creation pro-
cess. As a result, other software development process models were pro-
posed. One of the proposedmodels is the spiral model proposed by Boehm
(1988), where the software development process is represented as a spiral.
A phase in this model is represented as a loop in a spiral with four sectors:
(1) objective setting, (2) risk assessment and reduction, (3) development
and validation and (4) planning. The proposedmodel explicitly recognizes
and analyzes risks stressing the importance of continuous risk manage-
ment. Another model, called the prototyping model, allows all or part of
the system to be constructed quickly to understand or clarify issues, it has
the same objective as an engineering prototype. Blazer’s transformational
model (1981) tries to reduce the opportunity for error by eliminating sev-
eral development steps. Finally, new software development models that
have recently emerged, such as Agile (Cunningham, 2012) and Software
Product Lines (Pohl et al, 2005b) paradigms.

According to the Agilemanifesto, (1) individuals and interactions should
be put over processes and tools, and (2) the contract negotiation should be
sustained by a close customer collaboration (Cunningham, 2012). More-
over, the Agile manifesto favors responding to change rather than fol-
lowing a plan, and the value of delivering early prototypes to the cus-
tomer rather than a comprehensive documentation. On the other hand,
the Software Product Lines (SPL) paradigm provides a strategic reuse of

9



assets within an organization. SPLs help to cope with complexity of to-
day’s software-intensive systems by using platform and mass customiza-
tion during their development (Pohl et al, 2005b).

The requirements analysis and definition phase has changed from be-
ing initially recognized as a simple planning phase where the requirements
are written down to a separated research field within software engineer-
ing. Many definitions of requirements engineering were proposed since
the fieldwas established. The classical definition of requirements engineer-
ing given by Sommerville (2007) defines it as “the process of understand-
ing and defining what services are required from the system and identify-
ing the constraints of the system’s operation and development”. The use
of the term “engineering” implies that the techniques used to ensure that
system requirements are complete, consistent and relevant should be ap-
plied in a systematic way, and that the whole process should be repeatable.
Kotonya (1998) compares requirements engineering to “system analysis”
which is mainly concerned about analyzing and specifying business sys-
tems. However, system analysis is mainly focusing on business aspects,
while requirements engineering is often concerned with both business and
system concerns of a system to be developed. The importance of require-
ments engineering is stressed by Aurum and Wohlin (2005) as one of the
most crucial stages in software design and development when the critical
problem of designing the right software for the customer is tackled. Au-
rum and Wohlin extend the definition of requirements engineering with
the identification of goals for a proposed system, the operation and conver-
sion of these goals into services and constraints, as well as the assignment
of responsibilities for the resulting requirements to agents as humans, de-
vices and software (Aurum andWohlin, 2005; Sommerville, 2007). The ini-
tially proposed ways of grasping the requirements engineering discipline
need further extensions, for example in the Market-Driven Requirements
Engineering (MDRE) context described later in this chapter.

There are many different views on what to include into the require-
ments engineering process (Kotonya and Sommerville, 1998; Sommerville,
2007; Neill and Laplante, 2003; Berenbach et al, 2009). The view depicted
in Figure 2, illustrates the requirements engineering process in four high-
level sub-processes, namely: (1) feasibility study, (2) requirements elicita-
tion and analysis, (3) requirements specification and (4) requirements val-
idation (Sommerville, 2007). Another view on the requirements engineer-
ing process, provided by Kotonya (1998), consists a set of three structured
activities, namely: (1) requirements elicitation, (2) requirements analysis
and negotiation and (3) requirements validation. Their overall goal is to
produce, validate and maintain a system requirements document.

The four main sub-processes of the requirements engineering process
model provided by Sommerville (2007) are complemented by the “feasi-
bility study” sub-process concerned with assessing whether the system is
useful to the business. Figure 2 illustrates also the relationships between

10



these activities and documents produced at each stage in the requirements
engineering process. The model presented in Figure 2 is one among many
defined in the requirements engineering discipline. Another example is the
spiral model that accommodates approaches to a development in which
the requirements are developed to different levels of detail. The number of
iterations around the spiral can vary, so the spiral can be exited after some
or all of the user requirements have been elicited (Boehm, 1988).

Feasibilityy
study

RequirementsRequirements
elicitation and

analysis

Requirements

Feasibility report

Requirements
specification

RequirementsFeasibility report

System models

q
validation

User and system
requirements

Requirements
Document

Figure 2: A requirements engineering process example (Sommerville,
2007).

1.2 Requirements management in a large-scale market driven
context

Changes to existing requirements and new requirements arriving to the
project are inevitable situations at all stages of the system development
process (Kotonya and Sommerville, 1998). Furthermore, a common case
is that a significant part of an initial system’s requirements will be modi-
fied before it is put into service (1998). This fact may often cause serious
problems for the development of the system. To cope with changes to re-
quirements, Requirements Management (RM) activities are necessary to
document and control these changes. Requirements management can also

11



be considered as a process of managing large amount of information and
ensuring that it is delivered to the right people at the right time.

The principal requirementsmanagement activities, according to Kotonya
and Sommerville (1998), are: (1) change control and (2) change impact as-
sessment. The change impact assessment comprises warrants that pro-
posed changes have a known impact on the requirements and software
system. The change control ensures that, if a change is accepted, its impact
on design and implementation artifacts will be addressed (Kotonya and
Sommerville, 1998). Also, managing requirements relationships and man-
aging dependencies between the requirements can be considered as a part
of RM. Therefore, RM activities are performed in parallel to the require-
ments engineering activities and they play a supportive role for them. Ac-
cording to Chrissis (2004), the purpose of requirements management is to
manage all post-elicitation results in a project or product, and to identify
inconsistencies between those requirements and a project’s plans or out-
comes. Berenbach et al (2009) go a step further and outline requirements
management activities that take place in most, if not all, projects. They
list tasks such as identifying volatile requirements, establishing policies
for requirements processes, prioritizing requirements, establishing and up-
dating the requirements baselines, documenting decisions and allocating
requirements to releases (Berenbach et al, 2009). Other concerns of re-
quirements management involve management of relationships between
requirements, and management of dependencies between requirements
documents and other documents produced during the software engineer-
ing process. This thesis focuses on requirements management for Market-
Driven Requirements Engineering (MDRE) contexts.

Software can in general be released in twomodes. The first one is called
a customer specific mode (also called bespoke or contract-driven) when a
software product is built to fulfill the contract agreement. The other one
is called a market-driven mode (or packaged software or commercial off-the
shelf) when a software product is addressed to a certain market or group
of users. While the main objective in the bespoke mode is often to fulfill
a contract and to comply with a requirements specification, the market-
driven mode focus mainly to deliver the right product at the right time to
the targeted market (Regnell and Brinkkemper, 2005). Moreover, in the be-
spoke requirements engineering, the success of a software product can be
measured by its compliance to a previously agreed requirements specifica-
tion. InMarket-Driven Requirements Engineering (MDRE), the situation is
however much more complex. Here, the success of the software product is
mainly dependent on the market response which can not be fully assumed
’a-priori’. Therefore, the release time is also important (Wohlin et al, 1995;
Sawyer, 2000; Chen et al, 2005), or for some cases even more important
than the functionality that the newly released product is providing. The
previous fact puts hard time constraints on the requirements engineering
and management activities, demanding them to be more flexible, scalable

12



and less time consuming (McPhee and Eberlein, 2002). For example, while
setting the scope in a bespoke software project involves time-consuming
negotiations and conflict mitigations, in MDRE the scope of the project has
to be set using prioritization techniques based on market predictions and
effort estimates (Karlsson, 1998; Sawyer, 2000; Carlshamre, 2002b). There
is no consensus made between the customer and the contractor of the sys-
tem, which means that the responsibility for the selection process is only
on the contractor who must venture its implications.

A company that is operating in a MDRE context should continuously
monitor themarket situation by checking competitors’ latest achievements,
researching market needs and collecting all possible feedback from the
market in a chase for achieving or maintaining the cutting edge position
within its operational business. This chase after an optimal market win-
dow, together with other reasons, creates a constant flow of new require-
ments and ideas throughout the entire software product lifetime (Karlsson
et al, 2002). As a result, the volume of the requirements database con-
tinues to grow, putting requirements management techniques and docu-
mentation systems to test. Therefore, the requirements process for MDRE
needs to be enriched with procedures to capture and analyze this constant
flow of requirements (Higgins et al, 2003). Software products in MDRE
are continuously evolving and are delivered in multiple releases. The re-
lease planning has to focus on time-to-market and return of investment
factors. On the contrary, bespoke requirements engineering focuses on one
major release which follows the maintenance period. Finally, the results
of the effort put during the project can be seen much quicker in the be-
spoke requirements engineering case where validation is made continu-
ously though the contract. In MDRE, the market is primarily verifying the
final products (Regnell and Brinkkemper, 2005).

The complexity and size of software intense systems continues to grow,
which in turn gives increasingly large and complex sets of requirements.
At the same time, requirements engineering research literature provides
industrial examples (Natt och Dag et al, 2004, 2005; Regnell et al, 2006)
where current RE technology have a useful but partial effect. Managing
large numbers of requirements is an inevitable part of managing require-
ments inMDRE. The flow of new requirements is almost always delivering
more requirements for software products than the actual development re-
sources can implement during each project cycle. As a result, the size and
complexity of the requirements databases grow even faster than the size
and complexity of actual software products. In this thesis, this situation is
named Large-Scale Requirements Engineering (LSRE) or even Very Large-
Scale Requirements Engineering (VLSRE). These contexts are characterized
in Paper VII, while the definitions and descriptions also are repeated in
Section 3.1. The size of the requirements databases in a VLSRE case may
exceed tens of thousands of requirements, which puts new expectations
on requirements management methods and tool support. Furthermore, as

13



development projects grow in complexity and new products with many
features are released to the market, the importance of good practices in
requirements management grows (Berenbach et al, 2009). Improving the
scalability of requirements engineering and management tools, processes
and methods is crucial for succeeding in VLSRE contexts. Most of the re-
search in this thesis, apart from the experiment study reported in Paper II,
has been conducted in a VLSRE context.

Software Product Lines (SPL) have gained more prominence amongst
large software companies. SPLs provide a strategic reuse of assets with-
ing an organization (Pohl et al, 2005b). Reuse of common features between
product is called variability management. Variability is defined as the pos-
sibility of a software artifact having more than one behavior in its lifecy-
cle (Svahnberg, 2003). Variability management is the result of software
products changing from originally rather static systems to highly extensi-
ble and dynamically changing contemporary software systems (van Gurp
et al, 2001).

An SPL concept called scoping is the process of selecting requirements
to implement in the forthcoming project (Wohlin and Aurum, 2005; Greer
and Ruhe, 2004). Scoping is a key activity for achieving economic benefits
in product line development (Schmid, 2002). It is important tomention that
SPLs apply to more than just the source code and extends to other artifacts
used to construct software products. New products are created by reusing
as much software artifacts as possible. Some of the benefits of using the
SPL approach are: (1) decreased time-to-market, (2) improved control over
unpredicted growth, (3) improved quality of the product (Linden et al,
2007) or (4) achieved reuse goals (Clements and Northrop, 2002). When
using SPLs, a system’s complexity and cost have an invese relationship.
SPLs increase the possibility of flexibility within the organization, since
the knowledge in the organization is more widely deployed (Clements and
Northrop, 2002).

2 Research Focus

Empirical studies were conducted to shape the research goals for this the-
sis. Paper VII reported on the exploration of and the experiences in a very
large-scale requirements engineering context. Three challenging research
areas in very large-scale requirements engineering are identified in this pa-
per.

• Challenge 1: Sustainable requirements architectures: fighting in-
formation overload. The term requirements architecture is here un-
derstood as the underlying structure by which the requirements are
organized. This includes the data model of the requirements with
their pre-conceived attributes and relations. In very large-scale re-
quirements engineering (see Section 3.1 for the precise defonition of

14



the VLSRE context), the amount of information that must be man-
aged is immense and impossible to grasp by a single person. There-
fore, the need emerged for scalable requirements architectures that
are sustainable and allow for controlled growth. Scalable require-
ments architectures help the requirements engineers in a large or-
ganization to track the myriad of issues that continuously emerge.
Paper III deals with this research challenge. Paper XXVI presents a
modeling framework for requirements artifacts dedicated to a large-
scale market-driven requirements engineering context.

• Challenge 2: Effective requirements abstractions: fighting com-
binatorial explosions. Managing interdependencies, prioritization,
resource estimation, and change impact analysis are critical in VL-
SRE. The inevitable combinatorial explosions significantly increase
the complexity of the mentioned tasks. A major vehicle for fighting
these combinatorial explosions may be the use of abstraction mecha-
nisms and experience-based heuristics. Papers I, II, VI and XXVI deal
with this research challenge. Paper XXII explores challenges in sup-
porting the creation of data minable regulatory codes in very large-
scale requirements projects.

• Challenge 3: Emergent quality predictions: fighting over-scoping.
Given a competitive market and a large and demanding set of stake-
holders, there appears to be an inevitable shortage of resources to
meet quality expectations. Predicting the system level quality that
emerges from a myriad of details is challenging, sometimes resulting
in a sustained risk of defining a too large scope for platform devel-
opment. Papers I, IV, V, VI, IX, X, XI, XII, XIV, XV, XVI, XXII, XXIII,
XXIV, XXV and XXVII cover aspects related to this research area.

A two-stage empirical investigation was conducted into large-scale re-
quirements engineering contexts, andwas reported in Papers VIII and XIII.
First, seven practitioners from Sony Ericsson were questioned regarding
the tasks in very large-scale requirements engineering and the quality at-
tributes of requirements architecture. The results are reported in Paper
XIII.

Next, six participants from two additional companies were interviewed
in order to obtain an improved understanding of the challenges in scal-
ing up requirements engineering processes. We focused on understand-
ing which challenges are exacerbated in large or very large-scale contexts.
These challenges helped in defining the research goals and provided input
to the papers reported in this thesis. We identified five additional chal-
lenges.

• Challenge 4: Scoping. This includes the challenge of getting to see
the "big picture" of numerous scoping decisions. This challenge calls

15



for further research into visualizing the scope of a project. Scope visu-
alizations could helpminimize effort wasted on features that are later
removed from the scope of a project. The scoping challenge also calls
for further research into developing lightweight methods for scope
management that can scale up to VLSRE. Papers I, IV, V, VI, IX, X, XI,
XII, XIV, XV, XVI, XXII, XXIII, XXIV, XXV and XXVII cover aspects
related to this challenge. This challenge is related to challenge 3.

• Challenge 5: Organization and responsibility. This includes the
challenge ofmanaging growing organizationswith overlapping roles
and untrained newcomers. This requires better understanding of
how to organize a growing software organization. Clearly defined
roles can minimize the problem of work "falling between the chairs".

• Challenge 6: Communication gaps. This includes the differences in
understanding the requirements by different roles and direct com-
munication with customers. This challenge calls for further research
into supporting the multiple-viewpoint understanding and the inter-
pretation of complex sets of requirements. It also calls for discover-
ing methods which improve conveying the voice of the customers by
customer representatives. Paper XX investigates this challenge.

• Challenge 7: Process misalignments. These occur when interacting
sub-processes are not coordinated and synchronized. This challenge
calls for further research into improved synchronization of processes,
faster communication of process changes, and the development of
methods for assessing the scalability of requirements management
processes. Paper XVIII investigates this challenge.

• Challenge 8: The Structure of RE artifacts. This includes how to
group, reuse, understand and control changes in large and complex
sets of requirements. This challenge calls for investigations into re-
quirements artifact structures that are effective and efficient in the
large. Papers VIII and XXVI investigate this challenge. This is also
related to challenge 1.

The research focus of this thesis centers on an amalgamation of the
identified research challenges 1, 2, 3 and 4: providing visualization of scop-
ing dynamics for very-large projects (Papers I and VI); speeding up infor-
mation analysis (Paper II); reducing the information overload (Paper III);
understanding the reasons and consequences of setting a too large scope
of a project (Paper IV); and factors affecting scoping decisions (Paper V).
The remaining related challenges 5, 6, 7 and 8 are not investigated in this
thesis1.

The main research questions investigated in this thesis are as follows:
1The investigation of the remaining related challenges 5, 6, 7 and 8 is a part of future work,

e.g. see Papers XX and XXVI.

16



• RQ1: How can the scope dynamics in a large-scale software devel-
opment context be visualized?

• RQ2: Does the linguistic method of finding similar requirements out-
perform the searching and filtering method of the requirements con-
solidation?

• RQ3: What are obsolete software requirements? What is their impact
on industry practice? How are they identified and managed?

• RQ4: What are the causes and effects of overscoping?

• RQ5: What decision characteristics influence decisionmaking in large-
scale market-driven requirements engineering?

• RQ6: How can the scope change dynamics in a large-scale agile-
inspired requirements engineering context be visualized?

Context exploration, research
goals formulation and
challenges discovery

Paper VII

Paper VIII

Paper XIII

Prioritization

CHALLENGE 1:
INFORMATION OVERLOAD

RQ2

RQ3

Paper II

Result: Empirical investigation
of linguistic support for
requirements consolidation

Result: Empirical definition and
investigation of Obsolete Software
Requirements

Paper III

Paper V Paper IV

Result:What
decision
characteristics
influence decision
making

Result: Causes
and effects of
ovescoping

Paper I Paper VIResult:
Visualization of
scope changes and
scope metrics

Result:
Visualization of
scope changes in
agile projects and
decision archetypes

CHALLENGE 3:
SCOPING

CHALLENGE 2:
COMBINATIORAL EXPLOSIONS

Figure 3: The relationships between challenges, research questions and pa-
pers presented in this thesis.

Figure 3 depicts relationships between research questions and research
challenges. Paper II addresses research challenge 2. In Paper II (addressing
research question RQ2), a replicated experiment designed to further inves-
tigate the linguistic tool support for the requirements consolidation task is
reported. In this experiment, new requirements are analyzed against those

17



already present in a requirements database, and similarities are discovered
and recorded. Forty five subjects were assigned to use either linguistic
similarity or searching and filtering for the requirements consolidation

Paper III addresses research challenge 1 and RQ3. This paper empiri-
cally investigates how outdated information is managed in requirements
repositories. In the absence of mechanisms to clean up outdated informa-
tion, the amount of information grows continuously. Paper III surveyed
219 respondents from 45 countries, exploring the phenomenon of OSRs
by: (1) eliciting a definition of OSRs as seen by practitioners in industry, (2)
exploring ways to identify and manage OSRs in requirements documents
and databases, (3) investigating the potential impact of OSRs, (4) exploring
the effects of project context factors on OSRs, and (5) defining what types
of requirements are most likely to become obsolete.

Papers I, IV, V and VI explored the third challenge, scoping. In Paper
I, addressing research question RQ1, the Feature Survival Charts scope vi-
sualization technique was implemented and evaluated in three projects.
The evaluation demonstrated that the charts can effectively focus investi-
gations of reasons behind scoping decisions, and that they can be valuable
for future process improvements. A set of scoping measurements is also
proposed, analyzed theoretically and evaluated empirically with data from
the cases.

Paper IV, addressing research question RQ4, reports from a case study
aimed at understanding overscoping in a large-scale, market-driven re-
quirements engineering context. The results provide a detailed picture of
overscoping as a phenomenon including a number of causes, root causes
and effects. Paper IV also indicates that overscoping is mainly caused by
operating in a fast-moving, market-driven context. Weak awareness of
overall goals, in combination with low development involvement in early
phases, may contribute to ’biting off’ more than a project can ’chew’. Fur-
thermore, overscoping may lead to a number of potentially serious and
expensive consequences, including quality issues, delays, and failure to
meet customer expectations.

Paper V, addressing research question RQ5, investigates what factors
influence the decision lead times and the decision outcomes. A large de-
cision log in a retrospective case study at a large software company was
statistically analyzed and the results were validated in a survey among in-
dustry participants.

Paper VI, addressing research question RQ6, extends the Feature Sur-
vival Charts technique to a very large agile-inspired context. Paper VI also
presents decision patterns and archetypes derived from this context.

The list of challenges, albeit derived from several companies in an em-
pirical investigation, should not be considered as the only list of issues
in large-scale requirements engineering. Several authors investigated and
reported challenges in requirements engineering (Curtis et al, 1988; Hall
et al, 2002; Karlsson et al, 2002; Maccari, 1999; Lubars et al, 1993) Among

18



other challenges not investigated in this thesis are, for example: managing
requirements interdependencies (Carlshamre et al, 2001), managing qual-
ity requirements (Berntsson Svensson, 2009), allocating resources (Traut-
mann and Philipp, 2009), integrating requirements engineering with the
development process (Maccari, 1999), estimating cost (Magazinovic and
Pernstål, 2008) or defining scalable requirements management processes
(Berenbach et al, 2009).

3 Related Work

The research in this thesis relates to various aspects of requirements engi-
neering and management. The concepts that the research is mostly related
to are: large-scale software engineering, market-driven requirements en-
gineering, requirements management, requirements prioritization, release
planning and roadmapping, and finally requirements visualization. These
aspects, together with examples of scientific contributions, are presented
in the sub-chapters that follow.

3.1 Engineering and researching large-scale software sys-
tems

One of the interesting characteristics of the requirements engineering is the
ability to abstract large parts of the source code and pack them under a con-
cise name of the feature. Depending on the abstraction level, 50 000 lines of
the source code solution may be represented as a single market feature, or
as a set of 200 system level requirements related with 200 quality aspects.
This ability of compression may lead to the situation when requirements
engineering research reported in a large-scale context actually operates on
a small amount of high-level information, simplifying the problem of scala-
bility. As a result, reported methods do not have to be fully scalable, unless
they only operate on this high abstraction level.

While browsing requirements engineering research literature, it is tempt-
ing to make the statement that most research reported follows the men-
tioned abstraction level simplification. A precise definition of the context
where the result of an inquiry applies, or have been performed, is undoubt-
edly a proper, but rare, behavior. When the simplification of the placement
of the reported results on the abstraction ladder is made, addressing the
scalability of achieved results becomes difficult. As a step towards clar-
ifying the mentioned issue, related Paper VII proposes a classification of
the orders of magnitude in requirements engineering is introduced, also
repeated here. Table 1, also available in Paper VII, defines four orders of
magnitude in RE, based on the size of the set of requirements that are man-
aged by an organization that develops software-intensive systems. The
levels are inspired by the characterization of orders of magnitude in the

19



digital circuits integration field.
The number of requirements was chosen as a proxy for complexity,

as it is believed in Paper VII that increased numbers of customers, end
users, developers, subcontractors, product features, external system inter-
faces, etc. come along with increased number of requirements generated
in the RE process. This in turn increase the complexity of requirements
engineering. Furthermore, Paper VII suggests that the complexity of a
set of requirements is heavily related to the nature of interdependencies
among requirements, see e.g. Carlshamre et al (2001) for an empirical in-
vestigation of interdependencies. With a realistic degree of interdepen-
dencies among n-tuples of requirements, it can be hypothesized that the
number of interdependencies to elicit, document and validate increases
significantly with the increased number of requirements. When shifting
from MSRE to LSRE, a typical heuristic for dealing with the complexity
of interdependency management is to bundle requirements into partitions
and thereby creating a higher level of abstraction, where interdependen-
cies among bundles can be managed with reasonable effort. When shift-
ing from LSRE to VLSRE, the conjecture is that even the number of bun-
dles gets too high and the size of bundles becomes too large to allow for
interdependency management with desired effectiveness. If the number
requirements bundles becomes too large, the interdependency links loose
practical usefulness as they relate to coarse grained abstractions.

SSRE and MSRE are a common scale in research papers that seek to
validate a proposed method or tool. For example, in Feather et al (2000), a
specific tool is validated only with a set of 67 requirements and Hayes et
al (2004) used a dataset with 19 high level and 49 low-level requirements.
In this situation, it is possible to enumerate and manage complex relations
among requirements, even with dense relation patterns. However, it is
believed in Paper VII that few industrial situations in current system de-
velopment can avoid stretching beyond SSRE and even MSRE. Only a few
examples in RE literature that discusses LSRE (such as Park et al (1998))
and VLSRE (such as Natt och Dag et al (2004)) can be found whether the
author believes that LSRE is common industrial practice, confirmed also
by Brinkkemper (2004).

The belief presented in Paper VII saying that a significant number of
companies that currently face LSRE will grow into the situation of VLSRE
is confirmed by Berenbach et al (2009), who report on large project with
thousands of requirements Siemens is workingwith. Berenbach et al (2009)
also mentioned that one of the current misconceptions about requirements
engineering is the statement that processes that work for a small number
of requirements will scale whether, according to him, requirements engi-
neering processes do not scale well unless crafted carefully.

Another problem mentioned by Berenbach et al (2009) is the require-
ments explosion during a large project when the processes put in place at
the beginning of a project do not take into consideration the number of re-

20



Ta
bl
e
1:
O
rd
er
s
of

m
ag
ni
tu
de

in
re
qu

ir
em

en
ts
en
gi
ne
er
in
g
,b
as
ed

on
Pa

pe
r
V
II
.

A
br

ev
.

Le
ve

l
O

rd
er

of
m

ag
ni

tu
de

Sa
m

pl
e

em
pi

r-
ic

al
ev

id
en

ce
In

te
rd

ep
en

de
nc

y
m

an
ag

em
en

t
co

nj
ec

tu
re

s
w

ith
cu

rr
en

tR
E

te
ch

no
lo

gy
SS
R
E

Sm
al
l-
Sc
al
e

R
eq
ui
re
m
en
ts

En
gi
ne
er
in
g

10
re
qu

ir
em

en
ts

M
an
ag
in
g
a
co
m
pl
et
e
se
t
of

in
te
rd
ep
en
-

de
nc
ie
s
re
qu

ir
es

sm
al
le
ff
or
t.

M
SR

E
M
ed
iu
m
-S
ca
le

R
eq
ui
re
m
en
ts

En
gi
ne
er
in
g

10
0
re
qu

ir
em

en
ts

(F
ea
th
er

et
al
,

20
00
)

M
an
ag
in
g
a
co
m
pl
et
e
se
t
of

in
te
rd
ep
en
-

de
nc
ie
s
is
fe
as
ib
le

bu
t
re
qu

ir
es

la
rg
e
ef
-

fo
rt
.

LS
R
E

La
rg
e-
Sc
al
e

R
eq
ui
re
m
en
ts

En
gi
ne
er
in
g

10
00

re
qu

ir
em

en
ts

(P
ar
k

an
d

N
an
g,
19
98
)

M
an
ag
in
g
a
co
m
pl
et
e
se
t
of

in
te
rd
ep
en
-

de
nc
ie
s
is
pr
ac
ti
ca
lly

un
fe
as
ib
le
,b
ut

fe
a-

si
bl
e
am

on
g
sm

al
l
bu

nd
le
s
of

re
qu

ir
e-

m
en
ts
.

V
LS

R
E

Ve
ry

La
rg
e-
Sc
al
e

R
eq
ui
re
m
en
ts

En
gi
ne
er
in
g

10
00
0
re
qu

ir
em

en
ts

(R
eg
ne
ll
et
al
,

20
06
)

M
an
ag
in
g
a
co
m
pl
et
e
se
t
of

in
te
rd
ep
en
-

de
nc
ie
s
am

on
g
sm

al
lb
un

dl
es

of
re
qu

ir
e-

m
en
ts
is
un

fe
as
ib
le
in

pr
ac
ti
ce
.

21



quirements that may need to be managed. As an example (also repeated
in Figure 4), Berenbach et al (2009) gave a project with 50 features to start
that may not appear to be a large project. After a not unreasonable ex-
plosion of each feature to 100 or more high-level requirements the project
can grow up to over 5000 high-level requirements. Adding an additional
explosion layer of detail needed to implement the product in both its func-
tional and quality aspects and create test cases can wind up with a total of
50000 requirements and at least the same number of traces. Such a num-
ber of requirements to manage and trace in unreasonable for today’s large
projects.

50 features

5000 high-level 
requirements 

50000 requirements + 50000 
traces

2. Each high level 
feature is redefined 

to 100 or more high-
level requirements 

3. The project can 
grow up to over 
5000 high-level 
requirements 

1. An initial set of 50 
high level features 
may not appear to be a 
large project

4. Adding an 
additional explosion 

layer of detail 
needed for 

implementation 

5. A total of 50000 requirements and 
at least the same number of traces

Figure 4: An example of an explosion of the number of requirements dur-
ing a project (Berenbach et al, 2009).

To illustrate the complexity in VLSRE, an industrial example outlined
in Paper VII is summarized here. This example provides a case descrip-
tion of embedded system engineering in the mobile phones domain, based
on experience at Sony Ericsson which has faced a transition from LSRE to
VLSRE in the last years, while remaining competitive on the market with
a growing number of around 5 000 employees. Mobile phones include
a wide range of features related to e.g. communication, business appli-
cations and entertainment. The technological content is complex and in-
cludes advanced system engineering areas such as radio technology, mem-
ory technology, communication protocols, security, audio and video, digi-
tal rights management, gaming, positioning etc.

22



The complexity of requirements engineering is driven by a large and
diverse set of stakeholders, both external and internal. Table 2 gives ex-
amples of stakeholders that generate requirements. Some stakeholders are
counted in billions, such as consumers of different segments, while some
are counted in hundreds, such as operators. In the case of Sony Ericsson,
the requirements that are generated from internal and external stakehold-
ers amount to several tens of thousands. Figure 5 provides a simplified pic-
ture of the different types of requirements and their relations. Similar to the
case provided by Feather et al (2000) and Gorschek and Wohlin (2006), re-
quirements originating from external stakeholders, called market require-
ments, are separated from, but linked to system requirements that are in-
put to platform scoping in a Software Product Line (SPL) setting. Market
requirements are mainly generated by operators submitting specifications
with thousands of requirements that require statements of compliance. The
total number of market requirements as well as platform system require-
ments at Sony Ericsson each exceeds 10 000. In order to make scoping fea-
sible, platform system requirements are bundled into hundreds of features
that represent the smallest units that can be scoped in or out. In order to
support product development, the platform capabilities are organized into
configuration packages that improve over time, as more and more features
are implemented for each new version of a platform. Products are config-
ured through assemblies of configuration packages according to the rules
of how they can be combined based on their interdependencies.

The reported publications that focus on large-scale software or require-
ments engineering can be classified into: (1) empirical reports from large-
scale contexts that often provide a number of challenges, (2) papers that
literally evaluate or present a technique that is suitable for large contexts
and (3) vision papers, often written by senior members of the software en-
gineering community that provocatively bring the scalability issue to the
future research agenda. In the sub-chapters that follow, more detailed re-
sults from the literature investigation are presented in the mentioned cate-
gories.

3.1.1 Technical solutions or methods.

Among the papers that report a technique or solution suitable for large-
scale software engineering contexts, Carman et al (1995) present a frame-
work for engineering software reliability that was proposed at a large com-
pany called Bellcore. The framework, together with different reliability
modeling tools, have been tested in pilot tests. Natt och Dag et al (2004)
proposed a method to speed up requirements management that was ap-
plied to a context with over 10 000 requirements. Kaushik et al (2011) used
information retrieval techniques to find traces between 13380 tests cases
and a query of nine random software bugs.

Communication and coordination are considered byGarg (1989) as play-

23



Table 2: Examples of stakeholders that generate requirements (see Paper
VII for more details).

External Stakeholders Internal Stakeholders
Competitors Accessories
Consumers of different seg-
ments

Customer Services

Content providers Market research
Legislation authorities Marketing and customer relations
Operators Platform development (SW+HW)
Retailers Product, application and content

planning
Service providers Product development (SW+HW)
Shareholders Product management
Standardization bodies Product management
Subcontractors and compo-
nent providers

Sourcing, supply and manufacturing

Technology and research develop-
ment
Usability engineering

ing a central role in any large-scale cooperative effort. The article presented
a design method based on “Intelligent Software Hypertext System” which:
(1) can support a flexible and general purpose model for information man-
agement (hypertext) and (2) can support various software life cycle mod-
els. Linger et al (2007) discussed “function extraction technology” as an
emerging software engineering research area. This technology aims to ex-
tend the possibilities of automatic computation of software components
and their compositions into systems.

Travassos et al (2008) presented and discussed an experimentation en-
vironment that could support large-scale experimentation and knowledge
management in software engineering. The presented “Software Engineer-
ing Environment Framework” provides a set of facilities to allow geograph-
ically distributed software engineers and researchers to accomplish and
manage experimentation processes and to manage the scientific knowl-
edge during different studies. The methodological viewpoint on large-
scale software engineering was also taken by Kitchenham et al (2007) who
recommend adopting a more systematic approach to accumulate and re-
port large quantities of empirical evidence. The proposed solution is to
use quasi-experimental designs to improve the methodology of large-scale
software engineering empirical studies.

24



MR Market Requirement
PSR Platform System Req
P Product 
SR Supplier Requirement
Cv Component version
Pv Platform version
CP Configuration Package
F Feature

Market  Requirements
~10000

MR1

Platform System Requirements ~10000
Features ~100
Configuration Packages ~100

PSR1

PSR2

PSR3

Products ~100

F1

Platform 
Versions ~10

Supplier 
Requirements ~1000

SR1

SR2

SR3

Cv1

Cv2

Pv3

CP1

CP2MR2

P1

P2

P3MR3MR4 CP3

Pv1

Pv2

Component 
Versions ~100

F2

F3

MR Market Requirement
PSR Platform System Req
P Product 
SR Supplier Requirement
Cv Component version
Pv Platform version
CP Configuration Package
F Feature

Market  Requirements
~10000

MR1

Platform System Requirements ~10000
Features ~100
Configuration Packages ~100

PSR1

PSR2

PSR3

Products ~100

F1

Platform 
Versions ~10

Supplier 
Requirements ~1000

SR1

SR2

SR3

Cv1

Cv2

Pv3

CP1

CP2MR2

P1

P2

P3MR3MR4 CP3

Pv1

Pv2

Component 
Versions ~100

F2

F3

Figure 5: Orders of magnitude in different artifacts of a specific VLSRE
case (see Paper VII for more details).

3.1.2 Empirical reports from large-scale contexts.

A significant fraction of empirical reports from large-scale contexts is writ-
ten by practitioners from large companies. Among them, Conrad and Gall
(2008) reported on lessons learned and challenges faced in the develop-
ment of large-scale systems. The list of challenges comprises:

• Large number of customer requirements

• Formal interface to customer

• Management of customer expectations

• Changing technology

• Traceability

• Scope change and creep

• Resource fluctuation

The challenges were reviewed by requirements engineering experts at
Siemens Corporate Research, who agreed that similar challenges could

25



exist across projects with similar characteristics at numerous companies.
One of the lessons learned was to establish a traceability model. Duan
et al (2009a) used clustering techniques to assist in the prioritization pro-
cess. The technique were evaluated on an example of 202 requirements.
Cleland-Huang et al (2005) explored strategies for incorporating support-
ing information into a traceability recovery algorithm. The strategies were
evaluated on a dataset consisting 180 functional requirements. Both men-
tioned examples can be classified as MSRE according to Paper VII.

Berenbach et al (2009) stresses the importance of requirements engi-
neering for large projects is stressed. Berenbach et al also presented a list
of the common misconceptions about requirements engineering. One of
the misconceptions is that processes which work for a small number of
requirements will scale. According to Berenbach et al, requirements engi-
neering processes do not scale well unless crafted carefully, and scalability
of requirements engineering processes is challenging.

Another view on LSRE is presented by Bergman et al (2002) who inves-
tigated the political nature of requirements for large systems and argued
that requirements engineering theory and practice must become more en-
gaged with these facets. Requirements for large systems are, according
to Bergman et al (2002), constructed through a political decision process.
In this process, requirements emerge as mappings between solution space
and problem space. These solution spaces are “complex socio-technical
ensembles” that often exhibit non-linear behavior in expansion due to do-
main complexity and political ambiguity.

Ebert (2004) presented techniques for pragmatically dealing with non-
functional requirements in large telecommunication systems. Cleland-Huang
et al (2008) proposed an elicitation and prioritization process that utilizes
data-mining and recommender technologies to facilitate the active involve-
ment of many thousands of stakeholders. The presented solution was
claimed as scalable and capable to support elicitation and prioritization
of requirements for very large systems.

3.1.3 Challenges and visions

Another significant part of articles about large or very large-scale software
and requirements engineering represents the future vision type of articles.
These articles are often written in a provocative way by senior researchers
within the field to stimulate the community to tackle some of the research
challenges and opportunities. Among them, Boehm (2006) identified eight
relatively surprise-free trends: (1) the increasing interaction of software
engineering and systems engineering, (2) increased emphasis on users and
end value, (3) increased emphasis on systems and software dependability
(4) increasingly rapid change, (5) increasing global connectivity and need
for systems to interoperate, (6) increasingly complex “systems of systems”,
(7) increasing needs for COTS, reuse and legacy systems and software in-

26



tegration and (8) computational plenty. Boehm (2006) also stated that, tra-
ditionally, system and software development processes were recipes for
“standalone stovepipe systems” with a high risk of inadequate interoper-
ability with other stovepipe systems. The lack of a common denomina-
tor for those stovepipe systems may cause unacceptable delays, uncoordi-
nated and conflicting plans, ineffective or dangerous decisions and inabil-
ity to cope with rapid changes.

Herbsleb (2007) reflected on an increasing global connectivity and de-
scribed a desired future for global development together with the prob-
lems that stand in the way of achieving that vision. Herbsleb outlined
research challenges in four critical areas: (1)software architecture, (2) elicit-
ing and communicating requirements, (3) environments and tools as well
as (4) orchestrating global development. He named large-scale software
development, when teams are geographically distributed, Global Software
Development (GSD), and focused on technical coordination in GSD. The
key phenomenon of GSD is the coordination over distance in a sense of
managing dependencies between the tasks. The geographical and tem-
poral distance can be considered as an additional, more process oriented,
dimension of large-scale systems together with size and complexity.

Damian (2007) considered globalization to be one of the major research
challenges in requirements engineering. A global context makes it more
difficult to seek out and to integrate the necessary knowledge. Process mis-
matches, differing technical and domain vocabularies, incompatible envi-
ronments, and conflicting assumptions can be particularly problematic in
a GSD context (Bhat et al, 2006). The challenge of supporting the ongoing
negotiation processes prevalent throughout the project life-cycle is also im-
portant for multi-site companies (Curtis et al, 1988; Damian and Zowhgi,
2003). Further challenge in GSD is to better understand what media are
suitable for the different kinds of communication among all the business
stakeholders, analysts and developers. Damian (2007) listed the following
challenges in stakeholders’ global interaction:

• Knowledge-acquisition and knowledge sharing processes that enable
the exploration of stakeholders’ needs

• Iterative processes that allow the reshaping of this understanding
throughout the entire project

• Effective communication and coordination processes that support the
first two types of processes listed

In 2006, the Software Engineering Institute (SEI), together with the U.S.
Department of Defense (DoD) established a team of researchers and prac-
titioners in order to investigate very complex systems characterized by
thousands of platforms, sensors, decision nodes, weapons andwar fighters
connected through heterogeneous networks. The systems under consider-
ation were characterized as pushing far beyond the size of current systems

27



by every measure: number of lines of code, number of people employing
the system for different purposes, amount of data stored, accessed, manip-
ulated and refined, number of connections and interdependencies among
software component and number of hardware elements.

The systemswere named as Ultra-Large-Scale (ULS) systems (Northrop
et al, 2006). A ULS system could be compared with a biological system,
with its community of interdependent and competing organisms and chang-
ing environment. The relevant concepts include complexity, decentralized
control, hard-to-predict effects of certain kinds of disruptions, difficulty of
monitoring and assessment, and the risks in monocultures (Northrop et al,
2006). The ULS systems were characterized by (Northrop et al, 2006):

• Decentralization. The scale of ULS systems imposes their decentral-
ization in a variety of ways

• Inherently conflicting, unknowable, and diverse requirements. The
amount of stakeholders and the diversity of their needs in ULS sys-
tems will be immense. This will make impossible to solve all the
conflicts between stakeholders needs

• Continuous evolution and deployment. ULS systems will continu-
ously evolve, causing constant challenges in integration, interoper-
ability and deployment

• Heterogeneous, inconsistent, and changing elements. A ULS sys-
tem will be constructed from un-matching and evolving parts, caus-
ing many misfits and incompatibilities especially in the extension
phase

As it won’t be impossible to solve all conflicts in ULS systems, mecha-
nisms will have to be proposed, or will automatically emerge, to resolve
conflicts locally among those who have an immediate interest in them.
ULS systems will also experience "wicked problems" when requirements
are neither knowable in advance (because the final agreement about the
system’s functionality can not be reached due to its changeable nature)
nor stable (because each developed solution changes the view on the prob-
lem and the problem itself). As a result, no solution is considered to have
"solved" the problem (Northrop et al, 2006).

3.2 Requirements prioritization, product management, re-
lease planning and roadmapping

Decision processes are the driving forces to organize corporations’ suc-
cess (DeGregorio, 1999). At the same time, important decisions are often
subjective (Strigini, 1996; Andriole, 1998). Software managers and decision
makers need a better decision support in order to cope with the fast paste
of changes in software technology (Aurum andWohlin, 2003). Researchers

28



have contributed in creating a better support for decision making based
on their best knowledge and experience, computational and human intel-
ligence, as well as methods and techniques (Ruhe, 2003). The decision-
making process is considered as the dominant activity after the require-
ments are captured, analyzed and specified on the way towards their im-
plementation. Aurum and Wohlin (2002; 2003) investigated decision mak-
ing in requirements engineering by using classical decision making mod-
els, and they also illustrated illustrate how to integrate these models with
requirements engineering process models.

An integral part of market-driven requirements engineering contexts is
a constant flow of new requirements arriving from multiple sources (Reg-
nell and Brinkkemper, 2005). Making decisions about which of these in-
coming requirements implement and which not is a vital part of develop-
ing software systems thatmeet stakeholders’ needs and expectations (Karls-
son and Ryan, 1997; Regnell et al, 1998). At the same time, it is almost im-
possible to involve all stakeholders to prioritize requirements, and there
are usually more requirements than the company can implement within a
given time and resources constraints (Berander, 2004). Thus, it is necessary
to select a subset of requirements to implement in the forthcoming project,
and hence postpone the implementation of other requirements to a later
point in time (Wohlin and Aurum, 2005; Greer and Ruhe, 2004). This selec-
tion process is often called scoping, and is considered as a key activity for
achieving economic benefits in product line development (Schmid, 2002).
The requirements selection and release planning process is supported by
a requirements prioritization, which can be defined as the activity during
which the most important requirements for a system are identified (Som-
merville, 2007). The criteria that determine the priority of a requirement in-
clude: (1) importance to users and customers, (2) implementation cost, (3)
logical implementation order and (4) financial benefit (Lethola and Kaup-
pinen, 2004). As a result, prioritization techniques help to make the out-
come of sometimes difficult choices of which requirements to implement
less surprising (Karlsson and Ryan, 1997).

There are several prioritization techniques introduced in the literature.
An important contribution in this topic has beenmade byKarlsson et al (1997)
who provided amethod based on pair-wise comparisons. Themethod, uti-
lizing the Analytical Hierarchical Process (AHP) (Saaty, 1980), provides a
valuable assistance in the prioritization task. Others, such as Beck (2000),
introduced a planning gamemethod for prioritization. The planning game
method uses ordinal scale for grouping and ranking requirements. The
grouping is usually based on cost, value and risk criteria. On the other
hand, Karlsson et al (1996; 1997) introduced a numeral assignment tech-
nique that uses grouping requirements in for example three or five groups,
usually based on customer value. The result is presented on the ordinal
scale. Leffingwell and Widrig (2003) proposed a method called the 100$
test or cumulative voting. It has been proposed suitable in distributed en-

29



vironments, and is based on assigning fictional money to requirements and
the results are presented on a rational scale. Koziolek (2012) proposed pri-
oritizing quality requirements based on software architecture evaluation
feedback. Perini et al (2007) compared the accuracy of AHP and CBRank-
ing prioritization techniques. Duan et al (2009b) suggested automating
a significant part of the prioritization process among a large number of
stakeholders while Veerappa and Letier (2011) proposed using clustering
techniques to identify relevant group of stakeholders that should be con-
sidered in the prioritization process. Avesani et al (2005) suggested case-
based ranking to address the scalability issues of the AHP prioritization
technique. Wiegers (2003) presents a method that combines the customer
value, penalty if the requirements is not implemented, implementation
cost and risk. Dot voting, binary search tree and the Kano Model are also
used to prioritize requirement in agile projects (Bakalova et al, 2011).

Although a significant progress has been made and reported in the pri-
oritization techniques research, there are several issues related to this task.
Firstly, there may be conflicts among customers’ prioritization lists (Beran-
der, 2004). In this situation, it is important to handle different stakehold-
ers in a structured way. Regnell et al (2001) suggest that the most suitable
strategy in the current market segment should be used to adjust each stake-
holder’s influence in the prioritization process. Secondly, it is often the case
that requirements arriving to the company are specified at different levels
of abstraction, impeding the requirements prioritization process (Gorschek
and Wohlin, 2006). Thirdly, requirements dependencies can also influence
the prioritization outcome (Herrmann and Daneva, 2008). Their significant
impact on the prioritization process makes it even more complex. One of
these dependencies is the inevitable relation between functional and non-
functional requirements which are often neglected during the prioritiza-
tion task.

Fourthly, the number of requirements to prioritize also impedes the pri-
oritization process. In small-scale or even medium-scale requirements en-
gineering, it is feasible to perform the prioritization task on a low level
of abstraction where, in large- or very large-scale requirements engineer-
ing contexts the prioritization of low level requirements may be very time
consuming or even impossible. Several studies proposed different ways of
improving the scalability of requirements prioritization techniques: by us-
ing machine learning (Duan et al, 2009b), clustering (Veerappa and Letier,
2011), case-based ranking (Avesani et al, 2005). Finally, it is challenging to
use business value as a main prioritization criterion (Racheva et al, 2010),
proving quantitative method to sizing quality requirements (Herrmann
and Daneva, 2008)

Releasing software to an open market is often done in several releases
and then software is managed and developed as a product (Albourae and
Ruhe, 2006; van deWeerd et al, 2006b). As a result, a product manager role
emerged, bringing new types of tasks in MDRE context to cope with the

30



shift from primarily developing customized software to developing soft-
ware as a product (van de Weerd et al, 2006a,b). The special nature of
software creates specific challenges in product management for software
solutions, listed by van de Weerd (2006b):

• No cost for manufacturing and distributing extra copies

• The change to software product can be made rather easy by patches
and release updates

• The complexity of organizing requirements and tracing changes tasks
is high

• Software products are much more frequently released, partly due to
their changeable characteristics

• The software product manager’s responsibilities regarding the prod-
uct functionality do not go along with authority over the develop-
ment team.

The benefits of software products, as it can be seen from the list above,
come along with challenges and more complex requirements organization.
Two integral parts of software product management are product roadmap-
ping and release planning. Roadmapping includes planning how to use
available technological resources and scientific knowledge, and their re-
lationships over a period of time (Vähäniitty et al, 2002). Roadmapping
is a form of forecasting a product or product family evolution overtime,
including their relationships (R. E. Albright, 2003). Regnell and Brinkkem-
per (2005) define a roadmap document as a document including prod-
uct releases plans over a time frame of three to five years. The litera-
ture provides many types of roadmap documents, (Schalken et al, 2001)
where the one suitable for MDRE contexts release planning is the Product-
Technology Roadmap. Roadmapping is a complex task, and it brings chal-
lenges in co-operation in different layers of product development, continu-
ous communication (R. E. Albright, 2003), dependencies handling between
related products, and copingwith rapid technology changes (Carmel, 1999).

Release planning, also called release management is another important
activity in software product management. Software release management
is the process of making software available to or obtained by its users (van
der Hoek et al, 1997). Core functions in this process are requirements pri-
oritization, release planning, constructing and validating a release require-
ments document and scope management. Various techniques have been
proposed or explored in order to support release planning, namely integer
linear programming (Abramovici and Sieg, 2002), the analytical hierarchy
process (Saaty, 1980), stakeholders’ opinions on requirements importance
(Ruhe and Saliu, 2005), constraints programming (Regnell and Kuchcin-
ski, 2011) and linear programming techniques using requirements inter-
dependencies (Carlshamre, 2002a). Release planning is challenging due

31



to: uncertainty of the information (Ruhe, 2009), many factors that may af-
fect requirements priorities, requirements dependencies (Carlshamre et al,
2001), changing viewpoints and quality requirements (Jantunen et al, 2011;
Berntsson Svensson, 2011).

The criteria identified as important by Wohlin and Aurun (2005) in se-
lecting which requirements to include to the next project comprise: com-
petitors, delivery date, development cost and stakeholder priority of re-
quirement. The last two criteria are similar to the cost-value approach pro-
posed by Karlsson and Ryan (1997) and to the QUPERmodel (Regnell et al,
2008). Paper I analyzes the reasons for deciding what to remove from the
scope of a project.

Researchers have been investigating various aspects of MDRE, start-
ing with Potts, who claimed that “during requirements analysis one party
does not always elicit requirements from another, nor does it payback re-
quirements so the other can accept, reject or refine them”. Thus, require-
ments in MDRE context are actually proposed or invented, rather than
elicited (Potts, 1995). This fact adds additional dimensions to requirements
engineering and requirements management process definitions, and is of-
ten responsible for an immense increase of complexity of RE and RM re-
lated activities. Regnell et al (1998) presented a specific industrial require-
ments engineering process for packaged software, which helped the stud-
ied company to achieve a measurable improvement in the delivery pre-
cision and product quality. The same author has researched the require-
ments selection task for MDRE (Regnell et al, 2004) and explored bottle-
necks in MDRE processes (Höst et al, 2001). Berntsson Svensson focused
on roadmapping of quality requirements in MDRE (Berntsson Svensson,
2011). Others, such as Booth (2001) or Karlsson (2002), have focused on
reporting challenges in MDRE based on empirical investigations, while
Carlshamre et al (2000) focused on comparing two market driven require-
ments management models and emphasizing the crucial task of managing
requirements dependencies.

3.3 Visualization in software and requirements engineer-
ing

Customers of software products are often non-technical people. Therefore,
visualization in software engineering is a way of a more effective com-
munication with these customers (Avison and Fitzgerald, 1998). For ex-
ample, diagrams have an advantage of more concisely conveying the in-
formation (DeMarco, 1978) than the sentential representation of informa-
tion (Larkin and Simon, 1987). Diagrams are scalable and can support a
large number of perceptual inferences, which can easily be analyzed by
humans (Larkin and Simon, 1987). As a result, many visual notations have
been proposed since Goldstine and von Neumann’s (1948) first flowcharts
notation in 1948, and are currently used not only for supporting implemen-

32



tation and testing (Ball and Erick, 1981; Knight and Munro, 2000; Jones
et al, 2000), but also other facets of software development (Ogawa et al,
2007; Sellier and Mannion, 2006; Tory and Moller, 2004; Hornecker and
Buur, 2006; Vasile et al, 2006; MacDonell, 2005; Biffl et al, 2005; Koschke,
2003; Gotel et al, 2008). The strengths of visual notations are also used to
develop software using the Model Driven Development (MDD) paradigm,
where software is automatically generated from models (Beydeda et al,
2005).

The visual syntax of notations proposed in software engineering lit-
erature is treated with less attention than their semantics (Moody, 2009;
Moody et al, 2010). The decisions about semantics (content) seam to be
treated with great care. At the same time, visual representation (form)
is considered a matter of aesthetics rather than effectiveness (Hitchman,
2002) despite that the positive influence of the visual forms of notations
on their understandability has already been confirmed in a number of em-
pirical studies (Purchase et al, 2002; Nordbotten and Crosby, 2001; Masri
et al, 2008). Moody (2009) provides a set of design principles in order to
achieve a visually efficient notation and establish a scientific foundation
for designing visual notations in software engineering. Moody’s analy-
sis (2009) focuses on achieving cognitive effectiveness in terms of speed,
ease and accuracy with which a representation can be processed by the
human mind (Larkin and Simon, 1987).

As an early phase of software development, requirements engineering
is communication intensive. Therefore, it requires intensive and efficient
communication among multiple stakeholders in order to agree upon the
needs for a new software system or its extensions. Effective visualiza-
tion techniques may significantly improve this communication by envi-
sioning the real value of requirements. Visualization have, according to
Gotel (2007), been used to support three aspects of requirements engineer-
ing:

• Structure and relationships - visualizing the hierarchical structure
of requirements documents, requirements patterns, or more com-
plex graphs. Also, requirements traceability matrices are regularly
created to convey linkage between artifacts and support change im-
pact analysis (Duan and Cleland-Huang, 2006; Ozakaya, 2006; Sellier
andMannion, 2006; Osawa and Ohnishi, 2007; Supakkul and Chung,
2010)

• Elicitation support - visual prototypes, story board, mock-ups used
to help stakeholders to explore requirements. If these initial draw-
ings are made using a software tool, then the role of this type of visu-
alization is more transient as they can be reused in later refinement
activities (Pichler and Humetshofer, 2006; Feather et al, 2006; Zenebe
and Norcio, 2007; Sutcliffe et al, 2011)

33



• Modeling - providing a visualization of requirements specified in a
formal language in order to facilitate validation activities. I*, goal
modeling, behavioral views, modeling stakeholder concerns andUML
frameworks fall into this category and therefore it can be concerned
as the dominant focus of research efforts in requirements engineer-
ing visualization (Teyseyre, 2002; UML, 2010; Konrad et al, 2006; Ev-
ermann, 2008; Sen and Jain, 2007; Isazadeh et al, 1999; Moody et al,
2009; Ugai et al, 2010; Gonzales-Baixauli et al, 2004)

Some researchers proposed using visualizations for supporting require-
ments engineering decision making. Finkelstein et al (2008) visualized the
trade-offs of fairness betweenmultiple customers. Schneider et al (2008) vi-
sualized informal communication, Feather et al (2006) visualized require-
ments risks while Gandhi and Lee (2007) proposed using requirements vi-
sualization to support understanding risk assessment during certification.
Karlsson and Ryan visualized prioritization results (1997) while Ruhe and
Saliu (2005) visualized release plans.

When requirements and their attributes are represented in a textual
form, the resulting structure is a table or spreadsheet representation. In
this case, the access to multi-placed and spread information can be chal-
lenging and overwhelming. Since visual notations offer more dimensions
to represent information than text (Tufte, 1990), they are more efficient in
representing the mentioned complex information structures and highlight
the most relevant interactions and aspects (Dulac et al, 2002). As an exam-
ple, Gotel et al (2007) proposed taking a set of requirements represented
in this traditional textual form, supplemented by the structured UML dia-
grams, and rendering them in a way that proposes shared comprehension
of the full set of a number of requirements-related questions, e.g. revealing
unknown patterns. Some situations where this approach may be useful are
for example: ensuring that the requirements are grounded in authoritative
and representative source or providing a quick glance of the risks, cost and
effort needed to implement requirements. In this thesis, visualizations are
used to provide an overview of scoping processes in a very-large require-
ments engineering context.

Recent research in requirements visualization provide a variety of new
visualization techniques that aim for "getting to see" requirements in new
ways. Among proposed techniques, Lee at al. (2003) proposed an iconic
technique that provides an excellent example of using both the shape and
the color as additional dimensions to achieve greater cognitive dissonance.
Another technique to visually represent requirements using a metaphori-
cal approach is the Volcanic World Visualization technique, proposed by
Gotel et al(2007) .

34



3.4 Natural Language Processing techniques in requirements
management

Natural Language Processing (NLP) is a set of techniques for analyzing
natural language on various levels and for various tasks and purposes
(Liddy, 2003). Information Retrieval (IR), defined as finding unstructured
material within larger material based on a given information need (Man-
ning et al, 2008), is overlapping with NLP. IR puts emphasis on the process
of finding information while NLP puts emphasis on techniques used in
the searching process. In this thesis, we use the term NLP, as suggested by
Falessi et al (2010).

Although using NLP techniques for requirements management tasks
need to be supervised by practitioners (Ryan, 1993), they provide new pos-
sibilities of improving requirements management. These possibilities have
been explored in a number of publications. Among those publications that
include some kind of empirical evaluations, the majority of the proposed
NLP techniques and tools are used to examine the quality of requirements
specifications. The quality of requirements specifications is analyzed, for
example in terms of the number of ambiguities (Fantechi et al, 2003; Macias
and Pulman, 1995). Kamsties et al (2001) proposed detecting ambiguities
using inspections while Rupp et al (2000) produced logical forms associ-
ated with parsed sentences to detect ambiguities.

Among other quality attributes of requirements artifacts analyzed us-
ing NLP techniques, Fabbrini et al (2001) proposed a tool that could im-
prove understandability, consistency, testability and correctness of require-
ments documents. Edwards et al (1995) presented a tool that uses rule-
based parsing to translate requirements from natural languages and thus
help requirements analysis and maintenance throughout the system life-
cycle. Gervasi et al (2000) presented natural language processing tech-
niques to perform a lightweight validation of natural language require-
ments which was argued to have low computational and human costs.

Apart from assisting with assessing the quality of requirements, NLP
techniques were also used for tasks such as extracting abstractions from
text documents (Aguilera and Berry, 1991; Goldin and Berry, 1997), syn-
thesizing crucial requirements from a range of documents that includes
standards, interview transcripts, and legal documents (Sawyer et al, 2002),
or identifying domain abstractions (Rayson et al, 2000). On the other hand,
Sawyer et al (2005) proposed using statistical NLP techniques in support-
ing early phase requirements engineering while Gervasi (1999) used lexical
features of the requirements to cluster them according to specific criteria,
thus obtaining several versions of a requirements document. The sectional
structure of these documents, and the ordering of requirements in each
section, are optimized to facilitate understanding for specific purposes.

Enabling and maintaining requirements dependencies through trace-
ability enables their efficient tracking (Cleland-Huang et al, 2012). By es-

35



tablishing traceability links between requirements and other software project
artifacts, lifecycle tasks such as change impact analysis (Cleland-Huang
et al, 2003), coverage analysis (Antoniol et al, 2002), linking of rationale
and source to requirements (Ramesh and Jarke, 2001), requirements con-
solidation (Natt och Dag et al, 2006), finding reusable elements (Winkler
and Pilgrim, 2010) and finally requirements validation and verification, be-
come more manageable or efficient.

Vector Space Model (VSM) or Latent Semantic Indexing (LSI) informa-
tion retrieval models (Baeza-Yates and Ribeiro-Neto, 1999) are among the
most frequently usedmodels to retrospectively (Asuncion et al, 2010) iden-
tify traces. Natt och Dag et al (2004; 2005; 2006) used VSM to measure lin-
guistic similarities to link market requirements to product requirements.
Cleland-Huang et al (Lin et al, 2006; Duan et al, 2009b; Cleland-Huang
et al, 2010; Laurent et al, 2007) used VSM and the Poirot tool in several
experiments while Antoniol (Antoniol et al, 2002) used VSM to recover
links between source code and documentation. Hayes et al developed the
RETRO tool to link requirements to design documents using vector-space
models (Hayes Huffman et al, 2003), as well as LSI (Hayes Huffman et al,
2006). Finally, DeLucia used LSI to recover traceability links in software
management systems (De Lucia et al, 2007) and Sultanov et al (2010) ap-
plied swarm techniques for requirements tracing.

3.5 Obsolescence in software and requirements engineer-
ing, Obsolete Software Requirements (OSRs)

Changes in software business are both rapid and significant and involve
not only changing programming fundamentals and languages (Odersky
et al, 2008), hardware and technologies Fons et al (2012), pricing and own-
ership (Jansen et al, 2012), but also business models, software product and
services (Cusumano, 2008). For example, a recent shift of focus in soft-
ware business from product to services (Cusumano, 2008) have ignited
serious changes into software pricing models, development and manage-
ment models, requirements management and software release plans. As
a result, software companies need to shift focus and re-prioritize the re-
quirements for their future products focusing on the functional and quality
requirements more suitable for service oriented architecture solutions.

Another example of rapidly changing environment is MDRE where
requirements are continuously issued by customers and other stakehold-
ers (Regnell and Brinkkemper, 2005). The paste of changes may sometimes
be very high resulting in requirements and features becoming quickly ob-
solete. Frequent and unplanned requirements changes can also cause scope
creep, requirements creep and requirements leakage (also referred as un-
controlled requirements creep) (Robertson and Robertson, 1999; Iacovou
andDexter, 2004). Scope creep can then lead to significant scope reductions
as overcommitment challenges are addressed. This, in turn, postpones the

36



implementation of the planned functionality and can cause requirements
to become obsolete and in the end even project failures (Iacovou and Dex-
ter, 2004).

Software artifact obsolescence has been mentioned in the context of ob-
solete hardware and electronics in, for example, military, avionics or other
industries. Herald et al proposed an obsolescencemanagement framework
for system components that is concernedwith system design and evolution
phases (Herald et al, 2009). Although this framework contains a technol-
ogy roadmapping component, it does not explicitly mention obsolete re-
quirements. Merola (2006) focused on the software obsolescence problem
on the COTS components level for defense systems of systems. He stressed
that even though the software obsolescence issue has been recognized as
being of equal gravity to the hardware obsolescence, it has not reached
the same visibility. Some of the proposed solutions for managing software
obsolescence outlined by Merola include: (1) negotiating with the vendor
to downgrade the software license, (2) using wrappers and software ap-
plication programming interfaces, or (3) performing market analysis and
surveys of software vendors.

Despite a rather clear relation to managing requirements for software
product, the phenomenon of Obsolete Software Requirements seems to be
underrepresented in literature. To the best of our knowledge, only a hand-
ful of articles and books mention the terms obsolete requirements or/and
obsolete features. Among the existing evidence, Loesch and Ploederoeder
(2007) claimed that the variability explosion in a software product line con-
text is partially the result of not removing obsolete variable features. Mur-
phy and Rooney (2006) stressed that requirements have ’a shelf life’ and
suggested that the longer it takes from defining requirements to implemen-
tation, the higher the risk of change. This inflexibility is also mentioned
by Ruel et al (2010) who stated that change makes requirements obsolete,
which in turn can dramatically extend project timelines and increase the
total cost of a project. Similarly, Stephen et al (2011) listed obsolete require-
ments as one of the symptoms of failure of IT project for the UK govern-
ment. While the report does not define OSRs per se, the symptom of failure
is ascribed to OSRs and them blocking the timely adoption of the potential
of new technologies.

The phenomenon of OSRs has not yet been recognized by neither the
IEEE 830 standard (IEEE, 1997) nor CMMI version 1.3 (Software Engineer-
ing Institute, 2011). On the other hand, some researchers mentioned obso-
lete requirements. Savolainen et al (Savolainen et al, 2005) classified prod-
uct line requirements into four categories: non-reusable, mandatory, vari-
able and obsolete. Moreover they proposed a short definition of obsolete
requirements and the process of managing these requirements for software
product lines "by marking them obsolete and hence not available for se-
lection into subsequent systems". Mannion et al (Mannion et al, 2000) pro-
posed a category of variable requirements called obsolete and suggest deal-

37



ing with them in a similar way as described by Savolainen et al (Savolainen
et al, 2005).

Obsolescence of requirements can also be defined as their low volatil-
ity, thus OSRs and requirements volatility are highly related. SWEBOOK
classifies requirements into a number of dimensions and one of the them
is volatility and stability. SWEBOK mentions that some volatile require-
ments may become obsolete (IEEE Computer Society, 2004). Kulk and Ver-
hoef (Kulk and Verhoef, 2008) reported that the maximum requirements
volatility rates depend on size and duration of a project. They proposed a
model that calculates the “maximum healthy volatility ratios” for projects.
On the other hand, Zowghi and Nurmuliani (Zowghi and Nurmuliani,
2002) proposed a taxonomy of requirement changes where one of the rea-
sons for requirements changes is obsolete functionality, defined as “func-
tionality that is no longer required for the current release or has no value
for the potential users”.

3.6 Scoping in software projects and in requirements engi-
neering

Defining the right scope of a project that fits into the project schedule has
been recognized as a known risk in project management (Boehm, 1989).
In 1996, Withey explored scoping in software product lines arguing that
the economies of scope are the saving obtained when building more prod-
uct with less input. Thus, the scope is defined by Withey as the common
part of a software product line (Withey, 1996). Scoping and scope manage-
ment were also considered as integral parts of release planning and soft-
ware product management (van der Hoek et al, 1997). Other early work
on software product lines scoping focused on identification of the scope of
a software product line (DeBaud and Schmid, 1998, 1999).

Software product lines scoping is considered as a key activity for achiev-
ing economic benefits in product line development (Schmid, 2002). Despite
that, the existing work in software product line focus mainly on the iden-
tification aspect of scoping, e.g. (Kishi et al, 2002; Savolainen et al, 2007;
Fritsch and Hahn, 2004; John and Eisenbarth, 2009; Helferich et al, 2005;
Kang et al, 2002; Pohl et al, 2005a; Riebisch et al, 2001; Taborda, 2004; Park
and Kim, 2005). In a survey of scoping, John and Eisenbarth summarized
16 scoping approaches (John and Eisenbarth, 2009). Seven of the listed
methods take features or product features as input.

Fritsch andHahn (2004) presented amethod of checkingwhether or not
a set of products should constitute a product line for a given target mar-
ket. Helferich et al (2005) focused on creating customer-oriented product
portfolios while Kang et al (2002) focused on using marketing and prod-
uct plan during the product line asset development. Furthermore, Pohl et
al (2005a) discussed scoping in relation to product management and prod-
uct portfolio planning while Park and Kim (2005) proposed a process for

38



domain and economic analysis of core product line assets based on vari-
ability analysis. Riebisch et al (2001) proposed a scoping method based
on four priority levels and a decision table while Taborda (2004) suggested
using release matrices for scoping and release planning.

In MDRE (Regnell and Brinkkemper, 2005), continuously arriving re-
quirements contribute to creating a state of congestion in the requirements
handling process when more requirements enter the process than can be
handled with the available resources (Karlsson et al, 2002). As a result,
the selection process becomes a compromise where (due to the project be-
ing overloaded with requirements) the development of already committed
features may need to be sacrificed at the expense of wasted effort. Several
reasons for removing features form the scope were identified in Paper I.

Related work on scoping in project and product management often fo-
cus on a phenomenon of scope creep, defined as uncontrolled expansion
of initially decided scope (Carter et al, 2001; Kulk and Verhoef, 2008; De-
Marco and Lister, 2003; Hall et al, 2002; Iacovou and Dexter, 2004). Scope
creep could be caused by: (1) sales stuff agreeing to deliver unrealistically
large features without checking the scheduling implications first (Hall et al,
2002) or (2) stakeholders unable to concur on project goals (DeMarco and
Lister, 2003). As a result, scope creep can have serious negative conse-
quences on project, including project failures (Iacovou and Dexter, 2004).
One of the possible ways to mitigate negative effects of scope creep is
combining evolutionary prototyping and risk-mitigation strategies (Carter
et al, 2001). Patton (2003) suggested that combining interaction design and
extreme programming could help to get the right and yet flexible scope of
a project.

Another related phenomenon is requirements scrap which is defined as a
situationwhen the scope of a project both increases but also decreases (Kulk
and Verhoef, 2008). Whether increase of the project scope is simply scope
creep, decrease of the scope could be a result of shrinking budgets or run-
ning out of schedule (Kulk and Verhoef, 2008). Paper I visualized a require-
ments scrap situation and Paper IV investigated the causes and effects of
overscoping which include: many changes after the project scope is set,
quality issues, wasted effort and customer expectations not always met,
see Paper IV for more details. Finally, requirements churn phenomenon oc-
curs when changes to requirements do not affect the size of requirements
during the project. Kulk et al (2008) presented an example of requirements
churn when colors in an interface need to changed and buttons reordered
in an interfaces.

4 Research Methodology

The research effort in software engineering is aiming for answering ques-
tions regarding developing, maintaining and evaluating software. Con-

39



ducting research in software engineering requires studying software en-
gineers as they work (Singer et al, 2007). Therefore, the research meth-
ods (Glass, 1994; Wohlin et al, 2000) used in this thesis were applied based
on their empirical potential. At the same time, the research presented
in this thesis could be characterized as conducted using a pragmatic ap-
proach (Easterbrook et al, 2007) because a greater interest was put on ob-
taining practical knowledge as a more valuable source of information.

Various research designs, strategies and data collection methods were
used to deal with the research challenges and to develop answers to the
research questions outlined in Section 2.

4.1 Research design

According to Robson (2002), there are two main approaches to research:
the fixed and the flexible research design. Wohlin et al (2000) call these ap-
proaches research paradigms. The fixed research design, also called the
quantitative research design (Wohlin et al, 2000), can be characterized by
the fact that the design is finished before the data collection starts. Be-
cause of that, this approach can also be called a “theory-driven” research
design (Robson, 2002). The fixed research design is often used to findwhich
one of two ormore proposed solutions can exhibit a different behavior. The
results of studies conducted using the fixed research design are reported
in terms of groups rather than individuals (Robson, 2002). Therefore, the
weakness of the fixed research design is an inability to capture the individ-
ual characteristics of individual human behavior (Robson, 2002).

In contrast, the flexible research design, also called the qualitative paradigm
(Wohlin et al, 2000), evolves during the research process when the data
collection and analysis are intertwined. Qualitative data is typically non-
numerical, often focused on words, but may also include numbers. Fixed
and flexible research designs can further be classified into research strate-
gies, described in the section that follows. The research presented in this
thesis uses both types of research designs (see Table 3).

4.2 Research strategies used

The choice of research strategy is an important step in research method-
ology and it is limited by the prerequisites for the investigation to be per-
formed (Wohlin et al, 2000). Research strategies could also be called re-
search methods (Easterbrook et al, 2007). In this thesis, the name research
strategies is used to avoid confusion with data collection methods. Robson
provides a list of research strategies in social science (Robson, 2002). In this
thesis, the following research strategies have been used:

Case study. This strategy can be categorized as a traditional flexible re-
search strategy. The reason why it is considered as a flexible design is the
fact that the details of the design typically “emerge” during data collec-

40



tion and analysis. The case study can be both quantitative and qualitative
(Wohlin et al, 2000). Case studies are recognized as appropriate methods
to understand complex social phenomena (Yin, 2003). Software engineer-
ing is, in general, a complex social phenomenon which allows investiga-
tors using the case study approach to preserve its holistic and meaningful
characteristics. Therefore, Runeson et al(Runeson andHöst, 2009; Runeson
et al, 2012) pointed out that the case study methodology is “well suited for
many kinds of software engineering research”. The ability to understand
the complexity of the analyzed problem rather than abstracting from it is a
principal advantage of performing qualitative case studies (Seaman, 1999).
Moreover, Wieringa and Heerkens (2007) classified case study as a well
suited for requirements engineering research, even though the results of a
case study are more difficult to interpret and generalize than the results of
an experiment (Wohlin et al, 2000).

Action research. The important part of this strategy is to influence or
change some aspects of whatever is in the focus of the inquiry (Robson,
2002; Davison et al, 2004; Easterbrook et al, 2007). Close collaboration be-
tween researchers and those who are the focus of the research is central
to action research. Further, action research focuses on "authentic" prob-
lems and authentic "knowledge outcomes"(Easterbrook et al, 2007). The
result of using this strategy comprises: (1) an improvement of a practice of
some kind, (2) the improvement of the understanding of a practice by its
practitioners, and (3) the improvement of the situation in which the prac-
tice takes place. Easterbrook et al (2007) argues that a large part of the
software engineering research is actually using this strategy. It is a com-
mon scenario in software engineering research that ideas are originally
developed by trying them out on real development projects, and report-
ing the experiences (Easterbrook et al, 2007). Moreover, Wieringa and
Heerkens(2007) put action research on the list of the methods that can be
used in requirements engineering research. Action research is closely re-
lated to case study(Runeson and Höst, 2009).

Experimental strategy. This strategy can be categorized as a traditional
fixed design research strategy (Robson, 2002). In experimental strategy,
the researcher introduces a controlled change into the context of the exper-
iment in order to see the result of this change on the object of the experi-
ment. The measured effect of manipulation is then statistically analyzed to
confirm the significance of the effect (Wohlin et al, 2000). The details of the
design are fully pre-specified before the main data collection begins (there
is typically a “pilot” phase before this when the feasibility of the design is
checked and changes made if needed). The need to conduct experiments
in software engineering was for the first time emphasized in the middle
of the 1980’s by Basili and Rombach (1988) and stressed by many others
later on (Potts, 1993; Basili, 1996; Fenton et al, 1994; Glass, 1994; Kitchen-
ham et al, 1995). Experiments are mainly quantitative since they focus on
measuring different variables, changing them, and measuring them again

41



(Wohlin et al, 2000). Replicated experiments play an important role in soft-
ware engineering by allowing us to build knowledge about which results
or observations hold under which conditions (Shull et al, 2008).

Survey. This strategy can be used to characterize a broad population
of individuals (Easterbrook et al, 2007; Rea and Parker, 2005). Defining
clear research questions and a representative sample from a population
are important preconditions for conducting survey research (Easterbrook
et al, 2007; Robson, 2002). This strategy, also called "‘non-experimental
strategy"’, is similar to the experimental strategy but researchers do not at-
tempt to change the studied context or behavior of participants (Robson,
2002). Interviews or questionnaires can be used to collect data (Wohlin
et al, 2000) and variables can be measured and controlled. Hypothesis test-
ing is also possible in survey research (Rea and Parker, 2005). Easterbrook
et al (2007) listed survey research as one of the research methods in soft-
ware engineering.

4.3 Data collection methods used

Selecting data collection methods is a necessary and important part of the
research methodology (Easterbrook et al, 2007; Lethbridge et al, 2005; Rob-
son, 2002). Since requirements engineering involves real people working
in real environments, researching requirements engineering is essential to
study practitioners as they solve real problems (Lethbridge et al, 2005).
Wrongly selected data collection methods may not reveal all characteris-
tics of the data under analysis and may harm the analysis phase and even
the results of the study.

There are many data collection methods (Lethbridge et al, 2005; Rob-
son, 2002). Therefore, selecting appropriate data collection methods re-
quires careful consideration of the research design as well as the pragmat-
ics of the research setting (Easterbrook et al, 2007). Many aspects affect
this selection process, where one of the most common is the degree of in-
volvement of software engineers (Lethbridge et al, 2005). During the data
collection, it is important to quantify the advantages and disadvantages
of the different techniques from the perspectives of the experimenter, the
participants, reliability and the generalizability of the results (Easterbrook
et al, 2007; Lethbridge et al, 2005). Therefore, multiple techniques can be
used to overcome the limitations of single techniques (Easterbrook et al,
2007; Lethbridge et al, 2005), for example while gathering data from mul-
tiple perspectives. We have used multiple techniques for data collection in
Papers I, V and VI.

The data collection methods used in this thesis are presented with re-
spect to the taxonomy of techniques based on the degree of involvement
of software engineers presented by Lethbridge et al (2005) and by the tax-
onomy presented by Robson (2002). Among the first degree techniques,
where software engineers were directly involved in the study, interviews

42



and questionnaires were used. Among the second degree techniques, the
instrumenting systems technique was used in this thesis. Among the third
degree of involvement techniques, the analysis of electronic databases of
work performed was used. Additionally, content analysis technique de-
scribed by Robson (2002) was also used in this thesis.

Interviews. Interviews are the most straightforward instrument for
data collection (Lethbridge et al, 2005). Interviews can be used in stud-
ies where the goal is to explore challenges (Karlsson et al, 2002) or gain
opinions, about the process or product (Lethbridge et al, 2005). Interviews
are flexible and inquisitive (Lethbridge et al, 2005) and recommended for
software engineering research (Runeson and Höst, 2009). Despite their
time consuming nature, interviews brings the possibility to follow up an-
swers given by participants of the study, interpret the tone of their voice,
expressions and intonations. Depending on the resources available, in-
terviews can be used to collect small or large volumes of data (Runeson
et al, 2012). According to Robson (2002), interviews can be classified into
three types: fully structured, semi-structured and unstructured. In this
thesis, semi-structured interviews were used. Semi-structured interviews
use a set of predetermined questions but also allow improvisation and ex-
ploration (Robson, 2002; Runeson and Höst, 2009). Questions order and
wording can be changed. Furthermore, particular questions which seem
inappropriate with a particular interviewee can be omitted, or additional
ones included. In this thesis, semi-structures interviews were performed
in Papers IV and VI.

Questionnaires. Questionnaires are one of the possible data collection
techniques for survey research strategies (Easterbrook et al, 2007; Robson,
2002; Singer et al, 2007). Questionnaires allow collection of large amount
of data in a cost and time effective way (Lethbridge et al, 2005; Rea and
Parker, 2005). Furthermore, web-based questionnaires allow data collec-
tion from geographically diverse locations. Moreover, the time to deliver
and send back the questionnaire is significantly reduced and the task of
filling the questionnaire is simplified (Punter et al, 2003). Questionnaires
are suitable for software engineering research (Pfleeger and Kitchenham,
2001; Lethbridge et al, 2005; Singer et al, 2007). On the other hand, poor
questions wording and low response rates are the two most common dis-
advantages of questionnaires. Lethbridge et al reported a 5% response rate
fromweb based software engineering surveys (Lethbridge et al, 2005). The
response rate in Paper III was about 8%.

Content analysis. Content analysis technique deals with artifacts pro-
duced during software development process. It is classified as an “un-
obtrusive measure”, which means that data collection does not affect col-
lected documents (Robson, 2002). The gathered information, which in this
case can be a variety of written information, is analyzed and conclusions
based on the content are reported. The indirect involvement of software
engineers in the data collection task makes this technique suitable for large

43



volumes of data, which is the case for the studies in Papers I, II, V and VI.
It is also a useful technique to be utilized when the goal of the study is
to gather or propose a set of metrics (Lethbridge et al, 2005), as in Paper
I. The content analysis technique can also be used as a secondary method
(Robson, 2002), see Paper VI.

Instrumenting systems. The prerequisite of using this techniques is
to have access to software engineers’ environment when they are work-
ing, but does not require direct contact between the participants and the
researchers. This indirect nature of this techniques make is suitable for
collecting large volumes of data (Lethbridge et al, 2005). In the instru-
menting systems technique, the researcher builds "instrumentation" into
the software tools used by software engineers (Singer et al, 2007). In this
thesis, the instrumentation technique is used in Papers I, and VI to visual-
ize information recorded in the requirements management tool. The visu-
alization techniques provide process monitoring facilities not available by
the requirements management tools. Since people tend to be poor judges
of factors such as relative frequency and duration of the various activities
they perform, this technique can be used to provide such information accu-
rately (Singer et al, 2007). On the other hand, it is difficult to analyze data
from an instrumented system meaningfully, in this case the scope changes
history recorded. This disadvantage of this method may require using an-
other data collection method. This technique was also indirectly used in
Paper II.

Analysis of electronic databases of work performed. The work per-
formed by developers and software engineers is often stored andmanaged
in various types of electronic databases (Singer et al, 2007). The informa-
tion and the records how the information was created and managed are
a rich source of information for software engineering researchers (Singer
et al, 2007; Lethbridge et al, 2005). This data analysis technique is suitable
for large amounts of data. The collected data is not influenced by the pres-
ence of a researcher. The disadvantage of this technique comprises low or
sometimes lack of control over the quality and quantity of the information
gathered (Lethbridge et al, 2005). This technique has been used in Paper V
where decision logs were studied, in Paper II where the results of require-
ments consolidation were analyzed and in papers I and VI where decision
making history was analyzed and visualized.

4.4 Research classification

Table 3 provides themapping between the presented papers, research strate-
gies, designs and data collection methods used.

A flexible research design as well as a case study and action research
strategies were used in Paper I. Due to a limited number of publications
within the requirements engineering field that exclusively addresses is-
sues related to scope management in very large projects, a literature re-

44



Table 3: Research Classification

Paper Research
Design

Research Strategies Data Collection Methods

I flexible Case study, action
research

Analysis of electronic databases
of the work performed, content
analysis and instrumenting sys-
tems

II fixed Experiment Instrumenting systems and anal-
ysis of electronic databases of
work performed

III fixed Survey Questionnaires
IV flexible Case study Interviews
V flexible Case study Analysis of electronic databases

of worked performed, content
analysis and questionnaires

VI flexible Case study, action
research

Instrumenting systems, analysis
of electronic databases of the
work performed, content analy-
sis and interviews

view was not conducted. The need for investigating scope management in
large project emerged from interviews reported in Papers VIII and XIII. We
used analysis of electronic databases of the work performed, content anal-
ysis and instrumenting systems to collect the empirical data. We analyzed
the database where the information about managing features and making
decisions about them was stored. A set of scripts was implemented to au-
tomatically analyze the available data and provide the FSC visualizations.

A fixed research designwas used in Paper II. The goal of Paper II was to
experimentally assess whether a natural language processing functionality
can provide a better assistance in a task of finding similar requirements
than the searching and filtering functionalities. Since two treatments were
compared in this study, the experimental research strategy was used. The
effect of the manipulation was measured on students. The details of the
design were fully pre-specified before the data collection began. Instru-
menting systems and analysis of electronic databases of work performed
were used to collect the empirical data.

A fixed research design was also used in Paper III. A survey research
strategy was utilized to investigate the phenomenon of obsolete software
requirements. The goals were to define the phenomenon of obsolete soft-
ware requirements, investigate how they are handled in industry today
and their potential impact. The literature review conducted before execut-

45



ing the survey, revealed that only a handful of papers discuss this topic.
The questionnaire data collection method was used in Paper III.

A flexible research design was used in Paper IV. A case study is chosen
as a research strategy. The main reason to use this strategy is the nature of
the investigated research questions. The phenomenon under investigation,
in this case overscoping, was studied in its natural environment (Yin, 2003;
Runeson et al, 2012). In-depth analysis of a single case helps to understand
the surrounding context of the investigated phenomenon. Interviews were
used as a method for data collection.

A flexible research design was also used in Paper V. A case study was
chosen as a research strategy and analysis of electronic databases of the
work performed was first used to collect the empirical data about factors
affecting decision lead-times and outcomes. Next, a questionnaire was
used to validate the findings from the first phase of the study.

The aims for Paper VI were accordingly: (1) to develop a method for
visualizing the scoping process in agile-inspired continuous development
of embedded systems and (2) to identify decision patterns and archetypes
based on a very-large record of decisions from the case company. A flexible
research design was used in this paper. Case study and action research
strategies were used. Researchers were involved in several steps towards
implementing the visualization technique, applying the technique on an
empirical set of data, and finally using findings from the previous steps to
influence and improve the scoping practice at the case company.

The instrumentation tool into the requirements management tool was
built. The exported data provided input for the implementation of the
FSC+ visualization technique of scoping decisions over time. Next, the
analysis of visual representation of the work performed in the scoping pro-
cess was performed. Several thousands of features were visualized and an-
alyzed. Furthermore, meetings with practitioners and informal interviews
were held while developing the visualization technique in order to collect
feedback and suggestions about it. Finally, interviews with practitioners
were held in order to discuss the results from applying the technique as
well as its usefulness. The evaluation of the solution and suggestions for
further improvements were collected.

4.5 Validity

Even though selecting proper research strategies and methods is an im-
portant step of conducting meaningful research, it does not imply that the
results should be trusted without any doubts or questions. Therefore, the
results of any research effort should be interpreted in the light of the threats
to the validity (Wohlin et al, 2000). A thorough and upstanding criticism
of the results is the only way of enabling or rejecting possibilities of gener-
alization or replication. Thanks to threats of validity, researchers can dis-
tinguish which results corroborate under which conditions, making them

46



more useful for building up knowledge. These criteria are useful for eval-
uating various studies, including controlled experiments, most case stud-
ies and survey research (Wohlin et al, 2000; Yin, 2003; Easterbrook et al,
2007; Runeson et al, 2012). Several threats to validity classifications were
used in this thesis (Robson, 2002; Yin, 2003; Wohlin et al, 2000). The below
presented description and discussion of threats to validity is based on the
classification suggested by Wohlin et al(2000).

Internal validity concerns the question about the confounding factors
that may affect the causal relationship between the treatment and the out-
come (Wohlin et al, 2000). Experiments are the type of studies where ad-
dressing internal validity is critical (Wohlin et al, 2000). If a researcher in-
correctly concludes that the treatment affects the outcome without know-
ing that a third factor has caused or significantly influenced the outcome,
then the study has a low degree of internal validity (Wohlin et al, 2000).
Internal validity threats have been given the greatest attention in exper-
imental and quasi-experimental research. In case studies, it should only
be a concern for a causal type of studies where an investigator is trying to
determine whether there is a casual relationship between events x and y
without knowing that some third factor z may actually have caused y (Yin,
2003; Runeson et al, 2012). This logic is not applicable to descriptive or ex-
ploratory studies which are not concernedwithmaking causal claims (Yin,
2003). In this thesis, multiple techniques were used to address internal va-
lidity threats, including: (1) continuous validation of emerging results and
techniques for Papers I and VI, (2) sending transcripts back to interviewees
to validate the correctness of derived causal relationships in Paper IV, (3)
performing a replication on an experiment to show the range of conditions
under which experimental results hold in Paper II or (4) reviewing the sur-
vey questions by a native English speaker in Paper III and (5) conducting
a survey to compare the results from the content analysis in Paper V.

Conclusion validity arises from the ability to draw correct conclusions
about the relation between the treatment and the outcome (Wohlin et al,
2000). Conclusion validity is related to the reliability of the analysis pro-
cedures used in a study (Runeson et al, 2012). In qualitative case studies,
there is a risk of drawing different conclusions if another person will ana-
lyze the interview material. In experiments, conclusion validity could be
addressed by using appropriate statistical tests (Wohlin et al, 2000), see Pa-
per II. Conclusion validity could also be called reliability (Yin, 2003; Rune-
son et al, 2012). A typical criticism of a single case study is the question
if a follow-up interview study would produce different results, even if the
same research procedures are followed. If the same analysis procedures are
used and the same results are obtained, then the study has a high degree of
reliability (Yin, 2003). Several methods of addressing conclusion validity
were used in this thesis, e.g. recording and transcribing interviews in Pa-
pers IV,using observer triangulation during the data analysis and storing
all artifacts from the case studies in Papers I, V and VI.

47



the following techniques were used to address threats to the conclusion
validity: performing multiple case studies on the topic of scope dynamics
visualization in Papers I and VI, combining two data collection procedures
in Paper V, conducting workshop sessions with additional participants in
Paper IV, and replication of an experiment in Paper III. Finally, for all stud-
ies presented in this thesis, a documentation of the studies was created in
enable replications and the questions used were published online.

Construct validity is concerned with the relation between theories be-
hind the research and the observations (Wohlin et al, 2000). Construct va-
lidity concerns the quality of the construct (or operational measures (Yin,
2003)) developed when conducting the study or measuring certain effects.
The use of multiple sources of evidence and a chain of evidences may in-
crease the construct validity (Yin, 2003) in order to ensure that the result is
an effect of the treatment. Case studies have often been criticized for using
"‘subjective"’ judgments to collect the data (Yin, 2003). Interview studies
need to ensure that the questions stated are interpreted in the same way by
the researcher and the interviewed person (Runeson et al, 2012). Multiple
sources of evidence were used in Papers I, IV, V and VI.

External validity is related to establishing the domain, task or people to
which a study’s findings can be generalized. Results obtained in the con-
text of a unique environment, or with a specific group of subjects, may not
be fully transferable to other contexts and environments. The ways of min-
imizing this type of validity treats are using theory in single-case studies
or using replication logic in multiple-case studies (Yin, 2003). Moreover,
if a case study is focusing on explaining or understanding a phenomenon
in its natural setting, then the attempt to generalize from the study is out-
side its aims (Runeson et al, 2012). We addressed external validity threats
by combining a case study and a survey in Paper V, conducting a survey
in Paper III and relating the findings from each study to the state of the
research published in other papers. However, external validity should be
taken into consideration for Papers I, IV and VI.

5 Research Results

The main contributions of this thesis are presented in relation to each re-
search question outlined in Section 2. For each addressed research ques-
tion, the main threats to validity of the research results are summarized.
More detailed contributions and threats to the validity of each paper in
this thesis can be found in the respective paper.

5.1 Main contribution of RQ1

The main contributions of Paper, I addressing RQ1, is the Feature Survival
Chart technique for showing project scope changes over time. The FSC

48



is applied to three large projects. The results of this empirical evaluation
demonstrate that the charts can effectively help in investigating reasons
behind scoping decisions. Furthermore, Paper I provides a set of scoping
measurements, theoretically analyzed and applied to the empirical data
given by the case company.

5.1.1 Main validity issues of RQ1

The main validity issue in Paper I is concerned with external validity. The
FSCs have been designed with the requirements management process in
mind. However, the author believes that the visualization technique can
provide means of describing complex scoping processes also for other soft-
ware management and requirements management process models, see Pa-
per VI. The second major threat to external validity is concerning the gen-
eral application of the FSC. The concept has been tested on empirical data
from the same company, making the results or evaluation, although pos-
itive, falling short on the attempt of generalization. However, since visu-
alization techniques are generally recognized as useful in increasing the
understanding of complex or changing datasets, the questions regarding
this threat can be limited to details of presented visual techniques rather
than their general usefulness. This type of discussion is outlined in Paper
VI. The decisions on which projects the visualization techniques should be
tested on were made together with practitioners, minimizing the construct
validity threat. Finally, the solution was accepted to be implemented as
a part of a requirements management measurement and assessment tool,
extending its usefulness over the participants involved in the evaluation.

5.2 Main contribution of RQ2

The main contribution of Paper II, addressing RQ2, are the results of an
experiment performed to assess if a linguistic method for finding similar
requirements can over-perform searching and filtering. The results from
the original experiment are confirmed in five out of six tested hypotheses.
Moreover, the replication confirms that using NLP techniques help to miss
fewer requirements links and make more correct links. The second con-
tribution of this study is the result of the cross-experimental hypotheses
testing. Finally, the paper discuss the reasons behind results discrepancies.

5.2.1 Main validity issues of RQ2

The first main threat, related to external validity of this study, is the num-
ber of analyzed requirements during the experiment. Since only a rela-
tively small number of requirements is analyzed during the experiment, it
is hard to generalize the results on a very large set of requirements, which
often is the case in industrial settings. The second main threat is related to

49



conclusion validity, since on the contrary to the original study, where sub-
jects worked independently, in the replicated experiment they were asked
to work in pairs. This threat was addressed by performing the analysis of
a pre-study questionnaires filled in by all experiment participants. During
this analysis, the differences in knowledge of English, industrial experi-
ence and experience from the courses have been compared to assess the
degree of heterogeneity of pairs.

The third main threat is the difference in user interfaces of compared
tools, which may result in a performance difference. This threat has been
addressed by giving subjects that used the more complicated tool more
time to get familiar with the user interface.

The last main threat is related to the awareness of subjects about their
own errors. This may have influenced the number of correct and faulty
links. Also, when subjects knew that the time was measured, it is possible
that they were more aware of the time spent and therefore effecting the
performance results. This threat was addressed by explicitly mentioning
that the subjects can not gain anything from performing better or worse
with the task, and also bymentioning that the correct answer in not known.

5.3 Main contribution of RQ3

The main contribution of Paper III (addressing research question RQ3) are
the results from a survey conducted among 219 respondents from 45 coun-
tries exploring the phenomenon of OSRs by: (1) eliciting a definition of
OSRs as seen by practitioners in industry, (2) exploring ways to identify
and manage OSRs in requirements documents and databases, (3) investi-
gating the potential impact of OSRs, (4) exploring effects of project con-
text factors on OSRs, and (5) defining what types of requirements are most
likely to become obsolete.

The results clearly indicate that OSRs are a significant challenge for
companies developing software systems – OSRs were considered serious
by 84.3% of the respondents. Moreover, a clear majority of the respon-
dents indicated no use of methods or tools to support identification and
handling of OSRs, and only 10% of survey respondents reported having
automated support. This indicates that there is a need for developing au-
tomated methods or tools to support practitioners in the identification and
management of OSRs. Further, our study revealed that manually manag-
ing OSRs is currently the dominant procedure, leaving the scalability of
currently used methods in question. Finally, the study reports that larger
project are more negatively impacted by OSRs.

5.3.1 Main validity issues of RQ3

Themain validity of RQ3 is related to construct validity threats. The phras-
ing of questions is a threat to construct validity. The authors of this paper

50



and an independent native English speaker and writer-reviewer revised
the questionnaire to alleviate this threat. To minimize the risk of misun-
derstanding or misinterpreting the survey questions, a pilot study was
conducted on master students in software engineering.

The low statistical power threat to conclusion validity was addressed
by using as suitable statistical tests as was possible on the given type of
data. Before running the tests, we tested if assumptions of the statistical
tests were not violated. Further, the reviews of the questionnaire and the
pilot study addressed the instrumentation threat to internal validity.

5.4 Main contribution of RQ4

The main contribution of Paper IV, addressing research question RQ4, is
improved understanding of causes and effects of overscoping. The results
provide a detailed picture of overscoping as a phenomenon including a
number of causes, root causes and effects. The results indicate that over-
scoping is mainly caused by operating in a fast-moving, market-driven do-
main. Continous requirements inflow, weak awareness of overall goals, in
combination with low development involvement in early phases may con-
tribute to ’biting off’ more than a project can ’chew’. Furthermore, over-
scoping may lead to a number of potentially serious and expensive conse-
quences, including quality issues, delays and failure to meet customer ex-
pectations. Finally, the study indicates that overscoping occurs also when
applying agile RE practices, though the overload is more manageable and
perceived to result in less wasted effort when applying a continuous scope
prioritization, in combination with gradual requirements detailing and a
close cooperation within cross-functional teams.

5.4.1 Main validity issues of RQ4

The main threat to description validity regarding to RQ4 is misinterpre-
tation of the interviewees. This threat was addressed by recording the
interviews and performing observer triangulation on the transcripts and
sending the transcripts back to the interviewees. The main threat to inter-
pretation validity is the risk of imposing the hypothesis onto the intervie-
wees. To address this threat, open interview questions were always posed
before asking specific questions based on the hypothesis. The main threat
to theory validity for this study is the risk of missing additional or alter-
native factors. One source of this threat is the limited set of practitioners
from which data has been gathered. Another potential source is the risk
of observer biases related to the researcher’s pre-knowledge of the com-
pany. The main threat to theory validity is the risk of missing additional
or alternative factors. This threat was mitigated by conducting workshops
with additional participants who suggested additional factors that may af-
fect overscoping. Finally, we used analytical generalization to draw con-

51



clusions without statistical analysis and, under certain conditions, relating
them also to other cases.

5.5 Main contribution of RQ5

The main contribution of Paper V, addressing RQ5, are the results from a
statistical analysis of a large requirements engineering decision log and
from a survey among industry participants. The results show that the
number of products affected by a decision has a positive impact on the de-
cision leadtime. Furthermore, the results in Paper V confirms that change
requests issued by important customers are more likely to be accepted.
Finally, Paper V suggests that the leadtime to reject a change proposal is
longer than to accept it.

5.5.1 Main validity issues of RQ5

Themain threat to internal validity is the number of investigate factors that
may impact decision making in requirements engineering. This threat was
minimized by investigating as many possible factors that could influence
the decision lead-time and decision outcome as possible. The identified
relationships were confronted with the results from the survey in which
these relationships were further tested. The main threat to construct valid-
ity is the quality of the dataset used. The decision log used in the study
was an archival record, which could be considered as stable, exact and
quantitative. Whenever decisions in the log were incomplete or ambigu-
ous, the inconsistencies were discussed them with the responsible product
manager to avoid making wrong interpretations. To alleviate the threats
to construct validity of the survey part of the study, an independent senior
researcher experienced in the area reviewed the questionnaire. To address
the main threat to external validity in the study, a survey was designed
and executed among industry practitioners. The generalizability of the re-
sults is strengthen as the majority of the survey respondents worked with
companies with a typical project generating not more than 100 requests.

5.6 Main contribution of RQ6

The main contributions of Paper VI, addressing RQ6, are the FSC+ tech-
nique to visualize scope changes in large-scale agile inspired projects, defi-
nition and analysis of decision patterns and definition of feature archetypes.
The FSC+ scope visualizations are designed to be flexible and capable of
visualizing the scope according to the current needs of practitioners. The
sorting, filtering, color scheme and the time span of the charts can be ad-
justed and changed depending on project characteristics. The identifica-
tion and empirical analysis of the most common decision patterns help to
better understand the degree of adherence to the process guidelines and

52



the reasons for not following the process in some cases. The atomic deci-
sion visualizations also allow analyzing the degree of process adherence.
The identified decision patterns and decision archetypes enable projecting
of the feature decision patterns in future based on the pattern matching
principle.

5.6.1 Main validity issues of RQ6

The main threat to validity of RQ6 is the single company threat to exter-
nal validity. The results and techniques presented in Paper VI are based
on a single company case study and thus their transferability can be ques-
tioned. On the other hand, the size of the analyzed dataset and its diversity
significantly increases external validity of the findings. The second main
threat is related to conclusion validity. The evaluation is based on subjec-
tive opinions collected during interviews.

6 Further Research

Table 4 outlines the topics for further research. The overall research plan is
intended to continue with the same general focus as presented in this the-
sis, namely to increase the understanding of various aspects of large and
very large-scale requirements engineering decision making and to support
some aspects with new methods or tools. Further, it is also important to
continue the empirical investigation of VLSRE contexts to more precisely
understand their nature.

6.1 FR1: Scoping by Controlling Opportunity Losses

Visualized in papers I and VI projects experienced continuous and fre-
quent changes of the project scope. The visualized contexts were changing
rapidly as the scope of the projects was adjusted to competitive pressures
and market changes. However, the prioritization techniques reported in
the literature Karlsson and Ryan (1997); Beck (2000); Leffingwell andWidrig
(2003) model the scoping decisions as discrete decisions in time which can
lead to the following issues: (1) the form of the scope decision is typi-
cally binary (keep or cancel) and final, (2) other options, such as investi-
gate further, reschedule, decompose or refine are not considered and may
impede flexibility in highly dynamic markets. The resulting continuous
re-prioritization of the project scope creates a risk of uncontrolled scope
changes and overscoping, see Paper IV.

In the presence of inevitable uncertainties and changes to the project
scope, we present a novel way of looking at the task of requirements scop-
ing. We postulate to consider the decision-making criteria as temporal
functions, not absolute values, which facilitates their use even in dynamic

53



Table
4:Further

research
plans

and
ideas.

Further
R

esearch
D
escription

R
esearch

A
pproach

FR
1

Scoping
by

C
ontrolling

O
pportunity

Losses
Further

em
piricalcase

studies
FR

2
Providing

scalable
requirem

ents
architectures

C
ase

studies
w
ith

the
iM

O
R
E
m
odeling

fram
e-

w
ork

FR
3

A
dditionalinvestigations

ofsupporting
the

hum
an

analyst
and

using
the

N
C
D
for

requirem
ents

trace-
ability

Instrum
enting

system
s
and

case
studies

FR
4

M
ethods

for
handling

O
SR

s
Prototype

developm
entand

industrialcase
stud-

ies
FR

5
Investigation

of
overscoping

in
other

contexts
and

the
im

pactofagile
practices

on
overscoping

C
ase

studies
focusing

on
investigation

of
ovescoping

and
the

im
pact

of
agile

practices
on

overscoping
FR

6
Investigation

of
additional

factors
that

m
ay

affect
decision

lead-tim
es

and
decision

outcom
es

C
ase

studies
focusing

on
investigating

additional
factors

that
could

affect
decision

lead-tim
es

and
decision

outcom
es

FR
7

Extending
the

proposed
visualization

techniques
on

the
system

requirem
ents

level
visualization.

Im
-

proving
the

user
interaction.

A
dditional

em
pirical

evaluations.

54



situations with uncertain scoping decisions. In this way, different manage-
ment techniques, such as introducing excess numbers of features into the
process and allowing the requirements process to find the strongest, can be
addressed.

The LOEM (Lost Opportunity EstimationModel) model is based on the
assumptions that the following factors are temporal functions:

• Market value An innovative feature conveying a competitive advan-
tage may have significantly greater value than, for example, a main-
tenance feature.

• Development costs Development costs accrue at different rates, at dif-
ferent phases of the project. Scoping decisions can include risk anal-
yses if these costs are known.

6.1.1 The Value and Cost Functions

The value function V (t) is the estimated market value, expressed as fol-
lows: ∫ b

a
V(t) dt (1)

where t = a and t = b are the times when the functionality starts to have
market value and the functionality cease to have any value in the market.

The cost function C (t) is the summation of the individual cost factors
over time, expressed as follows:

∫ b

a
C(t) dt where C(t) =

n

∑
k=1

∫ b

a
Ck(t) dt (2)

where a is the beginning of the work on a certain feature and b is either
the end of implementing the feature or the moment when the feature was
removed from the scope. k is the number of cost factors included in the
estimate, e.g. requirements management or development costs.

6.1.2 Return on Investment Threshold

We propose that features under investigation should be kept within project
scope until an ROI threshold level is reached. If the feature ROI is less than
the ROI threshold, the feature is canceled. The ROI threshold, δ is not
simply value/cost – it generally includes many other business factors such
as probability of market success, based on past performance, and analyses
of projected market conditions at the time of product release.

∫ b
a V(t) dt∫ b
a C(t) dt

≤ δ (3)

55



The flexibility inherent in the development process can be manipulated
by adjustments to the value of δ. We note that the value of δ may not be the
same for different types of features – speculative features may need larger
δ values than infrastructure or enabling features, see equation 3.

6.1.3 Feature Impact

The overall impact of a set of features within a development cycle can be
calculated using the following equation:

K

∑
k=1

(∫ b
a Vk(t) dt∫ b
a Ck(t) dt

− δk

)
(4)

where K is the number of features analyzed, a is the point in the project
when the feature was added and b when the feature was canceled. The
values for a and b are not the same for different k. If the feature impact is
negative, then the project manager can not expect that the product cycle
will be profitable as a whole. A negative value for feature impact is gener-
ally acceptable only if there are enough infrastructure features (whose true
value is deferred) to offset revenue generating features.

6.1.4 Initial LOEM Model Validation

The utility of this model was initially investigated using data from the
same large industrial project as in the rest of this paper. The project has
223 features and 120 features were canceled before the end of the analysis
period. The results from the initial validation shows that so much as 77%
of the total effort spent on features that were descoped before the end of
the requirements management process could have been saved if the project
management will immediately decide to descope each feature that passes
the critical level of 1,5 RIO threshold. Based on the promising results of the
initial validation, we believe that the model can be applied to both process
improvement and postmortem analysis of scoping decisions. For more de-
tails regarding the model, see Paper XV.

6.1.5 The Basic Lost Opportunity Estimation Model (BLOEM) for Re-
quirements Scoping

The Basic Lost Opportunity Estimation Model is a model dedicated to
companies that use agile-inspired software development methods. The
model supports requirements scoping in the environments where the time-
dependent business value estimates change as the requirements analysis
process progresses. Companies utilizing agile-inspired development mod-
els attempt to increase requirements process flexibility and process respon-
siveness to unexpected changes in scope using continuous scope update

56



and one-dimensional (relative) market-value estimates as a substitute for
real values (Racheva et al, 2010). The BLOEM attempts to control wasted
effort by facilitating earlier identification of feature cancellation candidates,
promoting constructive use of resources. Themodel enhances existing pro-
cesses by providing input to the keep/cancel scoping decision.

The BLOEM model operates on a single return on investment calcu-
lation represented by the value function which can be relative or absolute
value for candidate features. The model is based on the market-driven
requirements engineering premise that the value of a requirement is a tem-
poral function that is sensitive to market forces and opportunities - often a
feature will only have market value for a limited time. Even features that
offer unique capabilities see a significant reduction in their market value
when competitors catch up and offer the feature in their own products.

The total value V (t) is represented is the same way as in the LOEM
model, see equation 1. The value function will depend on the characteris-
tics of the target market and must be estimated when applying the model.

The BLOEM model assumes that features under investigation should
be kept within the project scope until a defined value threshold (δ), known
as the Final Decision Point (FDP), is reached. The threshold value can be
unique to each feature and should be estimated per feature. High-value
features (e.g. priority in the top 25%) could have the FDP threshold set
higher than less valuable features (e.g. priority in the bottom 25%). Final
decisions as to whether to keep (and realize the investment) or cancel (and
minimize losses) are then delayed for the most valuable features while the
least valuable features are canceled relatively early. The FDP can be used
as to enforce a budget-like approach to the scoping management process.

We consider all canceled features to be wasted effort. However, invest-
ments in features that are canceled before the threshold are considered con-
trolled waste: there is waste but it is under management control and the risk
of inter-feature dependencies is held to an acceptable level. Features that
are canceled after the final decision point are uncontrolled waste - something
unexpected has happened and time or resource constraints cannot be met
for this release cycle.

The flexibility of the decision process can be adjusted by tuning the
value of δ. The overall impact of a set of K of withdrawn or canceled features
is calculated using formula 5:

K

∑
k=1

∫ b
a Vk(t) dt − δk

K
(5)

6.1.6 Initial BLOEM Model Validation

BLOEM was initially validated using a set of 166 features analyzed by
a very-large company that utilizes agile-inspired development methods.
The feature status in the data set ranged from the definition phase, through

57



implementation, to completion. During this period 87 features were can-
celed. Under the assumption of the constant value function, the average
uncontrolled waste was 10.2% of the normalized value for the 25 features
that were withdrawn after their final decision point. Under the assumption
of the normal value function, the average uncontrolled waste was 20.3% of
the normalized value for the 4 features that were withdrawn after their
final decision point. The 25 features remained in the process for a cumula-
tive 1021 days after the FDP while the 4 features remained in the process
for a cumulative 75 days after the FDP. The resources expended upon these
features during this period represent both direct costs and lost opportunity
costs. For more details, please refer to Paper XXIV.

6.2 FR2: Providing Scalable Requirements Architectures

The amount of data in large-scale software engineering contexts continues
to grow and it challenges the efficiency of software engineering efforts. At
the same time, requirements and associated information are key elements
of successful software projects. For large and very-large projects, design-
ing scalable requirements architectures is one of the strategic challenges to
tackle, see Section 2.

We suggest a framework for requirements information modeling. The
iMORE framework (information Modeling in Requirements Engineering)
is developed with collaboration with our industry partners in an action
research mode (Robson, 2002). The framework is based on the distinc-
tion between the external information structures and internal information
structures, outlined in Figure 6 by a dashed line. The inclusion of the exter-
nal information structures was stressed as very important by the industrial
practitioners during the development of the model. This is caused by a
large and continuously changing number of sources of requirements and
other information types that directly interact with the company, including
competitors, suppliers, open source components and other partners. The
need to access external information is valid of all abstraction levels of the
model; from source code to product portfolio documents.

The information is divided into three main blocks: the upstream, the
requirements and the downstream blocks. In the ’upstream block’ all high-
level information is stored, including the goals, strategies and business
needs. In the ’requirements block’ all requirements associated information
is stored, including functional requirements, quality requirements, con-
straints, legal requirements and regulations. The source code, bug reports,
code documentation and other related information is stored in the ’down-
stream’ block.

The last main element in the iMORE framework is handling temporal
aspect of the information structure, depicted by a vertical arrow in Figure 6.
The temporal aspects include capturing the evolution of the data models
in terms of the evolution of the artifacts and their associated structures. To

58



 

Upstream  

Upstream  

Upstream: 
- Goals 
- Strategies 
- Business needs 

Requirements 
- Functional 

 - Quality  
- Constraints 

Upstream  
Downstream 
- Source code 
-    Bug reports 
- Code documentation 

A
ttributes 

&
 dependencies  

UeaFeatures

UFeTest cases  

Structures of external  
information that contribute  
and interact with the  
company 

External structures An internal structure

WHY

HOW

A company context 

T
im

e evolution 

Figure 6: The iMORE modeling framework.

Figure 7: The iMORE meta-model.

59



manage this aspect, the underlying meta-model defines ’Evolution’ type of
links between two artifacts. Using this category of links, users can handle
the evolution over time of artifacts and their structure.

A simple traceability meta-model derived from related works (Ramesh
and Jarke, 2001) and previous research (El Ghazi and Assar, 2008) was used
to design the information structure. The information structure is depicted
in Figure 7. The structure of an element to be stored in the repository and to
be traced in the software project is constructed using two generic concepts:
artifact and attribute. An attribute can be an atomic element of information
(e.g. owner, release date, version number, URL) or any complex structure
(e.g. list of modification dates). The set of attributes is not only limited to a
particular block of information but may also cover several blocks or even
the entire information structure creating a set of ’global’ attributes. Finally,
any artifact in the repository can be linked to other artifacts. Five cate-
gories of links are predefined in the iMORE meta-model; they are briefly
explained using the following examples:

• A requirement document A contributes to the specification of a de-
sign feature B

• A design feature A satisfies an external law based constraint B

• A design feature A depends on another design feature B

• A design specification A is the result of the evolution of a design
specification B

• An external law based constraint A is the rationale for a requirement
document B

The initial evaluation of the iMORE framework was conducted with
industry experts at three companies. All five respondents confirmed the
need for modeling requirements information in a more findable and un-
derstandable way. Further, all respondents agreed to the distinction and
stressed that external information currently dominated their daily work.
Respondents suggested what information and when should be integrated
with the model, see Paper XXVI for more details.

One of five respondents suggested that managing the temporal aspect
of the information structure isn’t so important. Another respondent sug-
gested creating an attribute called "‘period of validity"’ for managing the
temporal aspect. Two respondents suggested using triggers based on at-
tributes to manage the temporal aspect. Finally, one respondent suggested
a method based on combining baselines and trigger-based updates. For
more details regarding the iMORE model and the initial evaluation, please
refer to Paper XXVI.

60



6.3 FR3: Additional investigations of possible usage of a
linguistic tool support for requirements management
related tasks.

Paper II presents the results from an evaluation of linguistic support for
identification of similar requirements. The natural language processing
field can provide a number of other techniques that can automatically ana-
lyze natural language documents. For example, Latent Semantic Indexing
(De Lucia et al, 2007), probabilistic models (Rayson et al, 2000), or swarm
techniques could be used to analyze requirements (Sultanov and Huffman
Hayes, 2010). Future research is planned to focus on unsupervised natural
language processing methods, for example clustering (Duan et al, 2009a)
or searching methods, that may provide valuable help with impact analy-
sis. Finally, it is also planned to test the above mentioned techniques for
other relevant tasks in large-scale requirements management, e.g. creating
data minable regulatory codes, see Paper XXII for more details.

6.3.1 Supporting the Human Analyst

Another possible alley for future research is to focus on the manual part
of the process when the human analyst need to analyze candidate links
and determine which of them are true link and which are false positives.
Recent work by Huffman Hayes et al (2010) focuses on the role of human
analyst in requirements traceability. What is missing in their work is the
ability of the automated traceability method to show to the analyst the dif-
ference between the true positive and the false positive. This brings us
to the challenging problem of relevance in information science (Borlund,
2003).

Several measureswere proposed to better evaluate IRmethods. Järvelin
and Kekäläinen (Järvelin and Kekäläinen, 2002) proposed measures based
on cumulated gain, combining the degree of relevance and rank. They
give an indication about the quality of a method, but does not evaluate
the support for decision making. Spink and Greisdorf (Spink and Greis-
dorf, 2001) suggested the median effect as a measure to evaluate the way
the distribution of relevance judgments of retrieved items are generated
by a method. However, this method is mainly focused on being an alterna-
tive to dichotomous measures. Kekäläinen and Järvelin (Kekäläinen and
Järvelin, 2002) also identified the weakness of just evaluating binary rele-
vance as is the case for recall and precision, and they proposed generalized
recall and precision, which reward IR methods that extract more relevant
items. These measures also do not evaluate how easy it is to make deci-
sions. Other measures, e.g. expected search length (Cooper, 1968), normal-
ized recall measure (Rocchio, 1966), sliding ratio measure (Pollack, 1968),
satisfaction-frustration-total measure (Myaeng and Korfhage, 1990) can all
be used to credit methods presenting relevant items high up the list, but

61



again the evaluation of decisions making support is not targeted.
Our approach to the problem above is to introduce the Signal-to-Noise

Ratio (SNR), a measure widely used in science and engineering to quantify
how much a signal has been corrupted by noise, to information retrieval
research and requirements engineering.

SNR =
Psignal

Pnoise
(6)

SNR =
mu

sigma
(7)

In its classical definition, see equation 6, signal-to-noise is a ratio be-
tween the average power of the signal (Psignal) and the average power of
the noise (Pnoise) (Gonzalez and Woods, 2006). Since signals have usually a
very wide dynamic range, the logarithmic decibel scale is used to express
SNR. There exist alternative definitions of SNR, like for example the ratio
ofmean (mu) to standard deviation (sigma) of a signal ormeasurement, see
equation 7. This definition is commonly used in image processing (Gon-
zalez and Woods, 2006; Stathaki, 2008; Raol, 2009; Russ, 1999) where the
SNR of an image is usually calculated as the ratio of the mean pixel value
to the standard deviation of the pixel values over a given neighborhood.

The higher the ratio, the less obtrusive the background noise is. In other
words it is a ratio between themeaningful information and the background
noise. In our case, the signal is represented by the correct link between two
objects while the noise is represented by all other potential links.

Precision and recall are widely used statistical classifications. They can
be seen as measures of exactness or fidelity (precision) or completeness
(recall) (Baeza-Yates and Ribeiro-Neto, 1999). If every result retrieved from
the task is relevant, we can say that the precision is equal to 1. However,
the precision value 1 does not say if all existing relevant documents were
retrieved. Therefore, if all relevant documents are retrieved by the task
the recall will be 1. Similarly as for the precision, the recall value 1 does
not say anything about howmany irrelevant document were also retrieved
with all relevant. These measures can be suitable for measuring the quality
of the result of the automatic classification task, but do not assume that
someone, for example a requirements analyst will use the results as a list
of possible candidates in linking similar objects (Natt och Dag et al, 2006).
In this case, the measures described above give only an indication of the
entire result set, without assessing the quality of how distinctive the correct
answers are from the incorrect ones. We assume that this support can help
the human analyst to assign more correct links and minimize the number
of false positive links (Natt och Dag et al, 2006).

62



6.3.2 Rationale for defining Signal-to-Noise ratio

To illustrate the rationale for defining yet another measure, we use the ex-
ample of linguistic tool support for requirements consolidation from Paper
II. In this case, a similarity measure was used to propose a list of require-
ments candidates and their similarity score to one actually analyzed. The
requirements analyst uses the resulting list of candidates to assign links
between two or more similar requirements. In the replicated experiment
performed in Paper II, a set of 30 requirements has been analyzed against
160 other requirements. The key with correct answers, consisting of 20
links, was prepared before the experiment. Once the correct links were as-
signed they have been checked with the output of the tool to assess which
position on the candidate list they will be classified.

Figure 8: Histogram of the positions of similar requirements in the auto-
matically produced ranked list of similar requirements (Natt och Dag et al,
2006)

Figure 8 depicts a histogram of the distribution of the positions at which
the correct links appear on the ranked list of candidates produced by the
tool Natt och Dag et al (2006). For the data set used in Natt och Dag et al
(2006), almost all (17 out of 20) of the correct answers end up at position
8 or better in the ranked list, and could therefore be quickly spotted. The
question that remains unanswered here is what are the similarity scores for
all the incorrect links proposed on the list (false positives). For example, if

63



a correct answer has position 8 on the list, what are the similarity values
for the 7 other answers ranked as more similar than the correct answer.
These false positives need to be analyzed in order to find the correct link.
The decision which links to reject may be hard if the similarity scores of
all incorrect but highly ranked requirements are very similar to the score
of the correct answer. In other words, the analysts may get mislead by the
fact that the noise is highly ranked than the correct signal.

We propose three versions of Signal-to-Noise that can be applied for
evaluation of automatic methods for supporting decision-oriented tasks in
software and requirements engineering. The first measure, called Individ-
ual SNR is the ratio between the correct answer and the closest incorrect
answer on the list of candidates, see equation 8. In a case when the correct
answer is not ranked as number one on the list of candidates, the Individual
SNR is an average value of the two closest incorrect proposals, one higher
than the correct one and one lower than the correct answer. The individual
SNR describes the ability of spotting the correct answer among the closest
proposed incorrect answer(s).

SNRindividual =
score_corr

(score_incorr_down + scope_incorr_up)/2
(8)

The second version of SNR we propose is the Maximum Noise SNR
which is the ratio of the similarity degree of the correct answer of the can-
didates list to the maximum value of similarity of the incorrect answer pre-
sented in the list of candidates, see equation 9.

SNRMax =
score_corr

∑
MAX

score_incorrect
(9)

The third proposed version of SNR is called Average SNR. It is defined
as the ratio between the value of similarity of the correct answer to the
average noise ratio value above a certain threshold, see equation 10. The
threshold in Figure 8 has been set to 15, which means that candidate re-
quirements that scored below number 15 on the candidate list were not
considered. The average SNR definition considers a similarity value or
any other measure used rather than a certain number on the ranked list as
the threshold.

SNRAvg =
score_corr

n

∑
i=1

score_incorrect

nbr_o f_incorrect_hits

∀i < threshold (10)

6.3.3 Empirical Application of SNR

The initial evaluation of the SNR measures was performed on the same
dataset as used in Paper II. The analysis was performed for two methods

64



of measuring the similarity between the requirements: (1) the linguistic
method based on Vector Space Model (Natt och Dag et al, 2005; Natt och
Dag, 2010) and (2) the Normalized Compression Distance (NCD) method
based on information theory (Cilibrasi et al, 2012). The set contains 30 re-
quirements that are checked against 160 requirements. There exist 20 cor-
rect links between the requirement sets. Knowing which links are correct,
we compared the values of the similarity scores for the correct and incor-
rect answers.

The results from measuring the three types of SNR are presented in Ta-
bles 5 and 6. For the average SNR calculations we use similarity value
0.5 as the threshold value. The very low similarity measures of the NCD
forced us to lower the threshold to 0.4 for this method, accepting that direct
comparisons no longer are possible. Requirement R19, the only quality re-
quirement in the dataset, was in all calculations considered as an outlier
and disregarded. Its format and structure leads to too high similarity val-
ues.

A quick comparison between the two techniques is presented in Table 7.
It is rather clear that both methods provide poor support for the analyst
who has to make decisions supported by the similarity value. The SNRs
are in all cases close to 1 and the correct link is in the most cases not the
first on the list. The linguistic VSM based approach (Natt och Dag et al,
2005; Natt och Dag, 2010) has in all cases higher SNR than the normalized
compression distance method.

As it can be seen in Table 5 only for one requirements (R19) the SNR
is more than 2. The is the above mentioned quality requirement that was
consider as an outlier. In all other cases the values range from 0.69 to 1.2,
depending on the type of the SNR. The Na values in Tables 5 and 6 for the
AvgSNR corresponds in this case to the situation when the measurement
could not be performed: for example in case of R9 and R16 both the correct
answer and the highest noise were below the threshold 0.5. Moreover, for
some data points, the values for MaxSNR and AvgSNR are identical (R3
and R17), which means in this case that there are only two data points
above the threshold and the top candidate is the noise (R3 case) or a correct
signal (R17). The equal values for both IndSNR and MaxSNR indicate that
the correct answer is number one on the list of candidates, see R2, R5, R11,
R17, R18 and R19 in Table 5. The average value for IndSNR is slightly
higher (1.035) than for MaxSNR (0.93) and AvgSNR (0.974) 7. Finally, the
biggest median value represents results for AvgSNR (1.06), comparing to
IndSNR(1.009) and MaxSNR(0.94)

The results for measuring all three types of SNR for the Normalized
Compression Distance method of assessing the similarity between require-
ments are more dispersed, see Table 6. The values range from 0.28 to 1.04.
The positions where the correct answer ended up on the list of candidates
are much lower than for the linguistic similarity measure method, only for
4 cases it is within the top 10 candidates. The average and the median for

65



Table 5: The results from measuring all three types of SNR for the ReqSim-
ile tool that uses the VSM model.

Requirement IndSNR MaxSNR AvgSNR Pos. on the
list

R1 (SC13) 1.04 0.98 1.16 2
R2 (41104) 1.26 1.26 1.34 1
R3 (41112) 1.12 0.97 0.97 2
R4 (41114) 1 0.68 0.68 3
R5 (41123) 1.04 1.04 1.14 1
R6 (41301) 1.005 0.89 0.95 5
R7 (41307) 1.009 0.57 0.62 64
R8 (41309) 0.97 0.79 0.83 15
R9 (41414) 1.02 0.91 Na 3
R10 (41601) 0.99 0.95 1.19 3
R11 (41606) 1.008 1.008 1.07 1
R12 (41608) 0.99 0.94 1.06 5
R13 (41710) 1.02 0.89 0.92 8
R14 (41804) 1.009 0.94 1.20 6

1.001 0.91 1.20 8
R15 (41811) 1.001 0.89 1.06 12
R16 (4205) 1.01 0.89 Na 2
R17 (43302) 1.12 1.12 1.12 1
R18 (43303) 1.05 1.05 1.05 1
R19 (43402) 2.7 2.7 Na 1

66



Table 6: The results from measuring all three types of SNR for the tool
using the NCD model.

Requirement IndSNR MaxSNR AvgSNR Pos. on the
list

R1 (SC13) 1.03 0.93 0.97 4
R2 (41104) 1 0.49 0.49 111
R3 (41112) 1 0.75 Na 20
R4 (41114) 1.06 0.84 Na 5
R5 (41123) 1.01 1.01 1.04 1
R6 (41301) 0.99 0.42 0.48 155
R7 (41307) 1.003 0.66 0.72 97
R8 (41309) 0.998 0.84 0.86 57
R9 (41414) 1 0.597 0.62 134
R10 (41601) 1.007 0.66 0.79 80
R11 (41606) 1.01 0.8 Na 52
R12 (41608) 0.98 0.85 0.92 13
R13 (41710) 1 0.89 1 9
R14 (41804) 0.993 0.91 0.99 14

1 0.77 0.84 73
R15 (41811) 1 0.73 NaN 95
R16 (4205) 0.93 0.507 0.57 92
R17 (43302) 0.99 0.564 0.564 41
R18 (43303) 1 0.537 0.537 29
R19 (43402) 0.996 0.28 0.389 136

67



Table 7: Comparison of the three SNR measures and position of the correct
link for VSM and NCD

VSM NCD

Average IndSNR 1.035 1
Median IndSNR 1.009 1
Average MaxSNR 0.930 0.724
Median MaxSNR 0.94 0.75
Average AvgSNR 0.974 0.759
Median AvgSNR 1.06 0.75
Average Position 7.526 56.947
Median Position 3 52

the IndSNR are the highest among all types of SNR.
The results presented above, although preliminary, give a clear indica-

tion that the studied method provide poor support for the human analyst.
Confronted with very hardly distinguishable similarity values, the analyst
has to review a large amount of candidate links in order to find the correct
answers. This creates a risk for additional false positives, which is actually
confirmed by Cuddeback et al (2010). Initial results clearly indicate that the
analyst could have difficulties in finding the right answer when looking at
the similarity values. Thus, future work is needed to better understand
how IR methods can better support human analyst judgments.

6.4 FR4: Methods for handling OSRs.

Paper III reported that OSRs have a serious impact on companies develop-
ing software intensive systems. At the same time, 73.6% of our respondents
reported that their requirements engineering process does not take OSRs
into consideration. Therefore, future work should be directed towards de-
veloping requirements management processes that take OSRs into consid-
eration.

Paper III also reports that identification and management of OSRs is
predominantly a manual activity, and less than 10% of the respondents re-
ported having any automated functionality for OSRs identification. Thus,
it is planned to further research scalable methods and tools for automated
identification and management of OSRs.

One avenue for future research is to integrate identification of obsolete
elements into the iMORE modeling framework, see Section 6.2. Using the
"‘period of validity"’ attribute could be one of the possible mechanisms of
managing the temporal aspect of requirements. Furthermore, creating a
trigger that indicates when a requirement is implemented or integrated in

68



a product, or has been integrated for the last 2 releases or more may help
to identify OSRs. Finally, identifying potentially obsolete requirements
among requirements that were not changed, edited or modified could be
one of the possible ways to manage them.

Another interesting avenue for future research is to investigate the fea-
sibility of using garbage collection (McCarthy, 1960) methods to manage
obsolete requirements. Several possible algorithms for garbage collection
were proposed, e.g. references counting (Collins, 1960), "mark and sweep"
algorithm (McCarthy, 1960) and the copying algorithm (Minsky, 1963). The
references counting and "mark and sweep" algorithms need to analyze
each allocated block of memory, which in requirements case would be all
requirements in the requirements database. Another challenging problem
with applying these methods for requirements garbage collection is the
fact that they rely on pointers pointing at the memory blocks. Thus, it
seems that accurate traceability is a prerequisite of requirements garbage
identification using the above methods. Since both establishing (Hayes
Huffman et al, 2003) and maintaining (Cleland-Huang et al, 2003) trace-
ability links are considered challenging, this may negatively impact the
accuracy of the garbage collection algorithms. The issue of accurate trace-
ability links need to be resolved while applying the copying algorithm for
requirements garbage collection, while copying the objects from the "‘ac-
tive objects"’ space to "‘garbage"’ space.

Two additional and interesting issues should be investigated and solved
when attempting to use classical garbage collection algorithms on require-
ments. First, how to know when to run the garbage collection? The "‘full
memory"’ trigger to start garbage collection can’t be directly reused as the
requirements databases get rarely full. Thus, it appears to be more logical
to start requirements garbage collection when a number of requirements
triggers are activated, based on certain attributes or other criteria. Second,
an issue remains about how to categorize requirements that do not have
traceability links. The dataset used in Paper II contained these types of
requirements. Although not linked with other requirements or other doc-
uments, they could still be needed for the project purposes and thus should
not be garbage collected.

6.5 FR5: Investigation of overscoping in other contexts and
the impact of agile practices on overscoping.

Further work in relation to Paper IV and research question RQ4 focuses on
more case studies that investigate overscoping at other companies. It is es-
pecially interesting to investigate overscoping at companies that use agile-
inspired processes and methods. The questionnaire respondents in Paper
IV mostly agreed that the three identified agile requirements engineering
practices may positively impact the challenge of overscoping. Further, the
respondents suggested that overscoping is still present in the new (agile)

69



way of working at the case company, thus it is more manageable. There-
fore, additional investigations are necessary to better understand how the
iterative requirements engineering (Cao and Ramesh, 2008) helps to avoid
overscoping.

The impact of other aspects such as organization set up, the involve-
ment of development teams in early phases of requirements definition and
communication on overscoping is also planned to be investigated in the
future. In related paper XX, a case study aiming at a deeper understanding
the causes and effects of communication gaps in large-scale industrial set
up is presented. We discovered that communication gaps are caused by the
following factors: scale, common view, temporal aspect and decision structures.

The size and complexity of the software development increases the
challenge of requirements communication. Study XX discovered commu-
nication gaps between the requirements engineers and a number of stake-
holders, result in missing requirements, e.g. for quality. Instead, these
requirements surface in later phases, thus, incurring increased cost. Com-
mon views and mutual understanding are necessary for communication to
be productive. Weak understanding of each other’s roles and responsibili-
ties causes gaps in communication. For example, the testers’ competences
are not utilized when defining and reviewing requirements, or the require-
ments engineers are not consulted when making implementation choices
that affect the requirements.

Temporal aspects can came into play when there is a lack of continuity
in requirements awareness through the project life cycle. This may cause
gaps in the requirements communication. Hand-over points, e.g. defined
by the process, where the responsibility is passed on to new roles constitute
a risk of missing vital requirements knowledge and awareness. This may
result in requirements being misunderstood and incorrectly implemented,
or, making decisions that affect the requirements without considering all
relevant aspects. For example, if there is no requirements awareness in the
implementation phase, the developers tend tomake their own requirement
modifications without considering the impact on the customer or on other
parts of the development organization, such as test.

Decision structures also contribute to communication gaps. Weak, or un-
clear, visions or goals for the software development (due to not being com-
municated or not being clear enough) contributes to weak communication,
primarily, between those defining the requirements and the development
unit, since there is no mutual understanding of the goal.

Paper XX also reports that communication gaps can have serious and
expensive consequences in terms of wasted effort and quality issues, as
well as, not meeting the customers’ expectations and even communicating
an incorrect picture of what requirements a product fulfills. Furthermore,
communication gaps can contribute to overscoping and to even more com-
munication gaps, i.e. the software development ends up in a "‘vicious cy-
cle"’.

70



Another interesting avenue for future research about overscoping is to
investigate the impact of cost and schedule estimations on overscoping.
Achieving correct cost and schedule estimation at the high-level (in agile
projects) is considered challenge (Ramesh et al, 2010). Thus, transitioning
into agile-inspired processes may not directly mitigate the negative impact
of inaccurate cost estimations on overscoping. In a related study, Jørgensen
et al (2004) discovered that too optimistic estimates may lead to effort over-
runs (in other words overscoping) for projects where complete specifica-
tion and quality were prioritized. This relates to one of the causes of over-
scoping discovered in Paper IV, namely detailed requirements specifica-
tion produced upfront, cause C5. In another study, Jørgensen et al (2012)
studied the imperfect relation between the actual and the estimated cost,
concluding that projects with the size measured based on the actual cost
report an increase in cost overrun with increase project size. Thus may
suggest that for very-large projects, the cost overrun will be quite high,
which confirms findings from Paper I. Finally, as reported by Jørgensen,
(2004), practitioners perceived factors outside their own control as a rea-
son for effort estimates errors.

6.6 FR6: Investigation of additional factors that may affect
decision lead-times and decision outcomes.

Two of the investigated in Paper V relationships turned out to be statis-
tically significant and confirmed by the survey respondents: (1) the lead-
time to make a decision increases when more product are affected by a
decision and (2) change requests issued by important customer are more
likely to be accepted. Therefore, future work should be directed towards
investigating why the other investigated relationships turned out to be not
statistically significant.

One interesting avenue for future research is to investigate the relation-
ship between time to make a decision and the importance of the customer.
62.8% of survey respondents indicated that time to make the decision is
shorter when the decision is filled by an important customer. In a related
study, Taylor et al (Taylor et al, 2011) reported that large customers more
frequently get their requests implemented. Paper V confirms this state-
ment both in the statistical analysis and in the survey. Therefore, it is a
subject of future work to further explore if this statement can be extended
to the decision outcome aswell as if this relationship holds for further other
datasets with more balanced ratio of internal to external errands.

Another interesting avenue for future research is to further investigate
if the release date or number may influence the decision lead-time and
outcome. Paper V could not statistically confirm that this factor affects
decision lead-time or outcome due to conflicting results between the sta-
tistical analysis and the survey. At the same time, the release planning
literature Ruhe (2003); Ruhe and Greer (2003); Ruhe and Saliu (2005); Ngo-

71



The and Ruhe (2005b,a); Ruhe (2009); Karlsson and Ryan (1997); Bagnall
et al (2001) implicitly suggest that the next release is the most important
and thus decision lead-times should be shorter for errands regarding this
release. Thus, we believe that future investigations are needed to resolve
the role of the release number in decision making efficiency and outcomes.

Additional factors such as the number of stakeholders involved or the
number of dependencies between software components could also affect
decision lead-times and outcomes. Furthermore, future work is planned
to formulate a function of estimated lead-time in relation to the decision
outcome based on the identified impacting factors and gathered empirical
data. Since the average lead-time needed to reject a decision is statisti-
cally significantly longer that the lead-time needed to accept a decision,
see Paper V for more details, there should exist a "tilting point" in time
after which most change requests are rejected. We believe that this tilting
point is related to the average time that a product generated value, the
characteristics of the customers and stakeholders, the development model
and the release frequency used by a company. These assumptions should
be investigated together with the final decision point concept presented in
related Papers XV and XXIV.

6.7 FR7: Extending the proposed visualization techniques
on the system requirements level visualization. Improv-
ing the user interaction. Additional empirical evalua-
tions.

A carefully designed visualization could assist with for example a typical
requirements comprehension problem of gaining a quick assessment on
the ”health” of a set of requirements (Gotel et al, 2007). This task is usually
impeded by the need to browse through disjoint textual requirements doc-
umentation and accompanying models. The visualizations presented in
Papers I and VI bring a quick and clear assessment on the scoping process
for large projects, but can also be a base for more in-depth analysis while
envisioning details about the scoping process. Thus, additional studies on
finding effective visual means of scope dynamics visualization are in the
agenda of further research.

Especially, the research is planned to be focusing on providing useful
visual means that can help project and product managers to quickly as-
sess the efficiency of the scoping process in terms of resource situation and
scope capacities. Furthermore, a more in-depth study that aims for defin-
ing additional scope tracking measurements and applying them into the
case company context data, is planned. Finally, additional studies on find-
ing optimal visual metaphors for complementary aspects of scoping are
planned as further research topics.

72



REFERENCES

Bibliography

Abramovici M, Sieg OJ (2002) Status development trends of product life-
cycle management systems. In: Proceedings of International Conference
Integrated Product and Process Development, pp 55–70

Aguilera C, Berry D (1991) The use of a repeated phrase finder in require-
ments extraction. Journal of Systems and Software 13:209–230

Albourae T, Ruhe G (2006) Lightweight replanning of software product
releases. In: Proceedings of the 1st International Workshop on Software
Product Management (IWPSM 2006), pp 27–34

Andriole S (1998) The politics of requirements management. IEEE Software
15(6):82 –84

Antoniol G, Canfora G, Casazza G, De Lucia A, Merlo E (2002) Recovering
traceability links between code and documentation. IEEE Transactions
on Software Engineering 28(10):970 – 983

Asuncion H, Arthur U, Taylor U, Richard N (2010) Software traceability
with topic modeling. In: Proceedings of the 32nd ACM/IEEE Interna-
tional Conference on Software Engineering - Volume 1, ACM, New York,
NY, USA, ICSE ’10, pp 95–104

Aurum A, Wohlin C (2002) Applying decision-making models in require-
ments engineering. Information and Software Technology 45(14):2–13

Aurum A, Wohlin C (2003) The fundamental nature of requirements en-
gineering activities as a decision-making process. Information and Soft-
ware Technology 45(14):945–954

Aurum A, Wohlin C (2005) Engineering and Managing Software Require-
ments. Springer

Avesani P, Bazzanella C, Perini A, Susi A (2005) Facing scalability issues
in requirements prioritization with machine learning techniques. Paris,
France, pp 297 – 305

Avison D, Fitzgerald G (1998) Information systems development method-
ologies techniques, and tools. John Wiley

Baeza-Yates R, Ribeiro-Neto B (1999) Modern Information Retrieval.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA

Bagnall A, Rayward-Smith V, Whittley I (2001) The next release problem.
Information and Software Technology 43(14):883 – 90

73



REFERENCES

Bakalova Z, Daneva M, Herrmann A, Wieringa R (2011) Agile require-
ments prioritization: What happens in practice and what is described in
literature. In: Requirements Engineering: Foundation for Software Qual-
ity. Proceedings of the 17th International Working Conference, REFSQ
2011, Berlin, Germany, pp 181 – 95

Ball T, Erick S (1981) Software visualization in the large. IEEE Computer
29(4):3–14

Balzer R (1981) Transformational implementation: An example. IEEE
Transactions on Software Engineering 7(1):3–14

Basili V (1996) The role of experimentation in software engineering: Past,
current and future. In: Proceedings of the 18th International Conference
on Software Engineering (ICSE 96), pp 442–449

Basili V, Rombach D (1988) The tame project: Towards improvement-
oriented software environments. IEEE Transactions on Software Engi-
neering 14(6):758–773

Beck K (2000) Extreme Programming Explained: Embrace Change.
Addison-Wesley

Berander P (2004) Using students as subjects in requirements prioritiza-
tion. In: Proceedings of the 2004 International Symposium on Empirical
Software Engineering, pp 167–176

Berenbach B, Paulish D, Kazmeier J, Rudorfer A (2009) Software & Systems
Requirements Engineering: In Practice. Pearson Education Inc.

Bergman M, King J, Lyytinen K (2002) Large-scale requirements analysis
revisited: The need for understanding the political ecology of require-
ments engineering. Requirements Engineering Journal 7(3):152–171

Berntsson Svensson R (2009) Managing quality requirements in software
product development. Licentiate Thesis

Berntsson Svensson R (2011) Supporting release planning of quality re-
quirements: The quality performance model. PhD thesis, Lund Univer-
sity, Sweden

Beydeda S, BookM, Gruhn V (2005) Model-Driven Software Development.
Springer-Verlag

Bhat J, Gupta M, Murthy S (2006) Overcoming requirements engineering
challenges: Lessons from offshore outsourcing. IEEE Software 23(5):38–
44

74



REFERENCES

Biffl S, Thurnher B, Goluch G, Winkler D, Aigner W, Miksch S (2005) An
empirical investigation on the visualization of temporal uncertainties in
software engineering project planning. In: Proceeding of the Interna-
tional Symposium on Empirical Software Engineering (ISESE 2005), pp
437–446

Boehm B (1988) A spiral model of software development and enchance-
ment. Computer 22(5):61–72

Boehm B (1989) Tutorial: Software risk management. Tech. Rep. ISBN-0-81
86-8906-4, IEEE Computer Society

Boehm B (2006) Some future trends and implications for systems and soft-
ware engineering processes. Systems Engineering 9(1):1–19

Booth R, Regnell B, Aurum A, Jeffrey R, Natt och Dag J (2001) Market-
driven requirements engineering challenges: An industrial case study of
a process performance declination. In: Proceedings of the 6th Australian
Workshop on Requirements Engineering (AWRE 2001), pp 41–47

Borlund P (2003) The concept of relevance in ir. J Am Soc Inf Sci Technol
54(10):913–925

Brinkkemper S (2004) Requirements engineering research the industry is
and is not waiting for. In: Proceedings of 10th Anniversary Interna-
tional Workshop on Requirements Engineering: Foundation for Soft-
ware Quality (REFSQ 2004), pp 41–54

Cao L, Ramesh B (2008) Agile requirements engineering practices: An em-
pirical study. IEEE Software 25:60–67

Carlshamre P (2002a) Release planning in market-driven product develop-
ment: Provoking an understanding. Requirements Engineering Journal
7(3):139–151

Carlshamre P (2002b) A usability perspective on requirements engineer-
ing – frommethodology to product development. PhD thesis, Linköping
University, Sweden

Carlshamre P, Regnell B (2000) Requirements lifecycle management and
release planning in market-driven requirements engineering processes.
In: Proceedings of the 11th International Workshop on Database and
Expert Systems Applications, pp 961–965

Carlshamre P, Sandahl K, Lindvall M, Regnell B, Natt och Dag J (2001) An
industrial survey of requirements interdependencies in software prod-
uct release planning. In: Proceedings of the Fifth IEEE International
Symposium on Requirements Engineering (RE 2001), pp 84–91

75



REFERENCES

Carman D, Dolinsky A, Lyu M, Yu J (1995) Software reliability engineering
study of a large-scale telelcommunications software system. In: Proceed-
ings of the International Symposium on Software Reliability Engineer-
ing, pp 350–359

Carmel E (1999) Global software teams: collaborating across borders and
time zones. McGraw-Hill, New york

Carter R, Anton A, Dagnino A,Williams L (2001) Evolving beyond require-
ments creep: a risk-based evolutionary prototyping model. In: Proceed-
ings of the Fifth IEEE International Symposium onRequirements Engi-
neering, pp 94 –101

Chen J, Reilly R, Lynn G (2005) The impacts of speed-to-market on new
product success: the moderating effects of uncertainty. IEEE Transac-
tions on Engineering Management 52(2):199–212

Chrissis M, Konrad M, Shrum S (2004) CMMI: Guidelines for Process Inte-
gration and Product Improvement. Pearson Education Inc.

Cilibrasi R, Cruz A, Rooij S, Keijzer M (2012) The complearn suite website.
������������	
������	�����������
�

Cleland-Huang J, Mobasher B (2008) Using data mining and recommender
systems to scale up the requirements process. In: Proceedings of the 2nd
international workshop on Ultra-large-scale software-intensive systems,
pp 3–6

Cleland-Huang J, Chang C, Christensen M (2003) Event-based traceability
for managing evolutionary change. Software Engineering, IEEE Trans-
actions on 29(9):796 – 810

Cleland-Huang J, Settimi R, Duan C, Zou X (2005) Utilizing supporting
evidence to improve dynamic requirements traceability. In: Proceedings
of the 13th IEEE International Conference on Requirements Engineer (RE
2005), pp 135–144

Cleland-Huang J, Czauderna A, Gibiec M, Emenecker J (2010) A machine
learning approach for tracing regulatory codes to product specific re-
quirements. In: 2010 ACM/IEEE 32nd International Conference on Soft-
ware Engineering, vol 1, pp 155 –164

Cleland-Huang J, Gotel O, Zisman A (2012) Software and Systems Trace-
ability. Springer

Clements P, Northrop L (2002) Software Product Lines: Practices and Pat-
terns. Addison-Wesley

Collins G (1960) A method for overlapping and erasure of lists. Commun
ACM 3(12):655–657

76



REFERENCES

Cooper W (1968) Expected search length: A single measure of retrieval
effectiveness based on the weak ordering action of retrieval systems. J
Am Soc Inf Sci 19(1):30–41

Cuddeback D, Dekhtyar A, Hayes J (2010) Automated requirements trace-
ability: The study of human analysts. In: 18th IEEE International Re-
quirements Engineering Conference (RE’10), pp 231 –240

Cunningham W (2012) Manifesto for agile software development. �����
�����	
����
��������

Curtis B, Krasner H, Iscoe N (1988) A field study of the software design
process for large systems. Communications of the ACM 31(11):1268–
1287

Curtis W, Krasner H, Shen V, Iscoe N (1987) On building software process
models under the lamppost. In: Proceedings of the 9th international con-
ference on Software Engineering (ICSE 1987), pp 96–103

Cusumano M (2008) The changing software business: moving from prod-
ucts to services. Computer 41(1):20 – 7

Damian D (2007) Stakeholders in global requirements engineering:
Lessons learned from practice. IEEE Software 24(2):21–27

Damian D, Zowhgi D (2003) Requirements engineering challenges in
multi-site software development organizations. Requirements Engineer-
ing Journal 8(3):149–160

Davison R, Martinsons M, Ned K (2004) Principles of canonical action re-
search. Information Systems Journal 14(1):65–86

De Lucia A, Fasano F, Fausto F, Oliveto R, Tortora G (2007) Recovering
traceability links in software artifact management systems using infor-
mation retrieval methods. ACM Trans Softw Eng Methodol 16(4)

DeBaud J, Schmid K (1998) Identifying and evolving the scope of software
product lines. In: In Proceedings of the European Reuse Workshop 1998
(ERWŠ98), pp 69–72

DeBaud J, Schmid K (1999) A systematic approach to derive the scope of
software product lines. In: Proceedings of the 21st International Confer-
ence on Software Engineering (ICSE 1999), pp 34–43

DeGregorio G (1999) Enterprise-wide requirements and decision manage-
ment. In: Proceedings of the 9th International Symposium of the Inter-
national Council on System Engineering, pp 775–582

DeMarco T (1978) Structured Analysis and System Specification. Yourdon
Press

77



REFERENCES

DeMarco T, Lister T (2003) Risk management during requirements. Soft-
ware, IEEE 20(5):99 – 101

Duan C, Cleland-Huang J (2006) Visualization and analysis in automated
trace retrieval. In: Proceedings of the First International Workshop on
Requirements Engineering Visualization (REV 2006), pp 54–65

Duan C, Laurent P, Cleland-Huang J, Kwiatkowski C (2009a) Towards au-
tomated requirements prioritization and triage. Requirements Engineer-
ing Journal 14(2):73–89

Duan C, Laurent P, Cleland-Huang J, Kwiatkowski C (2009b) Towards au-
tomated requirements prioritization and triage. Requir Eng 14(2):73–89

Dulac N, Viguier T, Leveson N, Storey M (2002) On the use of visualization
in formal requirements specification. Los Alamitos, CA, USA, pp 71 – 80

Easterbrook SM, Singer J, Storey M, Damian D (2007) Guide to Ad-
vanced Empirical Software Engineering, Springer, chap Selecting Em-
pirical Methods for Software Engineering Research, pp 285–311

Ebert C (2004) Dealing with nonfunctional requirements in large software
systems. Annals of Software Engineering 3(1):367–395

Edwards M, Flanzer M, Terry M, Landa J (1995) Recap: a requirements
elicitation, capture and analysis process prototype tool for large complex
systems. In: Proceedings of the First IEEE International Conference on
Engineering of Complex Computer Systems, 1995. Held jointly with 5th
CSESAW, 3rd IEEE RTAW and 20th IFAC/IFIP WRTP, pp 278–281

El Ghazi H, Assar S (2008) A multi view based traceability management
method. In: Research Challenges in Information Science, 2008. RCIS
2008. Second International Conference on, pp 393 –400

Evermann J (2008) A cognitive semantics for the association construct. Re-
quirements Engineering Journal 13(3):167–186

Fabbrini F, Fusani M, Gnesi S, Lami G (2001) An automatic quality eval-
uation for natural language requirements. In: Proceedings of the 7th
International Workshop on Requirements Engineering Foundation for
Software Quality (REFSQ 2001), pp 4–5

Falessi D, Cantone G, Canfora G (2010) A comprehensive characterization
of nlp techniques for identifying equivalent requirements. In: Proceed-
ings of the 2010 ACM-IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement, ACM, New York, NY, USA, ESEM
’10, pp 1–10

78



REFERENCES

Fantechi A, Gnessi S, Lami G, Maccari A (2003) Applications of linguis-
tic techniques for use case analysis. Requirements Engineering Journal
8(3):161–170

Feather M, Cornford S, Gibbel M (2000) Scalable mechanisms for require-
ments interaction management. In: Proceedings of the Fourteen Interna-
tional Conference on Requirements Engineering (RE 2000), pp 119–129

Feather M, Cornford S, Kiper J, Menzies T (2006) Experiences using visu-
alization techniques to present requirements, risks to them, and options
for risk mitigation. In: Proceedings of the First International Workshop
on Requirements Engineering Visualization (REV 2006), pp 80–89

Fenton N, Pfleeger S, Glass R (1994) Science and subscience: A challenge
to software engineers. IEEE Software 11(4):86–96

Finkelstein A, Harman M, Mansouri SA, Ren J, Zhang Y (2008) "fairness
analysis" in requirements assignments. Barcelona, Catalunya, Spain, pp
115 – 124

Fons F, Fons M, Canto E, Lopez M (2012) Deployment of run-time recon-
figurable hardware coprocessors into compute-intensive embedded ap-
plications. Journal of Signal Processing Systems 66(2):191 – 221

Fritsch C, Hahn R (2004) Product line potential analysis. In: SPLC, pp 228–
237

Gandhi R, Lee SW (2007) Visual analytics for requirements-driven risk
assessment. 445 Hoes Lane - P.O.Box 1331, Piscataway, NJ 08855-1331,
United States

Garg P (1989) On supporting large-scale decentralized software engineer-
ing processes. In: Proceedings of the 28th IEEE Conference on Decision
and Control, pp 1314–1317

Gervasi V (1999) Environment support for requirements writing and anal-
ysis. PhD thesis, University of Pisa

Gervasi V, Nuseibeh B (2000) Lightweight validation of natural language
requirements: A case study. In: Proceedings of the 4th International Con-
ference on Requirements Engineering, Society Press, pp 113–133

Glass R (1994) The software research crisis. IEEE Software 11(6):42–47

Goldin L, Berry D (1997) Abstfinder, a prototype natural language text ab-
straction finder for use in requirements elicitation. Automated Software
Engineering pp 375–412

79



REFERENCES

Goldstine H, von Neuman J (1948) Planning and coding of problems for an
electronic computing instrument. Tech. rep., The Institute of Advanced
Study Princeton, New Jersey

Gonzales-Baixauli B, Prado-Leite J, Mylopoulos J (2004) Visual variability
analysis for goal models. Los Alamitos, CA, USA, pp 198 – 207

Gonzalez R, Woods R (2006) Digital Image Processing (3rd Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA

Gorschek T, Wohlin C (2006) Requirements abstraction model. Require-
ments Engineering Journal 11:79–101

Gotel O, Marchese F, Morris S (2007) On requirements visualization. In:
Proceedings of the Second International Workshop on Requirements En-
gineering Visualization (REV 2007), pp 80–89

Gotel O, Marchese F, Morris S (2008) The potential for synergy between in-
formation visualization and software engineering visualization. In: Pro-
ceedings of the 12th International Conference Information Visualisation,
pp 547–552

Greer D, Ruhe G (2004) Software release planning: an evolutionary and
iterative approach. Information and Software Technology 46(4):243–253

Hall T, Beecham S, Rainer A (2002) Requirements problems in twelve soft-
ware companies: an empirical analysis. IEEE Software 149(5):153 – 160

Hayes Huffman J, Dekhtyar A, Osborne J (2003) Improving requirements
tracing via information retrieval. In: Proceedings of the 11th IEEE In-
ternational Conference on Requirements Engineering, IEEE Computer
Society, Washington, DC, USA, RE ’03, pp 138–147

Hayes Huffman J, Dekhtyar A, Sundaram S, Howard S (2004) Helping
analysts trace requirements: an objective look. In: Proceedings of the
12th IEEE International Requirements Engineering Conference (RE’04),
pp 249 – 259

Hayes Huffman J, Dekhtyar A, Sundaram S (2006) Advancing candidate
link generation for requirements tracing: The study of methods. IEEE
Trans Softw Eng 32(1):4–19

Helferich A, Herzwurm A, Schockert G (2005) Mass customization of en-
terprise applications: Creating customer oriented product portfolios in-
stead of single systems. In: Proceedings of the 3rd Interdisciplinary
World Congress on Mass Customization and Personalization

Herald T, Verma D, Lubert C, Cloutier R (2009) An obsolescence manage-
ment framework for system baseline evolution perspectives through the
system life cycle. Syst Eng 12:1–20

80



REFERENCES

Herbsleb J (2007) Global software engineering: The future of socio-
technical coordination. Future of Software Engineering 1(1):188–198

Herrmann A, Daneva M (2008) Requirements prioritization based on ben-
efit and cost prediction: An agenda for future research. In: Proceedings
of the 16th IEEE International Requirements Engineering Conference,
RE’08, Barcelona, Catalunya, Spain, pp 125 – 134

Higgins S, Laat M, Gieles P, Geurts E (2003) Managing requirements for
medical it products. IEEE Software 20(1):26-33

Hitchman S (2002) The details of conceptual modeling notations are impor-
tant - a comparison of relationship normative language. Communication
AIS 9(10):188–198

Hornecker E, Buur J (2006) Getting a grip on tangible interaction: A frame-
work on physical space and social interaction. In: In Proceeding of the
SIGCHI Conference on Human Factors in Computing Systems, pp 437–
446

Höst M, Regnell B, Natt och Dag J, Nedstam J, Nyberg C (2001) Explor-
ing bottlenecks in market-driven requirements management. Journal of
Systems and Software 59(3):323–332

Iacovou C, Dexter A (2004) Turning around runaway information technol-
ogy projects. Engineering Management Review, IEEE 32(4):97 –112

IEEE (1997) IEEE recommended practice for software requirements speci-
fications, 830-1998. �����������	�
	�����
�����	��	������	�
	�
�������������

IEEE Computer Society (2004) Software Engineering Body of Knowledge
(SWEBOK). Angela Burgess, EUA, URL ������������������
��

Isazadeh A, Lamb D, Shepard T (1999) Behavioural views for software re-
quirements engineering. Requirements Engineering 4(1):19 – 37

Jacobs S, Jarke M, Pohl K (1994) Report on the first international ieee sym-
posium on requirements engineering. Automated Software Engineering
1(1):129–132

Jansen S, Brinkkemper S, Souer J, Luinenburg L (2012) Shades of gray:
Opening up a software producing organization with the open software
enterprise model. Journal of Systems and Software 85(7):1495 – 1510

Jantunen S, Lehtola L, Gause D, DumdumU, Barnes R (2011) The challenge
of release planning. In: Proceedings of the Fifth International Workshop
on Software Product Management (IWSPM’2011), pp 36 –45

81



REFERENCES

Järvelin K, Kekäläinen J (2002) Cumulated gain-based evaluation of ir tech-
niques. ACM Trans Inf Syst 20(4):422–446

John I, Eisenbarth M (2009) A decade of scoping: a survey. In: Proceedings
of the 13th International Software Product Line Conference, Carnegie
Mellon University, Pittsburgh, PA, USA, SPLC ’09, pp 31–40

Jones J, HarroldM, Stasko J (2000) Visualization of test information to assist
fault localization. In: Proceedings of the 24th International Conference
on Software Engineering (ICSE 2002), pp 198–205

Jørgensen M, Molkken-Ostvold K (2004) Reasons for software effort es-
timation error: Impact of respondent role, information collection ap-
proach, and data analysis method. IEEE Transactions on Software En-
gineering 30(12):993 – 1007

Jørgensen M, Halkjelsvik T, Kitchenham B (2012) How does project size
affect cost estimation error? statistical artifacts and methodological chal-
lenges. International Journal of Project Management

Kamsties E, Berry D, Paech B (2001) Detecting ambiguities in requirements
documents using inspections. In: Proceedings of the First Workshop on
Inspection in Software Engineering (WISE 2001), pp 68–80

Kang K, Donohoe P, Koh E, Lee J, Lee K (2002) Using a marketing and
product plan as a key driver for product line asset development. In: Pro-
ceedings of the Second International Conference on Software Product
Lines, Springer-Verlag, London, UK, SPLC 2, pp 366–382

Karlsson J (1996) Software requirements prioritizing. In: Proceedings of the
2nd International Conference on Requirements Engineering (ICRE 96), p
110

Karlsson J (1998) A systematic approach for prioritizing software require-
ments. doctorial dissertation,. PhD thesis, Linköping University, Sweden

Karlsson J, Ryan K (1997) A cost-value approach for prioritizing require-
ments. IEEE Software 14(5):67–74

Karlsson J, Wohlin C, Regnell B (1997) An evaluation of methods for pri-
oritizing software requirements. Information and Software Technology
39(14-15):939–947

Karlsson L, Åsa G Dahlstedt, Natt Och Dag J, Regnell B, Persson A (2002)
Challenges in market-driven requirements engineering - an industrial
interview study. In: Proceedings of the Eighth International Workshop
on Requirements Engineering: Foundation for Software Quality (REFSQ
2002)

82



REFERENCES

Kaushik N, Tahvildari L, Moore M (2011) Reconstructing traceability be-
tween bugs and test cases: An experimental study. In: Reverse Engi-
neering (WCRE), 2011 18th Working Conference on, pp 411 –414

Kekäläinen J, Järvelin K (2002) Using graded relevance assessments in ir
evaluation. Journal of American Society of Information Science Technol-
ogy 53(13):1120–1129

Kishi T, Noda N, Katayama T (2002) A method for product line scoping
based on decision-making framework. In: Proceeding Second Interna-
tional Software Product Lines Conference (SPLC 2002), pp 53–65

Kitchenham B, Pickard L, Pfleeger SL (1995) Case studies for method and
tool evaluation. IEEE Software 12(4):52–62

Kitchenham B, Budgen D, Brereton P, Turner M, Charters S, Linkman S
(2007) Large-scale software engineering questions - expert opinion or
empirical evidence? IET Software 1(5):161–171

Knight C, Munro M (2000) Virtual but visible software. In: Proceedings
of the IEEE International Conference on Information Visualization, pp
198–205

Konrad S, Gall M (2008) Requirements engineering in the development of
large-scale systems. In: Proceedings of the 16th International Require-
ments Engineering Conference (RE 2008), pp 217–222

Konrad S, Goldsby H, Lopez K, Cheng B (2006) Visualizing requirements
in uml models. In: Proceedings of the First International Workshop on
Requirements Engineering Visualization (REV 2006), pp 1–10

Koschke R (2003) Software visualization in software maintenance, reverse
engineering, and re-engineering: a research survey. Journal of Software
Maintenance and Evolution Research and Practice 15(2):87–109

Kotonya G, Sommerville I (1998) Requirements Engineering. John Wiley
and Sons

Koziolek A (2012) Research preview: Prioritizing quality requirements
based on software architecture evaluation feedback. In: Proceedings 18th
International Working Conference on Requirements Engineering: Foun-
dation for Software Quality. REFSQ 2012, Berlin, Germany, pp 52 – 8

Kulk G, Verhoef C (2008) Quantifying requirements volatility effects. Sci
Comput Program 72(3):136–175

Larkin J, Simon H (1987) Why a diagram is (sometimes) worth ten thou-
sand words. Cognitive Science 11(1):65–100

83



REFERENCES

Laurent P, Cleland-Huang J, D C (2007) Towards automated requirements
triage. In: Proceedings of the 15th IEEE International Requirements En-
gineering Conference, RE ’07., pp 131 –140

Lee M, Reilly R, Butavicius M (2003) An empirical evaluation of chernoff
faces, star glyphs and spatial visualization for binary data. In: Proceed-
ings of the Australian Symposium on Information Visualization, pp 1–10

Leffingwell D, Widrig D (2003) Managing Software Requirements: A Uni-
fied Approach. Addison-Wesley

Lethbridge T, Sim S, Singer J (2005) Studying software engineers: Data col-
lection techniques for software field studies. Empirical Software Engi-
neering Journal 10(3):311–341

Lethola L, Kauppinen M (2004) Empirical evaluation of two requirements
prioritizationmethods in product development projects. In: Proceedings
of the 11th European Conference EuroSPI, pp 161–170

Liddy E (2003) Natural Language Processing. Encyclopedia of Library and
Information Science, 2nd Ed., NY. Marcel Decker, Inc

Lin J, Lin CC, Cleland-Huang J, Settimi R, Amaya J, Bedford G, Beren-
bach B, Ben Khadra O, Duan C, Zou X (2006) Poirot: A distributed tool
supporting enterprise-wide automated traceability. In: Proceedings of
the 14th IEEE International Requirements Engineering Conference, IEEE
Computer Society, Washington, DC, USA, RE ’06, pp 356–357

Linden F, van der Schmid K, Rommes E (2007) Software Product Lines
in Action The Best Industrial Practice in Product Line Engineering.
SpringerVerlag

Linger R, Pleszkoch M, Burns L, Hevner A, Walton G (2007) Next-
generation software engineering: Function extraction for computation
of software behavior. In: Proceedings of the 40th Annual Hawaii Inter-
national Conference on System Sciences (HICSS 2007), pp 9–17

Loesch F, Ploederoeder E (2007) Restructuring variability in software prod-
uct lines using concept analysis of product configurations. In: proceed-
ings of the 11th European Conference on Software Maintenance and
Reengineering, CSMR ’07, pp 159 –170

Lubars M, Potts C, Richter C (1993) A review of the state of the practice in
requirements modeling. In: Requirements Engineering, 1993., Proceed-
ings of IEEE International Symposium on, pp 2 –14

Maccari A (1999) The challenges of requirements engineering in mobile
telephones industry. Database and Expert Systems Applications, Inter-
national Workshop on 0:336–345

84



REFERENCES

MacDonell S (2005) Visualization and analysis of software engineering
data using self-organizing maps. In: Proceeding of the International
Symposium on Empirical Software Engineering (ISESE 2005), pp 115–
124

Macias B, Pulman S (1995) Amethod for controlling the production of spec-
ifications in natural language. The Computer Journal 48(4):310–318

Magazinovic A, Pernstål J (2008) Any other cost estimation inhibitors? In:
Proceedings of the Second ACM-IEEE International Symposium on Em-
pirical Software Engineering and Measurement, pp 233–242

Manning C, Raghavan P, Schtze H (2008) Introduction to Information Re-
trieval. Cambridge University Press, New York, NY, USA

Mannion M, Lewis O, Kaindl H, Montroni G, Wheadon J (2000) Represent-
ing requirements on generic software in an application family model. In:
Proceedings of the 6th International Conerence on Software Reuse: Ad-
vances in Software Reusability, Springer-Verlag, London, UK, pp 153–
169

Masri K, Parker D, Gemino A (2008) Using iconic graphics in entity-
relationship diagrams: The impact on understanding. Journal of
Database Management 19(3):22–41

McCarthy J (1960) Recursive functions of symbolic expressions and their
computation by machine, part i. Commun ACM 3(4):184–195

McCracken D, Jackson M (1981) A minority dissenting opinion. In: W.W.
Cotterman, et al. (Eds.). Systems Analysis and Design - A Foundation
for the 1980s., pp 551–553

McPhee C, Eberlein A (2002) Requirements engineering for time-to-market
projects. In: Proceedings Ninth Annual IEEE International Conference
and Workshop on the Engineering of Computer-Based Systems, pp 17–
24

Merola L (2006) The cots software obsolescence threat. In: Commercial-
off-the-Shelf (COTS)-Based Software Systems, 2006. Fifth International
Conference on, p 7 pp.

Minsky M (1963) A lisp garbage collector algorithm using serial secondary
storage. Tech. rep., Cambridge, MA, USA

Moody D (2009) The “physics” of notations: Towards a scientific basis for
constructing visual notations in software engineering. IEEE Transactions
on Software Engineering 35(6):756–779

85



REFERENCES

Moody D, Heymans P, Matulevicius R (2010) Visual syntax does matter:
improving the cognitive effectiveness of the i* visual notation. Require-
ments Engineering 15:141–175

Moody DL, Heymans P, Matulevicius R (2009) Improving the effectiveness
of visual representations in requirements engineering: An evaluation of
i* visual syntax. In: Proceedings of the 17th IEEE International Confer-
ence on Requirements Engineering, Atlanta, GA, United states, pp 171 –
180

Murphy D, Rooney D (2006) Investing in agile: Aligning agile initiatives
with enterprise goals. Cutter IT Journal 19(2):6 –13

Myaeng SH, Korfhage RR (1990) Integration of user profiles: models and
experiments in information retrieval. Information Processing &Manage-
ment 26(6):719 – 738

Natt och Dag J (2010) The reqsimile tool website. ����������	
�
��
	��������������

Natt och Dag J, Gervasi V, Brinkkemper S, Regnell B (2004) Speeding up
requirements management in a product software company: Linking
customer wishes to product requirements through linguistic engineer-
ing. In: Proceedings of the 12th International Requirements Engineering
Conference (RE 2004), pp 283–294

Natt och Dag J, Gervasi V, Brinkkemper S, Regnell B (2005) A linguistic en-
gineering approach to large-scale requirements management. IEEE Soft-
ware 22(1):32–39

Natt och Dag J, Thelin T, Regnell B (2006) An experiment on linguistic
tool support for consolidation of requirements from multiple sources
in market-driven product development. Empirical Software Engineering
Journal 11(2):303–329

Naur P, Randell B (1968) Software engineering: Report of a conference
sponsored by the nato science committee. Tech. rep., NATO Scientific
Affairs Division

Neill C, Laplante P (2003) Requirements engineering: the state of the prac-
tice. IEEE Software 20(6):40-45

Ngo-The A, Ruhe G (2005a) Decision support in requirements engineer-
ing. In: Aurum A, Wohlin C (eds) Engineering and Managing Software
Requirements, Springer Berlin Heidelberg, pp 267–286

Ngo-The A, Ruhe G (2005b) Engineering and Managing Software Require-
ments, Springer, chap Decision Support in Requirements Engineering,
pp 267–286

86



REFERENCES

Nordbotten J, Crosby M (2001) The effect of graphic style on data model
interpretation. Information Systems Journal 9(2):139–155

Northrop L, Felier P, Habriel RP, Boodenough J, Linger R, KleinM, Schmidt
D, Sullivan K,Wallnau K (2006) Ultra-Large-Scale Systems: The Software
Challenge of the Future. Software Engineering Institute

Odersky M, Spoon L, Venners B (2008) Programming in Scala: A Compre-
hensive Step-by-step Guide, 1st edn. Artima Inc

Ogawa M, Bird K, Deyanbu C, Gourley A (2007) A visualization social in-
teraction in open source software project. In: Proceedings of the 6th In-
ternational Asia-Pacific Symposium on Visualization (APVIS 2007), pp
25–32

Osawa K, Ohnishi A (2007) Similarity map for visualizing classified scenar-
ios. In: Proceedings of the Second International Workshop on Require-
ments Engineering Visualization (REV 2007), pp 80–89

Ozakaya O (2006) Representing requirements relationships. In: Proceed-
ings of the First International Workshop on Requirements Engineering
Visualization (REV 2006), pp 75–84

Park S, Kim SD (2005) A systematic method for scoping core assets in prod-
uct line engineering. In: Proceedings of the 12th Asia-Pacific Software
Engineering Conference, APSEC ’05., p 8 pp.

Park S, Nang J (1998) Requirements management in large software system
development. In: Proceedings of the IEEE International Conference on
Systems, Man and Cybernetics, pp 2680–2685

Patton J (2003) Unfixing the fixed scope project: Using agile methodolo-
gies to create flexibility in project scope. Agile Development Confer-
ence/Australasian Database Conference 0:146

Perini A, Ricca F, Susi A, Bazzanella C (2007) An empirical study to com-
pare the accuracy of ahp and cbranking techniques for requirements pri-
oritization. New Delhi, India, pp 23 – 34

Pfleeger S (2001) Software Engineering – Theory and practice. Prentice–
Hall

Pfleeger S, Kitchenham B (2001) Principles of survey research: part 1: turn-
ing lemons into lemonade. SIGSOFT Softw Eng Notes 26(6):16–18

Pichler M, Humetshofer H (2006) Business process-based requirements
modeling and management. In: Proceedings of the First International
Workshop on Requirements Engineering Visualization (REV 2006), pp
20–29

87



REFERENCES

Pohl K, Böckle G, Linden F, Niehaus E, Böckle G (2005a) Product manage-
ment. In: Software Product Line Engineering, Springer Berlin Heidel-
berg, pp 163–192

Pohl K, Bockle G, van der Linden F (2005b) Software Product Line Engi-
neering: Foundations, Principles and Techniques. SpringerVerlag

Pollack S (1968) Measures for the comparison of information retrieval sys-
tems. Am Doc 19(4):387–397

Potts C (1993) Software engineering research revisited. IEEE Software
10(5):18–28

Potts C (1995) Invented requirements and imagined customers: require-
ments engineering for off-the-shelf software. In: Proceedings of the Sec-
ond IEEE International Symposium on Requirements Engineering (RE
95), pp 128–130

Punter T, Ciolkowski M, Freimut B, John I (2003) Conducting on-line sur-
veys in software engineering. In: Empirical Software Engineering, 2003.
ISESE 2003. Proceedings. 2003 International Symposium on, pp 80 – 88

Purchase H, Carrington D, Allder J (2002) Empirical evaluation of
aesthetics-based graph layout. Empirical Software Engineering Journal
7(3):233–255

R E Albright TK (2003) Roadmapping in the corporation. Research-
Technology Management 46(1):31–40

Racheva Z, Daneva M, Sikkel K, Wieringa R, Herrmann A (2010) Do we
know enough about requirements prioritization in agile projects: In-
sights from a case study. In: Proceedings of the 18th International IEEE
Requirements Engineering Conference, IEEE Computer Society Press,
Los Alamitos, pp 147–156

Ramesh B, Jarke M (2001) Toward reference models for requirements trace-
ability. Software Engineering, IEEE Transactions on 27(1):58 –93

Ramesh B, Cao L, Baskerville R (2010) Agile requirements engineering
practices and challenges: an empirical study. Information Systems Jour-
nal 20(5):449–480

Raol JR (2009) Multi-Sensor Data Fusion with MATLAB: Theory and Prac-
tice. Taylor and Francis, Inc.

Rayson P, Emmet L, Garside R, Sawyer P (2000) The revere project: Exper-
iments with the application of probabilistic nlp to systems engineering.
In: Proceedings of the 5th International Conference on Applications of
Natural Language to Information Systems, pp 288–300

88



REFERENCES

Rea L, Parker R (2005) Designing and conducting survey research: a com-
prehensive guide. Jossey-Bass

Regnell B, Brinkkemper S (2005) Engineering and Managing Software Re-
quirements, Springer, chap Market–Driven Requirements Engineering
for Software Products, pp 287–308

Regnell B, Kuchcinski K (2011) Exploring software product management
decision problems with constraint solving - opportunities for prioriti-
zation and release planning. In: Proceedings of the Fifth International
Workshop on Software Product Management (IWSPM’2011), pp 47 –56

Regnell B, Beremark P, Eklundh O (1998) A market–driven requirements
engineering process – results from an industrial process improvement
programme. Requirements Engineering Journal 3(2):121–129

Regnell B, Höst M, Natt och Dag J, Hjelm A (2001) Case study on dis-
tributed prioritization in market-driven requirements engineering for
packaged software. Requirements Engineering Journal 6(1):51–62

Regnell B, Ljungquist B, Thelin T, Karlsson L (2004) Investigation of re-
quirements selection quality in market-driven software processes using
an open source discrete event simulation framework. In: Proceedings
of the 5th International Workshop on Software Process Simulation and
Modeling, pp 89–93

Regnell B, Olsson HO, Mossberg S (2006) Assessing requirements compli-
ance scenarios in system platform subcontracting. In: Proceedings of the
7th International Conference on Product Focused Software Process Im-
provement, pp 362–376

Regnell B, Berntsson Svensson R, Olsson T (2008) Supporting roadmap-
ping of quality requirements. IEEE Software 25(2):42–47

Riebisch M, Streitferdt D, Philippow I (2001) Feature scoping for product
lines. In: in Proceeding of PLEES’03, International Workshop on Product
Line Engineering The Early Steps: Planning Modeling and Managing

Robertson S, Robertson J (1999) Mastering the requirements process. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA

Robson C (2002) Real World Research. Blackwell Publishing

Rocchio J (1966) Document retrieval systems: optimization and evaluation.
PhD thesis, Harvard University, USA

RoyceW (1970)Managing the development of large software systems: con-
cepts and techniques. In: Proceedings of the IEEE WESTCON Confer-
ence, pp 328–338

89



REFERENCES

Ruel H, Bondarouk T, Smink S (2010) The waterfall approach and require-
ment uncertainty: An in-depth case study of an enterprise systems im-
plementation at a major airline company. Int J Technol Proj Manage
(USA) 1(2):43 – 60

Ruhe G (2003) Software engineering decision support - a new paradigm for
learning software. Lecture Notes in Computer Science 2640(1):104–113

Ruhe G (2009) Product Release Planning: Methods, Tools and Applica-
tions. Auerbach Publications

Ruhe G, Greer D (2003) Quantitative studies in software release planning
under risk and resource constraints. In: Proceedings of the International
Symposium on Empirical Software Engineering (ISESE 2003), pp 262–
271

Ruhe G, Saliu M (2005) The art and science of software release planning.
IEEE Software 22(6):47–53

Runeson P, Höst M (2009) Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering
Journal 14(2):131–164

Runeson P, Host M, Rainer A, Regnell B (2012) Case Study Research in
Software Engineering: Guidelines and Examples. Wiley

Rupp C (2000) Linguistic methods of requirements engineering (nlp). In:
Proceedings of the EuroSPI 2000, pp 68–80

Russ J (1999) The image processing handbook (3rd ed.). CRC Press, Inc.,
Boca Raton, FL, USA

RyanK (1993) The role of natural language in requirements engineering. In:
Proceedings of the IEEE International Symposium on Requirements En-
gineering, San Diego California, IEEE Computer Society Press, pp 240–
242

Saaty T (1980) The Analytic Hierarchy Process, Planning, Piority Setting,
Resource Allocation. McGraw-Hill, New york

Savolainen J, Oliver I, Mannion M, Z H (2005) Transitioning from prod-
uct line requirements to product line architecture. In: proceedings of the
29th Annual International Conference on Computer Software and Ap-
plications, COMPSAC 2005., vol 1, pp 186 – 195 Vol. 2

Savolainen J, Kauppinen M, Mannisto T (2007) Identifying key require-
ments for a new product line. In: Proceedings of the 14th Asia-Pacific
Software Engineering Conference (APSEC 2007), pp 478–485

90



REFERENCES

Sawyer P (2000) Packaged software: Challenges for re. In: Proceedings of
the Sixth International Workshop on Requirements Engineering: Foun-
dations of Software Quality (REFSQ 2000), pp 137–142

Sawyer P, Rayson P, Garside R (2002) Revere: Support for requirements
synthesis from documents. Information Systems Frontiers 4(3):343–353

Sawyer P, Rayson P, Cosh K (2005) Shallow knowledge as an aid to deep
understanding in early phase requirements engineering. IEEE Transac-
tions on Software Engineering 31(11):969–981

Schalken J, Brinkkemper S, Vliet H (2001) Assessing the effects of facilitated
workshops in requirements engineering. In: Proceedings of the 8th Con-
ference on Evaluation and Assessment in Software Engineering (EASE
2004), Press, pp 135–144

Schmid K (2002) A comprehensive product line scoping approach and its
validation. In: Proceedings of the 24th International Conference on Soft-
ware Engineering (ICSE 2002), pp 593–603

Schneider K, Stapel K, Knauss E (2008) Beyond documents: Visualizing
informal communication. Barcelona, Spain

Seaman C (1999) Qualitative methods in empirical studies of software en-
gineering. IEEE Transactions on Software Engineering 25(4):557–572

Sellier D, Mannion M (2006) Visualizing product line requirements se-
lection decision inter-dependencies. In: Proceedings of the Second In-
ternational Workshop on Requirements Engineering Visualization (REV
2007), pp 20–29

Sen A, Jain S (2007) A visualization technique for agent based goal refine-
ment to elicit soft goals in goal oriented requirements engineering. 445
Hoes Lane - P.O.Box 1331, Piscataway, NJ 08855-1331, United States

Shull F, Carver J, Vegas S, Juristo N (2008) The role of replications in em-
pirical software engineering. Empirical Software Engineering Journal
13(2):211–218

Singer J, Sim SE, Lethbridge TC (2007) Guide to Advanced Empirical Soft-
ware Engineering, Springer, chap Software Engineering Data Collection
for Field Studies, pp 9–34

Software Engineering Institute (2011) Capability maturity model integra-
tion (cmmi), version 1.3. ������������	
����	�����
�����
����

�����	��	�����

Sommerville I (2007) Software Engineering. Addison-Wesley

91



REFERENCES

Spink A, Greisdorf H (2001) Regions and levels: measuring and mapping
users’ relevance judgments. J Am Soc Inf Sci Technol 52(2):161–173

Stathaki T (2008) Image Fusion: Algorithms and Applications. Academic
Press

Stephen J, Page J, Myers J, Brown A, Watson D, Magee I (2011) System
error fixing the flaws in government it. Tech. Rep. 6480524, Institute for
Government, London

Strigini L (1996) limiting the dangers of intuitive decision making. Soft-
ware, IEEE 13(1):101 –103

Sultanov H, Huffman Hayes J (2010) Application of swarm techniques
to requirements engineering: Requirements tracing. In: Proceedings of
the 2010 18th IEEE International Requirements Engineering Conference,
IEEE Computer Society, Washington, DC, USA, RE ’10, pp 211–220

Supakkul S, Chung L (2010) Visualizing non-functional requirements pat-
terns. Sydney, NSW, Australia, pp 25 – 34

Sutcliffe A, Thew S, Jarvis P (2011) Experience with user-centred require-
ments engineering. Requirements Engineering 16(4):267 – 280

Svahnberg M (2003) Supporting software architecture evolution - architec-
ture selection and variability. PhD thesis, Blekinge Institute of Technol-
ogy

Taborda L (2004) Generalized release planning for product line architec-
tures. In: Nord R (ed) Software Product Lines, Lecture Notes in Com-
puter Science, vol 3154, Springer Berlin / Heidelberg, pp 153–155

Taylor C, Miransky A, Madhavji N (2011) Request-implementation ratio
as an indicator for requirements prioritisation imbalance. In: Proceed-
ings of the 5th International Workshop on Software Product Manage-
ment (IWSPM 2011), Trento, Italy, pp 3 – 6

Teyseyre A (2002) A 3d visualization approach to validate requirements. In:
Proceedings of the Congreso Argentino de Ciencias dela Computacion,
pp 1–10

Tory M, Moller T (2004) Rethinking visualization: A high-level taxonomy.
In: Proceedings of IEEE Symposium on Information Visualization, (IN-
FOVIS 2004)., pp 151–158

Trautmann N, Philipp B (2009) Resource-allocation capabilities of commer-
cial project management software: An experimental analysis. In: Pro-
ceedings of the 2009 International Conference on Computers and Indus-
trial Engineering (CIE 2009), pp 1143–1148

92



REFERENCES

Travassos G, dos Santos P, Neto P, Biolchini J (2008) An environment to
support large scale experimentation in software engineering. In: Pro-
ceedings of the 13th IEEE International Conference on Engineering of
Complex Computer Systems (ICECCS 2008), pp 193–202

Tufte E (1990) Envisioning Information. Graphics Press LLC

Ugai T, Hayashi S, Saeki M (2010) Visualizing stakeholder concerns with
anchored map. Sydney, NSW, Australia, pp 20 – 24

UML (2010) The unified modeling language webpage. ������������	
�
��

Vähäniitty J, Lassenius C, Rautiainen K (2002) An approach to product
roadmapping in small software product business. In: Proceedings of the
7th European Conference Software Quality, pp 56–65

van de Weerd I, Brinkkemper S, Nieuwenhuis R, Versendaal J, Bijlsma L
(2006a) On the creation of a reference framework for software product
management. In: Proceedings of the First International Workshop on
Software Product Management (IWSPM 2006), pp 3–12

van de Weerd I, Brinkkemper S, Nieuwenhuis R, Versendaal J, Bijlsma L
(2006b) Towards a reference framework for software product manage-
ment. In: Proceedings of the 14th IEEE International Requirements En-
gineering Conference (RE 2006), pp 319–322

van der Hoek A, Hall R, Heimbigner D, Wolf A (1997) Software release
management. In: Proceedings of the Sixth European Software Engineer-
ing Conference (ESEC/FSE 97), pp 159–175

van Gurp J, Bosch J, Svahnberg M (2001) On the notion of variability in
software product lines. In: Proceedings of the Working IEEE/IFIP Con-
ference on Software Architecture, pp 45–55

Vasile S, Bourque P, Abran A (2006) Visualization - a key concept for mul-
tidimensional performance modeling in software engineering manage-
ment. In: Proceeding of the IEEE International Conference on Automa-
tion, Quality and Testing, Robotics (AQTR 2006), pp 334–339

Veerappa V, Letier E (2011) Clustering stakeholders for requirements deci-
sion making. Berlin, Germany, pp 202 – 8

Wiegers K (2003) Software Requirements: Practical Techniques for Gather-
ing and Managing Requirements Throughout the Product Development
Cycle. Addison-Wesley

Wieringa R, Heerkens H (2007) Designing requirements engineering re-
search. In: Proceedings of the 5th International Workshop on Compara-
tive Evaluation in Requirements Engineering, pp 36–48

93



REFERENCES

Winkler S, Pilgrim J (2010) A survey of traceability in requirements engi-
neering and model-driven development. Softw Syst Model 9(4):529–565

Withey J (1996) Investment Analysis of Software Assets for Product
Lines. Tech. Rep. CMU/SEI-96-TR-010, Software Engineering Institute,
Carnegie Mellon University

Wohlin C, Aurum A (2005) What is important when deciding to include
a software requirements in a project or release? In: Proceedings of
the International Symposium on Empirical Software Engineering (ISESE
2005), pp 246–255

Wohlin C, Min X, Magnus A (1995) Reducing time to market through op-
timization with respect to soft factor. In: Proceedings of the 1995 IEEE
Annual International Engineering Management Conference, pp 116–121

Wohlin C, Runeson P, Höst M, Ohlsson M, Regnell B, Wesslen A (2000)
Experimentation in Software Engineering An Introduction. Kluwer Aca-
demic Publishers

Yin R (2003) Case Study Research: Design and Methods. Sage Publications

Zenebe A, Norcio A (2007) Visualization of item features, customer prefer-
ence and associated uncertainty using fuzzy sets. In: Proceedings of the
Annual Meeting of the North American Fuzzy Information Processing
Society, pp 7–12

Zowghi D, Nurmuliani N (2002) A study of the impact of requirements
volatility on software project performance. In: Proceedings of the Asia-
Pacific Software Engineering Conference (APSEC’2002), IEEE Computer
Society, Los Alamitos, CA, USA, pp 3–11

94



Paper I

What Happened to Our Features? Visualization
and Understanding of Scope Change Dynamics in

a Large-Scale Industrial Setting

Krzysztof Wnuk1, Björn Regnell1, Lena Karlsson2
1Dept. of Computer Science, Lund University, Sweden

���������	
���������
�����������
���
��
2Det Norske Veritas, Sweden
����
������������
���

In Proceedings of the
17th International Requirements Engineering Conference (RE09),

September 2009, Atlanta, USA

ABSTRACT

When developing software platforms for product lines, de-
cisions on which features to implement are affected by factors
such as changing markets and evolving technologies. Effective
scoping thus requires continuous assessment of how changes
in the domain impact scoping decisions. Decisions may have
to be changed as circumstances change, resulting in a dynamic
evolution of the scope of software asset investments. This pa-
per presents an industrial case study in a large-scale setting
where a technique called Feature Survival Charts for visualiza-
tion of scoping change dynamics has been implemented and
evaluated in three projects. The evaluation demonstrated that
the charts can effectively focus investigations of reasons behind
scoping decisions, valuable for future process improvements.
A set of scoping measurements is also proposed, analyzed the-
oretically and evaluated empirically with data from the cases.
The conclusions by the case company practitioners are positive,
and the solution is integrated with their current requirements
engineering measurement process.





1. INTRODUCTION

1 Introduction

Deciding which requirements to include into the scope of an upcoming
project is not a trivial task. Requirements for complex systems may be
counted in thousands, and not all may be included in the next develop-
ment project or next release. This means that it is necessary to select a
subset of requirements to implement in the forthcoming project, and hence
postpone the implementation of other requirements to a later point in time
(Wohlin and Aurum, 2005; Greer and Ruhe, 2004). This selection process
is often called scoping and is considered as a key activity for achieving
economic benefits in product line development (Schmid, 2002). While its
importance has already been reported in several studies, research has not
yet put broad attention to the issues of product line scoping. In particular,
following Schmid (2002), we agree that existing work in domain engineer-
ing in software product lines focus mainly on the identification aspect of
scoping e.g. (Kishi et al, 2002; Savolainen et al, 2007). On the other hand,
some researchers have already addressed the issue of understanding un-
derlying reasons for the inclusion of certain requirements in a specific re-
lease (Wohlin and Aurum, 2005), while others investigated one of the root
causes for changing requirements, namely requirements uncertainty (Ebert
and DeMan, 2005).

The problemwithmany changes in the scoping process for product line
projects has recently been identified by one of our industrial partners from
the embedded systems domain. This issue has been particularly challeng-
ing for the case company, since their current requirements management
tool could not provide a sufficientmethod to visualize and characterize this
phenomena. As a remedy, the Feature Survival Chart (FSC) concept was
proposed by the authors and acknowledged by the practitioners as a valu-
able support. This paper extends the contributions of (Wnuk et al, 2008)
with (1) findings from industrial application in three projects and (2) scope
tracking measurements. The proposed visualization shows the decision
process of including or excluding features that are candidates for the next
release. Our technique can spot the problem of setting too large a scope
compared to available resources as well as increase the understanding of
the consequences of setting a limited scope early. By using graphs, we can
identify which features and which time frames to analyze in order to find
scoping issues related to uncertainties in the estimations that decisions rely
on. The charts have also shown to be useful in finding instabilities of the
scoping process.

The proposed set of scope tracking measurements complements the
proposed visualization technique, and they aim at further increasing the
understanding of the rationale and dynamics of scope changes. The mea-
surements are analyzed both theoretically and empirically using data from
three large industrial projects that contain hundreds of high-level features
related to thousands of system requirements. We also present findings

97



PAPER I: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

from discussions on the results with practitioners that ranked the useful-
ness of the proposed measurements and expressed their opinions about
their value in scope management.

The paper is structured as follows: Section 2 provides background in-
formation about the context of our industrial case study. Section 3 de-
scribes the methodology used in this study. Section 4 explains our visu-
alization technique. Section 5 describes the results from applying our tech-
nique to three industrial projects. Section 6 defines and evaluates the pro-
posed measurements. Section 7 provide conclusions and discusses their
limitations.

2 The case company

Our results are based on empirical data from industrial projects at a large
company that is using a product line approach (Pohl et al, 2005). The com-
pany has more than 5000 employees and develops embedded systems for
a global market. There are several consecutive releases of the platform,
a common code base of the product line, where each of them is the basis
for one or more products that reuse the platform’s functionality and qual-
ities. A major platform release has approximately a two year lead time
from start to launch, and is focused on functionality growth and quality
enhancements for a product portfolio. Minor platform releases are usu-
ally focused on the platform’s adaptations to the different products that
will be launched with different platform releases. This approach creates an
additional requirements flow, which in our case company is handled as a
secondary flow, and arrives to the platform project usually in the middle of
its life cycle. This flow enables flexibility and adaptation possibilities of the
platform project, while the primary flow is dedicated to address functional-
ity of the highest importance.

There are several groups of specialists associated with various stages
of the requirements management process in the case company. For this
case, themost essential groups are calledRequirements Teams (RTs) that elicit
and specify high-level requirements for a special technical area, and Design
Teams (DTs) that design and develop previously defined functionality.

The company uses a stage-gate model with several increments (Cooper,
1990). There are Milestones (MSs) and Tollgates (TGs) to control the project
progress. In particular, there are four milestones for the requirements man-
agement and design before the implementation starts: MS1, MS2, MS3, and
MS4. For each of these milestones, the project scope is updated and base-
lined. The milestone criteria are as follows:

MS1: At the beginning of each project, long-term RT’s roadmap doc-
uments are extracted to formulate a set of features for an upcoming plat-
form project. A feature in this case is a concept of grouping requirements
that constitute a new functional enhancement to the platform. At this stage

98



3. RESEARCH METHODOLOGY

the features usually contain a description, its market value and effort es-
timates. The level of details for the features should be set up in a way
that enables judgment of its market value and effort of implementation.
Both values are obtained using a cost-value approach (Karlsson and Ryan,
1997). The cost for implementation and the market value of features are the
basis for initial scoping inclusion for each technical area. The features are
reviewed, prioritized and approved. The initial scope is decided and base-
lined per RT, guided by a project directive and based on initial resource
estimates in the primary receiving DT. The scope is then maintained in a
document called Feature List, that is regularly updated each week after a
meeting of the Change Control Board (CCB). The role of the CCB is to decide
upon adding or removing features according to changes that happen. The
history of scope changes is the input data for the visualization technique
described in this paper.

MS2: Features are refined to requirementswhich are specified, reviewed
and approved. One feature usually contains ten or more requirements
from various areas in the products. The features are assigned to DTs that
will take responsibility for designing and implementing the assigned fea-
tures after MS2. The DTs also allocate an effort estimate per feature.

MS3: The effort estimates are refined and the scope is updated and
baselined. DTs refine system requirements and start designing.

MS4: The requirements work and design are finished, and ready to
start implementation. The final scope is decided and agreed with the de-
velopment resources.

According to the company guidelines, most of the scoping work should
be done before reaching the second milestone of the process. The sec-
ondary flow starts approximately at MS2 and is connected to the start of
product projects. Both primary and secondary flows run in parallel under
the same MS criteria until they are merged together when the secondary
flow reaches its MS4. The requirements are written in domain-specific
natural language, and contain many special terms that require contextual
knowledge to be understood. In the early phases, requirements contain
a high-level customer-oriented description while being refined to detailed
implementation requirements at a late stage.

3 Research Methodology

The development of the FSC chart and corresponding scope tracking mea-
sures was performed in an interactive manner that involved practition-
ers from the case company. The persons that participated in the constant
evolution and evaluation include one process manager, two requirements
managers and one KPI (Key Performance Indicators) manager. This ap-
proach involves a set of meetings and discussion points between the re-
searchers and the practitioners that helped to guide the research. As a part

99



PAPER I: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

of the discussion, the important need to measure the dynamics and the na-
ture of the scope changes emerged. After proposing and theoretically vali-
dating the measurements, it was decided to apply them to the real scoping
data to empirically confirm the perceived usefulness of the metrics. All
ongoing projects in the case company were investigated for possible usage
of our technique. Our criteria of interest in analyzing a particular project
include (1) the length of analyzed project, (2) the number of features con-
sidered in the scope of the project and (3) the possibility to visualize and
analyze significant scope changes in the analyzed project. As a result, the
three most interesting ones were selected. Furthermore, we have used our
technique to define a set of scoping quality measurements that we evalu-
ated by practitioners and validated using empirical data. Finally, we have
performed an interview study with platform project requirements man-
agers in order to understand the rationale and implications for scoping
decisions.

To gather data for this study, we have implemented an exporter to re-
trieve the data from the scope parameter of each feature in the Feature
List document. This information was later sorted so that each feature is
mapped into one row and each value of the scope attribute is mapped to
an integer value. After creating graphs, a meeting with practitioners was
held in order to present and discuss results as well as address issues for
future work. As a result of this meeting, it was decided to introduce and
evaluate a set of scope tracking measurements that may give a better in-
sight into the scoping process practices and may help to assess their qual-
ity. As one of the measurements, it was decided to include a non-numerical
reason for scope exclusion to understand their nature and implications on
the stability of the requirements management process. All measurements
were calculated on an industrial set of three large platform projects.

4 Feature Survival Charts

In this section, we briefly describe our visualization technique. The Feature
Survival Chart (FSC), exampled in Figure 1.1, shows scope changes over
time which is illustrated on the X-axis. Each feature is positioned on a spe-
cific place on the Y-axis so that the complete lifecycle of a single feature can
be followed by looking at the same Y-axis position over time. The various
scope changes are visualized using different colors. As a result, each scope
change can be viewed as a change of the color. Based on discussions with
practitioners we decided to use this coloring scheme: green for features
considered as a part of the scope, red for features considered as de-scoped
and, if applicable, different shades of green for primary and secondary
flows. After sorting the features according to how long they were present
in the scope, we get a graph where several simultaneous scope changes
can be seen as ’steps’ with areas of different colors. The larger the red areas

100



5. EVALUATION RESULTS

Figure 1.1: Feature Survival Chart for project A.

are, the more features are de-scoped in the particular time of the project. At
the top of the graph we can see features that we called ’survivors’. These
features represent functionality that was included early while lasting until
the end of the scoping process. An FSC is also visualizing overall trends in
scoping. In Figure 1.1 we can see that most of scoping activity happened
after MS2 in the project. (Rn.m denotes formal releases.) Since most of
the de-scoping was done rather late in the project, we can assume that a
significant amount of effort might have been spent on features that did not
survive. Thanks to the graphs, we can see which decisions have beenmade
when and how large impact on the scope they had. The five areas marked
in Figure 1.1 are further discussed in Section 6.3.5. The FSC gives a starting
point for investigating why the decisions were made, and enables defini-
tion of measurements that indicate quality aspects of the scoping process.

5 Evaluation results

In this section, we present results from evaluating our visualization tech-
nique. We present FSCs for three large platform projects in the case com-

101



PAPER I: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

Figure 1.2: FSC for project B.

pany. The data was gathered during autumn 2008 when all three projects
were running in parallel and were targeted for product releases in 2008
or 2009. Each project was started at different points in time. At the time
when this study was performed one of them had already passed MS4, one
had launched the first platform release and the third had passed MS3. In
Figures 1.1, 1.2 and 1.3 we present one FSC respectively for three projects
denoted A, B and C. Additional information about the projects is presented
in Table 1.1.

All analyzed projects have more than 100 features ever considered in
the scope. For projects B and C, the significant feature number difference is
a result of running these two projects in parallel targeted to be released the
same year. The technical areas are similar for all projects. We can assume
that the projects affect similar groups of requirements analysts, but differ in
size, time of analysis and complexity. Project Awas analyzed during a time
period of 77 weeks, during which period two releases of the platform were
launched. The total number of scope changes in the projects is calculated
from MSA and onwards.

Results indicate that we in average experience almost one scope deci-

102



6. SCOPE TRACKING MEASUREMENTS

Figure 1.3: FSC for project C.

sion per feature for each project. This fact indicates the need for a better
understanding of the scoping process, e.g. by visualizing scope changes.
A qualitative analysis of the graphs indicates that for all analyzed projects
the dominant trend is de-scoping rather than scope increases. We name
this phenomena negative scoping. For all analyzed projects we can ob-
serve negative scoping all through the analyzed period.

6 Scope tracking measurements

According to Basili and Rombach (1988), measurement is an effectivemech-
anism for characterizing, evaluating, predicting and providing motivation
for the various aspects of software construction processes. The same au-
thor states that most aspects of software processes and products are too
complicated to be captured by a single metric. Following this thread, we
have formulated questions related to external attributes of the scoping pro-
cess, which in turn is related to internal attributes and a set of fivemeasure-
ments divided into time related measurements and feature related mea-
surements, as described subsequently.

103



PAPER I: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

Table 1.1: Characteristics of analyzed projects

Project Nbr. of
features

Nbr. of
technical
areas

Time
Lenght
(weeks)

Total number of
scope changes

A 223 22 77 237
B 531 23 39 807
C 174 20 20 43

6.1 Definition of measurements

The goal with the measurements is to characterize volatility and velocity
of the scoping process, as well as clarity of the reasons behind them. To ad-
dress this goal, we have defined a set of five scope tracking measurements,
which are presented subsequently. Four out of five measurements can be
calculated based on the scope attribute value in the feature list document
and time stamps for this document, while the last measurement needs a
more qualitative approach that requires additional information that com-
plements the graphs.

6.1.1 Time-related scope tracking measurements:

In this category we have defined one measurement:
Number of positive and negative scope changes per time stamp/base-

line (M1). We define a positive scope change as an inclusion of a feature
into the scope of the project, while a negative change indicates exclusion
from the project. We assume that the scope ideally would stabilize in the
late phase of the project in order to avoid expensive late changes.

6.1.2 Feature related measurements:

In this category we have defined the following measurements that also can
be averaged for the whole platform project:

Time to feature removal (M2) - the time from the feature was intro-
duced until it was permanently removed. The measurement can of course
only be calculated for the features that have not survived until the end
of the requirements management process. The interpretation of this mea-
surement can be as follows: it is a matter of quality of the requirements
management process to remove features that will not be included into the
projects due to various reasons as early as possible. This approach saves
more resources for the features that will be included into the scope, and
increases the efficiency of the scoping process. The pitfall related to this
measurement is the uncertainty whether features included into the scope

104



6. SCOPE TRACKING MEASUREMENTS

at the end of the requirements management process will not be excluded
later due to various reasons. On the other hand, even taking this fact into
consideration, we still believe that we successfully can measure M2 and
get valuable indications of the final scope crystallization abilities.

Number of state changes per feature (M3) - this measurement is a re-
flection of the measurement M1. By calculating this measurement for all
features and visualizing results in the form of a distribution, we can see
the fraction of complex decisions among all decisions. The interpretation
of this measurement is that the fewer changes per feature in a project, the
more ’stable’ the decision process is and less extra effort has to be spent
on complex decisions making the project less expensive to manage. As al-
ready mentioned, high values for this measurement indicate complex and
frequently altered decisions.

Time to birth (M4) - for each feature that has not yet appeared in the
scope, we calculate the delay time which is proportional to the number of
baselines of the scope document. In our calculations, we took into consid-
eration the fact the feature list document was baselined irregularly, and we
based our calculations on the number of days between the baselines. This
measurement describes the activity of the flow of new features in time.
Here, similarly to M1, we have to decide what is our starting point in the
project. Our interpretation assumes that we take MS1 as a starting point.
In an ideal situation we expect few features with a long time to birth, since
late additions to the scope create turbulence in the project.

Reason for scoping decision (M5) - as the last measurement described
in this study, we define reasons for scoping decisions. This measurement
will be calculated as a non-numerical value and it can not be automatically
derived from our graphs. As already mentioned in M1, inclusion of a new
functionality is a different change compared with an exclusion of a func-
tionality. Due to limited access to practitioners, we focused on analyzing
removal of functionality. To calculate M5, we mapped each feature to its
reason for inclusion, reason for exclusion and existing CCB records.

6.2 Theoretical analysis of measurements

In this section, we present results from a theoretical analysis of the pro-
posed measurements. We have used two approaches: "key stage of formal
measurement" (Fenton and Pfleeger, 1996) and the theoretical validation
(Kitchenham et al, 1995). By following the key stages of formal measure-
ment, we constructed empirical and mathematical systems and defined a
mapping between these two systems. The attributes of an entity can have
different measurements associated to them, and each measurement can be
connected to different units. Some properties, for example mapping be-
tween real world entities to numbers and the fact that different entities can
have the same attribute value, are by intuition satisfied for all definedmea-
surements. In Table 1.2 we present defined attributes and relations. We also

105



PAPER I: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

relate definedmeasurements with internal and external attributes of the re-
quirements decision process. As we can see in Table 1.2, the defined set of
measurements is addressing stability, velocity, volatility and understand-
ability of the scoping process for platform projects. Although four out of
five defined measurements are realized as objective numbers, conclusions
drawn from them about subjective attributes of requirements management
decision process are a matter of interpretation. The subjective interpreta-
tion of the results derived by our measurements is a complex task which
requires a deep domain knowledge and additional information about the
history of the project. We have extended our knowledge by interacting
with requirements managers working with platform projects in order to
derive values for M5.

6.3 Empirical application of measurements

In this section, we present results from an empirical evaluation of mea-
surements defined in Section 6.1. We have evaluated M1-M4 in three large
platform projects described in Section 5, andM5 in one large project. To in-
crease the possibilities of drawing conclusions, we have decided to present
time-relatedmeasurements as a function of time, while feature-relatedmea-
surements are presented in the form of distributions for each evaluated
project.

6.3.1 Number of positive and negative scope changes per time stam-
p/baseline (M1).

All three projects turned out to havemany scope changes over time. In Fig-
ure 1.4 we can see many fluctuations of M1 values both on the positive and
negative side rather late in analyzed projects. This result can be explained
by a stage-gate model for requirements management projects resulting in
high peaks of changes around project milestones. On the other hand, we
experience more than four peaks for each project, which is more than the
number of milestones in the requirements management process. The dis-
tinction of positive and negative changes makes it possible to see in Figure
1.4 that inclusions of new functionality into the project may be correlated
with exclusions of some other functionality. The baseline number repre-
sents the version of the scope document. The best example is the peak of
inclusions for Project A around baseline 38, which immediately resulted in
a peak of exclusions. In this example we can also see that the magnitude
of the change in both directions is similar.

6.3.2 Time to remove a feature (M2).

For this measurement, we present results in the form of distributions. The
distribution presented in Figure 1.5 is showing that many features were

106



6. SCOPE TRACKING MEASUREMENTS

Ta
bl
e
1.
2:
R
es
ul
ts
fr
om

a
th
eo
re
ti
ca
la
na
ly
si
s
of

pr
op

os
ed

m
ea
su
re
m
en
ts
,b
y
#
w
e
m
ea
n
’n
um

be
r
of
’

En
ti
ty

In
te
rn
al
at
tr
ib
ut
e

Ex
te
rn
al

at
tr
ib
ut
e

M
ea
su
re

D
om

ai
n

Sc
al
e

Em
pi
ri
ca
l

re
la
-

ti
on

M
at
he
m
at
ic
al

re
la
ti
on

M
1

Fe
at
ur
e

Li
st

Si
ze

an
d

di
re
c-

ti
on

of
sc
op

e
ch
an
ge
s

ov
er

ti
m
e.

St
ab
ili
ty

of
th
e

sc
op

in
g

pr
oc
es
s

#
of

sc
op

e
in
cl
u-

si
on

s
at

th
e
ti
m
e

st
am

p
#
of

sc
op

e
ex
cl
us
io
ns

at
th
e

ti
m
e
st
am

p

Fe
at
ur
e

Li
st

R
at
io

ne
ga
ti
ve
,

po
s-

it
iv
e,

bi
gg

er
sm

al
le
r,

eq
ua

l
to
,

ad
di
ti
on

,
su
bt
ra
ct
io
n,

di
vi
si
on

<,
>,
=,
+,
-,

et
c.

M
2

Fe
at
ur
e

Th
e

ti
m
e

th
at

w
as

ne
ed
ed

to
re
-

m
ov

e
th
e
fe
at
ur
e

fr
om

th
e
sc
op

e

Ve
lo
ci
ty

of
th
e

fin
al

sc
op

e
cr
ys
-

ta
lli
za
ti
on

pr
oc
es
s

#
da

ys
ne
ed
ed

to
m
ak
e
a
fin

al
de
-

ci
si
on

ab
ou

t
fe
a-

tu
re

ex
cl
us
io
n

Fe
at
ur
e

R
at
io

bi
gg

er
,
sm

al
le
r,

eq
ua

l
to
,
ad

di
-

ti
on

,
su
bt
ra
c-

ti
on

,d
iv
is
io
n

<,
>,
=,
+,
-,

et
c.

M
3

Fe
at
ur
e

N
um

be
r
of

sc
op

e
de
ci
si
on

s
pe
r
fe
a-

tu
re

Vo
la
ti
lit
y
an
d

dy
na
m
ic
s

of
th
e
sc
op

e
de
-

ci
si
on

s.

#
sc
op

e
ch
an
ge
s

fo
r
no

n-
su
rv
iv
or
s

ne
ed
ed

to
re
-

m
ov

e
th
em

fr
om

th
e
sc
op

e.

Fe
at
ur
e

R
at
io

bi
gg

er
,
sm

al
le
r,

eq
ua

l
to
,
ad

di
-

ti
on

,
su
bt
ra
c-

ti
on

,d
iv
is
io
n

<,
>,
=,
+,
-,

et
c.

M
4

Fe
at
ur
e

Ti
m
e

w
he
n

a
fe
at
ur
e

w
as

in
-

cl
ud

ed
in
to

th
e

sc
op

e
of

th
e

pr
oj
ec
t

Vo
la
ti
lit
y

of
th
e

sc
op

e
de
ci
si
on

s.

#
da

ys
fr
om

th
e

be
gi
nn

in
g

of
th
e

pr
oj
ec
t
un

ti
l

a
fe
at
ur
e

w
as

in
cl
ud

ed

Fe
at
ur
e

R
at
io

bi
gg

er
,
sm

al
le
r,

eq
ua

l
to
,
ad

di
-

ti
on

,
su
bt
ra
c-

ti
on

,d
iv
is
io
n

<,
>,
=,
+,
-,

et
c.

M
5

C
ha
ng

es
to

fe
at
ur
e

R
at
io
na
le

fo
r
re
-

m
ov

in
g

fe
at
ur
es

fr
om

th
e
sc
op

e

C
la
ri
ty

of
th
e

re
as
on

s
fo
r

sc
op

e
de
ci
si
on

s

R
ea
so
ns

fo
rs
co
pe

ex
cl
us
io
ns

Sc
op

e
ch
an
ge
s

N
om

in
al

eq
ua

l
an
d

di
f-

fe
re
nt

<>
,=

107



PAPER I: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

25

15

5

5

15

25

35

0 10 20 30 40 50 60 70

N
um

be
r
of

in
cl
us
io
ns

an
d
ex
cl
us
io
ns

Baseline number of the scope document

Number of inclusions and exclusions of over baselines

Project A Inclusions Project A Exclusions Project B Inclusions

Project B Exlusions Project C Inclusions Project C Exclusions

Figure 1.4: Number of positive and negative changes as a function of a
baseline number (M1).

removed after a certain number of days in the scope. Our results reveal
three different approaches for removing the features from the scope. For
Project A we can see an initial scope reduction rather early, then a quite
constant number of removed features, and suddenly, after about 300 days
from the project start, large scope reductions. For Project B we can see that
many features were removed in rather short intervals in time, and also
that some significant scope reductions that occurred after 150 days in the
project. On the other hand, Project C is behaving more stable in this matter,
having only one large peak of removed features around 60 days from the
project launch. This type of graph can be useful in assessing how good the
process is in crystallizing the final scope of the platform project.

6.3.3 Number of state changes per feature (M3).

For this measurement, we present the results in the form of distributions.
As we can see in Figure 1.6, most features required only one decision in
the project. This decision usually was an exclusion from the project scope,
but in some cases more than one decision per project was needed. This
fact indicates that features were shifted between the primary and the sec-

108



6. SCOPE TRACKING MEASUREMENTS

0

5

10

15

20

25

30

35

40

0 50 100 150 200 250 300 350

N
um

be
r
of

re
m
ov
ed

fe
at
ur
es

Number of days

Time to remove the feature distributions for analyzed
projects

Project A Project B Project C

Figure 1.5: Distributions of time to remove the feature (M2).

ondary flow of requirements, or that the management had to reconsider
previously made commitments. For a better understanding of more com-
plex decisions, this measurement can be limited to the number of scope
changes needed to remove the feature from the scope of the project. This
measurement may give valuable insights about the complexity of decision-
making. We have calculated a derived measurement, and the results are
available online (Wnuk, 2010).

6.3.4 Time to birth (M4).

Empirical application of M4 presented as a distribution over time revealed
that some projects have a large peak of new functionality coming into the
scope of the project after 100 days from the beginning. In two out of three
analyzed cases we experienced large scope extensions at various points in
the project timeline. The biggest limitation of this measurement is the fact
that the used process allows for a secondary flow of requirements which
automatically can create large peaks of births at a certain time. We can no-
tice this fact in Figure 1.7 as a peak of births around day 150 day for Project
B, and around day 220 for Project A. Although the mentioned peaks are
not necessarily revealing any unplanned behavior, Figure 1.7 reveals that

109



PAPER I: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9

N
um

be
r
of

fe
at
ur
es

Number of changes

Number of scope changes per feature

Project A Project B Project C

Figure 1.6: Distribution of number of changes per feature (M3).

smaller but still significant scope inclusions appeared for project B both
before and after the biggest peak of incoming features.

6.3.5 Reason for scoping decision (M5).

Since M5 is defined as a non-numerical measurement in order to apply it
to our industrial data set and gather results, we held a meeting with two
requirements managers responsible for managing project scoping informa-
tion. Each of the requirements managers was responsible for one scoping
project. In this paper, we focus on Project A since it was the most inter-
esting in terms of late scope changes. Before the meeting, we prepared
five scope-zones which we assumed to be the most interesting to analyze,
see Figure 1.1. During the interview, a responsible requirements manager
checked the reasons for a particular scope change. The reasons were ana-
lyzed both per individual feature, as well as per set of changes in order to
identify possible dependencies between various decisions.
Results for scope changes for project A. As we can see in Figure 1.1, we
decided to include changes from both before and after MS4. The results
are presented below:

Zone 1 - A significant scope reduction after MS3: This zone shows a

110



6. SCOPE TRACKING MEASUREMENTS

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

N
um

be
r
of

fe
at
ur
es

Time to birth (days)

Time to birth distributions

Project A Project B Project C

Figure 1.7: Time to birth distributions (M4).

large scope reduction that happened between MS3 and MS4 in the plat-
form project. The analysis revealed that this zone includes two reasons for
de-scoping. The first one is the strategic reason and the other one is the
cancellation of one of the products from the product line project.

Zone 2 - A large scope inclusion after MS4: This zone shows a large
set of features introduced to the scope of the project after MS4. The reasons
for this change turned out to be an ongoing work to improve performance
requirements. Because of this reason, it was decided shortly after MS4 to
include these features into the scope.

Zone 3 - A large scope inclusion together with a parallel scope exclu-
sion: This zone represents a desired behavior of the process used in the
company. The large scope inclusions show a new flow of requirements re-
lated to one of the platform releases. Our responders confirmed that all
three sets of features, separated from each other on the graph, represent an
introduction of a new requirements flow. The focus for the analysis in this
case was to examine if there was any relation between inclusion of new
requirements and exclusion of other requirements at the same time. The
set of de-scoped features turned out not to be related to the big scope in-
clusion. As described by the interviewed requirements manager, the main
reasons for these scope changes were defined as "stakeholder business de-

111



PAPER I: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

Table 1.3: Results from practitioners’ ranking of proposed measurements.

Rank Responder 1 Responder 2 Responder 3
1 M2 M2 M5
2 M5 M5 M1
3 M1 M4 M2
4 M4 M1 M4
5 M3 M3 M3

cision", which means that the previously defined plan was changed to ac-
commodate other aspects of the product portfolio.

Zone 4 - Some incremental scope inclusions introduced very late in
the project: Aswe can see in Figure 1.1, this zone coversmany of the incre-
mental scope inclusions by the end of the analyzed time. Since late scope
extensions may put reliability at risk, we investigated why they occurred
and found out that there are many reasons behind this phenomena. One of
the large changes, that involved four features, was caused by administra-
tive changes in the requirements database. Some additional five features
were included into the scope as a result of a late product gap analysis. A
gap analysis is a task that requirements managers perform in order to en-
sure that the scheduled product features are covered by the corresponding
platform project. Finally, seven features introduced into the scope turned
out to be a result of late negotiations with one of the customers.

Zone 5 - Late removal of previously accepted features: In this zone,
we analyze removal of the features that were analyzed in zone 2. We have
asked our responders why initially accepted features later were de-scoped.
They replied that despite these features were initially approved, a new
decision had to be made mainly due to a lack of available development
resources. We also performed a quantitative analysis of reasons for de-
scoping in Project A. The results are presented in Figure 1.8. We have ana-
lyzed 120 de-scoping decisions that belong to project A. The result is shown
in percentages in Figure 1.8, summing up to 100%. As we can see, 33% of
the de-scoping decision were caused by a stakeholder’s business decision,
and 29% by a lack of resources, while 9% of the decisions were caused by
changes in product portfolios. Our largest category, stakeholder business
decision is similar to the category mentioned by Wohlin et al (2005) called
"Stakeholder priority of requirement". Therefore we can assume that the
dominant reason for both inclusions and exclusion of certain requirements
in a specific release does not differ significantly. Furthermore, criteria such
as requirements volatility and resource availability seem to appear both in
our study and in (Wohlin and Aurum, 2005).

As an additional validation step, we asked three practitioners working

112



7. CONCLUSIONS

0%

5%

10%

15%

20%

25%

30%

35%

Al
re
ad

y
im

pl
em

en
te
d

De
pe

nd
en

to
fs
up

pl
ie
rs
up

po
rt

Lack of
reasources

O
th
er

Po
rt
fo
lio

ch
an

ge
s

Re
pl
ac
ed

or
re
na

m
ed

U
nc
le
ar

fe
at
ur
e
or

re
qu

ire
m
en

ts

Pe
rc
en

ta
ge
s

Reasons for scope exclusions

Figure 1.8: Quantitative analysis of reasons for removing features from the
scope of the Project A.

with scoping to rank the proposed measurements. As a criterion for rank-
ing, we chose usefulness in understanding the scoping processes and in
defining future improvements. The measurement ranked as number one
is considered to be the most useful one, while the one ranked in position
five is the least useful one. The results are presented in Table 3. As we can
see in Table 3, M3 was ranked as the least useful, while M2 and M5 were
placed in the top three positions for all responders.

7 Conclusions

According to Basili and Rombach (1988), software engineers andmanagers
need real-time feedback in order to improve construction processes and
products in ongoing projects. In the samemanner, the organization can use
post mortem feedback in order to improve the processes of future projects
(Karlsson et al, 2006). Furthermore, visualization techniques used in soft-
ware engineering have already proven to amplify human cognition in data
intensive applications, and support essential work tasks (Botterweck et al,
2008). Our visualization technique provides feedback about ongoing scop-

113



PAPER I: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

ing activities as well as a visualization of past project scoping activities.
Measurements presented in this paper are complementing our visualiza-
tion technique by quantitative characterization and qualitative rationale
for scoping decisions. The results in terms of usefulness of the proposed
visualization technique and scope tracking measurements were acknowl-
edged by practitioners involved in their development as valuable since
they confirm the volatility of the scope and provide a tool to analyze the
various aspects of this phenomenon. The results were then used by the
case company to adjust the process towards more flexibility in scope set-
ting decisions, and a clearer scope responsibility. Our solution has con-
firmed to outperform the previously used table-based textual method to
track the scope changes in the case company. It gives a better overview
of the scoping process of the whole project on a single page size graph.
The industrial evaluation has indicated that our method can be applied
to large scale projects, which demonstrates the scalability of the method.
Finally, the managers at the case company decided that our visualization
technique should be implemented as a standard practice and is currently
in widespread usage at the case company. Even if the characteristics of
scope changes found may be particular to this case study, we believe that
the manner in which these graphs together with measurements are used
to increase the understanding of the performance of the scoping process is
generally applicable.

Limitations. As for any empirical study, there are threats to the validity.
One threat is related to the mapping between measurements and external
attributes. In software engineering we often want to make a statement of
an external attribute of an object. Unfortunately, the external attributes are
mostly indirect measurements and they must be derived from internal at-
tributes of the object (Wohlin et al, 2000). We are aware that our mapping
can be one of several possible mappings between internal and external at-
tributes. We address its correctness by evaluating external attributes with
practitioners in the case company. Another threat is related to the gen-
eralization of our results. Although the company is large and develops
technically complex products, it cannot be taken as a representative for all
types of large companies and hence the results should be interpreted with
some caution. Finally, theoretical validation is context dependent and thus
needs to be redone in every new context.

Further work. Additional studies of scope dynamics visualization in
other cases would further increase our understanding of their usefulness.
Enhanced tool support with the possibility of zooming interactively may
be useful, as well as depiction of size and complexity of features by vi-
sualizing their relation to the underlying system requirements. How to
optimize usability of such a tool support, and the search for new possibil-
ities while observing practitioners using the visualization techniques, are
also interesting matters of further research.

114



7. CONCLUSIONS

Acknowledgments

This work is supported by VINNOVA (Swedish Agency for Innovation
Systems) within the UPITER project. Special acknowledgments to Thomas
Olsson for valuable contributions on scope tracking measurements and to
Lars Nilsson for valuable language comments.

115



PAPER I: WHAT HAPPENED TO OUR FEATURES? VISUALIZATION AND
UNDERSTANDING OF SCOPE CHANGE DYNAMICS IN A LARGE-SCALE
INDUSTRIAL SETTING

116



REFERENCES

Bibliography

Basili V, Rombach D (1988) The tame project: Towards improvement-
oriented software environments. IEEE Transactions on Software Engi-
neering 14(6):758–773

Botterweck G, Thiel S, Nestor D, bin Abid S, Cawley C (2008) Visual tool
support for configuring and understanding software product lines. In:
Proceedings of the 12th International Software Product Line Conference
(SPLC 2008), pp 77–86

Cooper R (1990) Stage-gate systems: A new tool for managing new prod-
ucts. Business Horizons 33(3):44–54

Ebert C, DeMan J (2005) Requirements uncertainty: Influencing factors and
concrete improvements. In: Proceedings of the 27th International Con-
ference on Software Engineering (ICSE 2005), pp 553–560

Fenton N, Pfleeger S (1996) Software Metrics A Rigorous & Practical Ap-
proach. Thomson Publishing

Greer D, Ruhe G (2004) Software release planning: an evolutionary and
iterative approach. Information and Software Technology 46(4):243–253

Karlsson J, Ryan K (1997) A cost-value approach for prioritizing require-
ments. IEEE Software 14(5):67–74

Karlsson L, Regnell B, Thelin T (2006) Case studies in process improve-
ment through retrospective analysis of release planning decisions. Inter-
national Journal of Software Engineering and Knowledge Engineering
16(6):885–915

Kishi T, Noda N, Katayama T (2002) A method for product line scoping
based on decision-making framework. In: Proceeding Second Interna-
tional Software Product Lines Conference (SPLC 2002), pp 53–65

Kitchenham B, Pfleeger SL, Fenton N (1995) Towards a framework for soft-
ware measurement validation. IEEE Transactions on Software Engineer-
ing 21(12):929–944

Pohl K, Bockle G, van der Linden F (2005) Software Product Line Engineer-
ing: Foundations, Principles and Techniques. SpringerVerlag

Savolainen J, Kauppinen M, Mannisto T (2007) Identifying key require-
ments for a new product line. In: Proceedings of the 14th Asia-Pacific
Software Engineering Conference (APSEC 2007), pp 478–485

Schmid K (2002) A comprehensive product line scoping approach and its
validation. In: Proceedings of the 24th International Conference on Soft-
ware Engineering (ICSE 2002), pp 593–603

117



REFERENCES

Wnuk K (2010) Distributions of derived m3 can be accessed
at. ������������	�
���	����������	����������������

��������� �!�	���"�"#����$�#��%� �������

Wnuk K, Regnell B, Karlsson L (2008) Visualization of feature survival in
platform-based embedded systems development for improved under-
standing of scope dynamics. In: Proceedings of the Third International
Workshop on Requirements Engineering Visualization (REV 2008), pp
41–50

Wohlin C, Aurum A (2005) What is important when deciding to include
a software requirements in a project or release? In: Proceedings of
the International Symposium on Empirical Software Engineering (ISESE
2005), pp 246–255

Wohlin C, Runeson P, Höst M, Ohlsson M, Regnell B, Wesslen A (2000)
Experimentation in Software Engineering An Introduction. Kluwer Aca-
demic Publishers

118



Paper II

Replication of an Experiment on Linguistic Tool
Support for Consolidation of Requirements from

Multiple Sources

Krzysztof Wnuk, Martin Höst, Björn Regnell
Department of Computer Science,

Lund University, Sweden
���������	
����������
����������
�����������
���
��

Empirical Software Engineering,
Volume 17 Number 3, 2012, Pages 305-344

ABSTRACT

Large market-driven software companies continuously re-
ceive large numbers of requirements and change requests from
multiple sources. The task of analyzing those requests against
each other and against already analyzed or implemented func-
tionality then recording similarities between them, also called
the requirements consolidation task, may be challenging and
time consuming. This paper presents a replicated experiment
designed to further investigate the linguistic tool support for
the requirements consolidation task. In this replication study,
45 subjects, working in pairs on the same set of requirements
as in the original study, were assigned to use two methods for
the requirements consolidation: (1) lexical similarity and (2)
searching and filtering. The results show that the linguistic
method used in this experiment is not more efficient in consol-
idating requirements than the searching and filtering method,
which contradicts the findings of the original study. However,
we confirm the previous results that the assisted method (lex-
ical similarity) can deliver more correct links and miss fewer
links than the manual method (searching and filtering).





1. INTRODUCTION

1 Introduction

Requirements engineering in a market-driven context can be characterized
by continuous elicitation, time-to-market constraints, and strong market
competition (Natt och Dag, 2006a; Regnell and Brinkkemper, 2005). In
this context, requirements are continuously arriving frommultiple sources,
throughout the development process (Regnell et al, 1998). When the com-
pany is growing and expanding, more products are created which result
in a more complex variability structure, and more effort is needed to han-
dle product customizations, for example by utilizing the Software Product
Line (SPL) concept (Pohl et al, 2005). This constant flow of requirements
needs to be analyzed from the perspective of new market opportunities
and technical compliance. In a case when a company is large and devel-
ops complex software solutions, the quantity of information to constantly
analyze and assess may severely impede the analytical capacity of require-
ments engineers and managers (Gorschek et al, 2007; Leuser, 2009). Pro-
viding a method that can assist in analyzing large numbers of natural lan-
guage requirements for the purpose of finding and recording similarities
between them can significantly reduce time needed to perform the task
(Cleland-Huang et al, 2007), help to miss fewer requirements links (Natt
och Dag et al, 2006) and increase the accuracy of the task.

The process of analyzing incoming requirements from customers or
customer representatives (also called proxy-customers) against requirements
already present in the requirements repository can be called requirements
consolidation. This process includes gathering incoming documents, find-
ing similarities, and merging or linking similar descriptions into a con-
solidated single description that covers all analyzed aspects. This process
can also be a part of the broader impact analysis task. The core of the
requirements consolidation process is finding the similarities between re-
quirements and recording them by making links between them (Natt och
Dag et al, 2006). However, the number of possible links grows exponen-
tially with the increase of the number of requirements to analyze, which
may result in overwhelming the company’s management and analytical
skills (Leuser, 2009). As a remedy to this problem, Natt och Dag et al
(2006) developed and evaluated a method for requirements consolidation
that utilizes linguistic techniques and provides a list of requirements that
are the most similar to the currently analyzed requirement. The evaluation
of this method showed that using the method can significantly improve
the performance of the consolidation process as well as the number of cor-
rectly linked requirements, and that it can help to miss fewer requirements
links (Natt och Dag et al, 2006). However, the unsupported method used in
the original experiment was limited to a simple search functionality, while
most currently available requirements management tools offer more ad-
vanced filtering and searching techniques.

This replication study has been designed to assess whether the tool

121



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

with a linguistic analysis of the similarity between requirements can still
perform better than currently available commercial requirements manage-
ment tools in the task of requirements consolidation. A replicated experi-
ment has been chosen due to its falsifiable nature. Replications provide a
possibility to evaluate whether the output parameters of a system remain
stable if one or more input parameters are systematically changed.

In this experiment, two subject groups, working in pairs, were asked
to consolidate two requirements sets by finding and linking requirements
that address the same underlying functionality. This replication reuses the
original procedures in terms of the study design, experimental steps and
the two requirement sets. The changes to the original experiment are: (1)
using another set of subjects which were asked to work in pairs due to
unexpected housing issues and (2) changing one of the treatments. Due
to a limited number of available computers in the laboratory room, the
subjects were asked to work in pairs on the assignment. Given this con-
text, this replication study can be classified according to Shull et al (2008)
as a dependent replication. However the classification provided by Shull
does not define if a replication where both the population and one of the
methods used to test the hypotheses is changed can also be categorized as
an exact replication. Shull et al (2008) only mention changing either the
population or the artifact on which the technique is applied. According
to the classification by Basili et al (1999), this replication type is the one
that varies the research hypotheses. The unchanged object in this repli-
cation study, also called the assisted method, is a research prototype tool,
called ReqSimile (Natt och Dag, 2006b), that utilizes linguistic analysis to
assist in the task of finding similar requirements. The second object, which
was changed compared with the original experiment, is called the manual
method, and it utilizes searching and filtering functionalities implemented
in a tool called Telelogic Doors (IBM, 2010a).1

The objectives of the study are twofold: firstly to assess if a significant
differences between the two methods tested in the original experiment can
be confirmed in a replicated experiment setup and secondly to compare
the results for the same methods between the two experimental sessions.
The objectives are refined to two main research questions in Section 4.

The paper is structured as follows: Section 2 provides industrial prob-
lem description. Section 3 provides related work. Section 4 describes the
experimental design. Section 5 explains experiment execution procedures.
Section 6 describes the experiment results analysis. Section 7 provides an
interpretation of results. Section 8 concludes the paper.

1The Telelogic DOORS tool has recently changed its vendor and its name to Rational
DOORS. However, since the Telelogic Doors version 8.3 was used in this experiment, we
will refer to this tool throughout this paper as Telelogic Doors. Both methods were compared
for the task of requirements consolidation meaning that comparing the two tools in general is
outside of the scope of this paper.

122



2. INDUSTRIAL PROBLEM DESCRIPTION

2 Industrial Problem Description

New requirements and changes to existing requirements are inevitable sit-
uations at all stages of the system development process (Kotonya and Som-
merville, 1998). The two principal requirements management activities
that address this phenomena are: (1) change control and (2) change impact
assessment. The change control ensures that, if a change is accepted, its im-
pact on design and implementation artifacts will be addressed. The change
impact assessment warrants that proposed changes have a known impact
on the requirements and software system (Kotonya and Sommerville, 1998).
A company that is operating in amarket-drivenmode should continuously
monitor themarket situation by checking competitors’ latest achievements,
researching market needs and collecting all possible feedback from the
market in a chase for achieving or maintaining the competitive advantage
within its operational business. This pursuit after an optimal market win-
dow, together with other reasons, creates a constant flow of new require-
ments and ideas throughout the entire software product lifetime (Karls-
son et al, 2002). As a result, the requirements process for market-driven
contexts needs to be enriched with procedures to capture and analyze this
constant flow of requirements (Higgins et al, 2003).

As pointed out by practitioners from large companies (Berenbach et al,
2009), when development projects grow in complexity and new products
are released to the market with many features, the importance of good
practices in requirements management grows. In the case when a com-
pany is large and operates globally, the diversity of customers and the
complexity of software products can make the list of sources of new re-
quirements and change requests extensively long, including: customers
and proxy-customers (marketing, customer representatives and key ac-
count managers), suppliers, portfolio planners and product managers. The
company’s requirements analysts should, in this, case analyze all incom-
ing requirements and change requests in order to find an optimal set of
requirements that will address the needs of as many customers as possi-
ble. In this context, the concept of Software Product Lines (SPL) (Pohl et al,
2005) is often used to increase the reuse of common components while pro-
viding necessary diversity of similar products, requested by various cus-
tomers.

Change management in a Software Product Lines context can be par-
ticularly challenging, for example, because of the extensive and often ex-
haustive variability analysis that has to be performed while analyzing the
impact of a change. Moreover, the requirements analyst has to consider if
a certain new requirement or request has already been analyzed and what
was the result of this analysis. One of the methods to assist with the anal-
ysis of incoming requirements versus those already present in the require-
ments database is to find and record similarities, making traceability links.
In the industrial case example, provided by the original experiment, the

123



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

experts became frustrated during the analysis because they had to iden-
tify compliance to the same or very similar requirements multiple times.
Large parts of the new versions of requirements request documents, arriv-
ing from the same customer are typically the same as previous versions.
Furthermore, the same and very similar requirements can appear in the re-
quest from different customers (Natt och Dag et al, 2006). Providing an au-
tomatic or semi-automatic method of analyzing similarity between incom-
ing requirements could significantly decrease the amount of time needed
to perform this task.

The process of finding and recording similarities between software de-
velopment artifacts is a part of the requirements traceability activity, which
has been widely recognized as a useful method for recording relations and
dependencies between software project artifacts for the purposes of change
and impact analysis tasks (Ramesh et al, 1995; Wiegers, 2003; Antoniol
et al, 2002; Jarke, 1998; Gotel and Finkelstein, 1994). The core of the require-
ments traceability task is to find and record the dependencies between the
traced elements, which are assumed to be exhibited by their lexical simi-
larity (Natt och Dag, 2006a). The importance of requirement traceability is
significant; the U.S. Department of Defense invested in 2001 about 4 per-
cent of its total IT budget on traceability issues (Ramesh and Jarke, 2001).
Other large companies, have also stressed the importance of implementing
traceability in their industry projects (Samarasinghe et al, 2009; Berenbach
et al, 2009; Konrad and Gall, 2008; Panis, 2010; Leuser, 2009).

However, despite recognition of its importance, implementing a suc-
cessful traceability in practice is challenging (Cleland-Huang et al, 2002).
The task of finding relationships between the elements and establishing
traces between them is a “mind numbing” (Hayes et al, 2003), error prone
and time consuming activity. Moreover, maintaining a traceability scheme
is difficult because the artifacts being traced continue to change and evolve
as the system is developed and extended (Zowghi and Offen, 1997; Strens
and Sugden, 1996). Furthermore, as pointed out by Leuser (2009), current
traceability approaches used in practice are cumbersome and very time
consuming, mainly because they are almost completely manual. The size
of requirements specifications in large industrial projects may reach thou-
sands of requirements (Leuser, 2009; Konrad and Gall, 2008). To tackle
these issues, several researchers proposed using Information Retrieval (IR)
methods such as the Vector Space Model (VSM), also used in this experi-
ment, (Antoniol et al, 2002; Cleland-Huang et al, 2007; Natt och Dag et al,
2004), the Probabilistic Network Model (Cleland-Huang et al, 2005, 2010),
and Latent Semantic Indexing (LSI) (De Lucia et al, 2007; Huffman Hayes
et al, 2006; Lormans and van Deursen, 2006; Marcus and Maletic, 2003) for
semi-automatic recovery of traceability links.

124



3. RELATED WORK

3 Related Work

Replications play an important role in software engineering by allowing
us to build knowledge about which results or observations hold under
which conditions (Shull et al, 2008). Unfortunately, replications in soft-
ware engineering are still rarely reported (Ivarsson and Gorschek, 2009). A
recent survey of controlled experiments in software engineering revealed
that replications are still neglected by empirical researchers, only 18% of
the surveyed experiments are reported as replications (Sjøberg et al, 2005).
Moreover only 3.9% of analyzed controlled experiments can be catego-
rized according to the IEEE taxonomy as requirements/specification re-
lated (Sjøberg et al, 2005; IEEE, 2010).

The awareness of new possibilities that Natural Language Processing
(NLP) can bring to requirements engineering has been present from the
beginning of the requirements engineering discipline, when Rolland et
al (1992) discussed the natural language approach for requirements engi-
neering. Shortly after, Ryan (1993) warned that although natural language
processing provides a variety of sophisticated techniques in the require-
ments engineering field, they can only support sub-activities of require-
ments engineering and that the process of using natural language process-
ing techniques has to be guided by practitioners. The possibilities men-
tioned by Ryan (1993) and Rolland et al (1992) have later been explored
by a number of research studies and publications, where applications of
various NLP techniques in supporting requirements management activi-
ties were evaluated and discussed. Among those that include some kind of
empirical evaluations, the vast majority of natural language process tools
are used to examine the quality of requirements specifications in terms of,
for example, the number of ambiguities (Fantechi et al, 2003) by assigning
ambiguity scores to sentences depending on the degree of syntactic and
semantic uncertainty (Macias and Pulman, 1995), or detecting ambiguities
by applying an inspection technique (Kamsties et al, 2001). Furthermore,
Rupp et al (2000) produced logical forms associated with parsed sentences
to detect ambiguities. Among other quality attributes of requirements ar-
tifacts that natural language processing attempts to analyze and improve,
Fabbrini et al (2001) proposed a tool that assesses understandability, con-
sistency, testability, and correctness of requirements documents. Provid-
ing measurements that can be used to assess the quality of a requirements
specification document is the aim of the ARM tool proposed byWilson et al
(1997). Mich et al (2002) reported on an experiment designed to assess the
extent to which an NLP tool improves the quality of conceptual models.
Finally, Gervasi et al (2000) used natural language processing techniques
to perform a lightweight validation (low computational and human costs)
of natural language requirements.

Apart from the quality evaluation and assurance tasks, NLP techniques
have also been applied to the task of extracting abstractions from textual

125



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

documents (Aguilera and Berry, 1991; Goldin and Berry, 1997) and help-
ing combining crucial requirements from a range of documents that in-
clude standards, interview transcripts, and legal documents (Sawyer et al,
2002). Sawyer at al (2005) have also reported how corpus-based statisti-
cal language engineering techniques are capable of providing support for
early phase requirements engineering. Rayson et al (2001) reported expe-
riences from a project where probabilistic NLP techniques were used to
identify and analyze domain abstractions. Their results were further sup-
ported by a later study by Sawyer et al (2004), where ontology charts of
key entities were produced using collocation analysis. The continued in-
terest in this issue has been reported byGacitua et al (2010) who proposed a
new technique for the identification of single- and multi-word abstractions
named Relevance driven Abstraction Identification (RAI). Finally, Gervasi
et al (1999) used lexical features of the requirements to cluster them accord-
ing to specific criteria, thus obtaining several versions of the requirements
document.

The ReqSimile tool evaluated in this paper uses a correlation to mea-
sure lexical similarity and thus rank candidate requirements for linking,
presenting to the user the “top” subset of those requirements. The linguis-
tic method, also called the cosine measure, uses a vector-space representa-
tion of requirements where each requirement is represented using a vector
of terms with the respective number of occurrences (Natt och Dag et al,
2004; Manning and Schütze, 2002). Each term can be seen as a dimension
in an N-dimensional space while a whole requirement can be represented
as a point in the N-dimensional space. Similar requirements will be repre-
sented in this space as m points closely clustered. From the matrix, which
shows how many times a term appears in each requirement, the informa-
tion may be derived about how many terms the two requirements have
in common. The very similar requirements will result in closely clustered
points in this vector space (Manning and Schütze, 2002). In the evaluated
method (Natt och Dag, 2006a) a frequency of terms has been used, instead
of counting the occurrences. The cosine correlation measure is often cho-
sen in text retrieval applications for the purpose of finding similar require-
ments, as it does not depend on the relative size of the input (Manning and
Schütze, 2002).

σ( f , g) =
∑

t
w f (t) ∗ wg(t)√

∑
t

w f (t)2 ∗ ∑
t

wg(t)2
(2.1)

The measure in equation 2.1 is used for calculating the degree of similar-
ity, where f and g are two requirements, t ranges over terms, and w(t) de-
notes the weight of term t. The term weight is typically a function of the
term frequency, since while the number of times a word occurs is relevant,
its relevance decreases as the number gets larger (Manning and Schütze,

126



3. RELATED WORK

2002). However, there is a challenge in the way stemming rules are used
in this method. For example, the stemming rules do not reduce the verb
containerization and the noun container to the same stem. From a seman-
tic point of view this is perfectly correct, but as the two terms concern the
same domain concept their association should be utilized to increase the
similarity measure. The realization of the Vector Space Model used in this
paper does not support this association. Another potential problem has
to do with synonyms as they are not considered in the model. Finally, as
mentioned in (Natt och Dag, 2006a), there is no guarantee that two require-
ments that are similar according to the σ(.)measure are indeed related. The
method evaluated does not consider hypernyms and hyponyms (Jackson
and Moulinier, 2002).

The ReqSimile tool evaluated in this paper is not the only research tool
that provides support for requirements traceability. Hayes et al (2007)
proposed a REquirements TRacing On-target (RETRO) tool that uses the
LSI technique to find similarities between analyzed elements and help the
analyst with making traceability links. Lin et al (2006) proposed a Web-
based tool called POIROT that supports traceability across distributed het-
erogeneous software artifacts. A probabilistic network model is used by
POIROT to generate traces between requirements, design elements, code
and other artifacts stored in distributed third party case tools.

The second method evaluated in this study uses searching and filtering
functionalities provided by Telelogic DOORS tool (IBM, 2010b). According
to the product documentation, the "finding text in a module" function can
search for all the objects that contain a specific search string. The tool dis-
plays the options of the search that have already been set in the search win-
dow. The possible options are: (1) highlight matches, (2) match case and
(3) use regular expressions. To change the search options, the Advanced tab
in the same window has to be used. Additionally, it is possible to select the
attributes included in the search, for example object heading or object text.
The tool provides UNIX-style regular expressions support when search-
ing for text. For example, using c.t will search for all three letter words
that start with c and end with t. Using 200[123] will search for either 2001,
2002, or 2003. Subjects during the experiment can also use filters to control
what data is displayed on the screen. The tool provides two types of filters:
simple and advanced. Simple filters can be used to filter: (1) the contents
of every attribute of type text or string, (2) object heading number, (3) the
content of any column or the value of a single attribute of any type. Addi-
tionally, it is possible to filter on the basis of whether the object has links or
is either the current object or a leaf object. Using advanced filters gives the
possibility to combine simple filters to create complex filters, specify filter
options that control what is displayed.

Using filters requires more steps than using the searching functionality.
First, the filter has to be defined and its attributes have to be set. After
this step, the user has to define if the filter should match case option or

127



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

regular expressions. Finally, it is possible to filter only objects that have
certain types of links, such as in-links, objects that are leafs and filter the
content of columns. While using advanced filters, it is possible to combine
previously defined simple filters by using And, Or and Not to combine
them into logical expressions. It is also possible to control the output of
applying a filter. The possible options are: (1) show ancestors or (2) show
descendants of the object that match the filter criteria and (3) display all
table cells and their contents regardless of whether they match the filter
criteria. According to the product documentation, the Telelogic DOORS
tool does not provide any auto-completion, stemming or proximity search
options. Exclusion searches are possible by combining two simple filters
where one is negated by using the “NOT” logical expression. 2

The requirements consolidation task can, in a broad perspective, be
considered as the more general task of negotiating the scope of the future
project with multiple stakeholders. Assuming this broad definition of the
task, we discuss alternative approaches of supporting this negotiation pro-
cess. Fricker et al (2010) propose a negotiation process, called handshaking
with implementation proposals. The process has been used to communi-
cate requirements effectively, even in situations where almost no written
requirements exist and where distance separates the customer from the
developers. The architectural options are used in this case to understand
requirements and make implementation decisions that will create value.
Sommerville and Sayer (1997) proposed a viewpoint-based approach to re-
quirements engineering which may be used to structure the requirements
description and expose conflicts between different requirements. As sys-
tems usage is heterogeneous, viewpoints can organize different types of
information needed to specify the system and by that help to structure the
process of requirements elicitation. Breaux (2009) uses grounded theory to
analyze regulations and legal documents for the purpose of ensuring that
the software system to be built is demonstrably compliant with relevant
laws and policies.

4 Experimental Design

The twomain objectives of this study, presented in Section 1, can be further
refined to the following research questions:

Q1: Can significant differences between the assisted and the manual meth-
ods that were achieved in the original experiment be confirmed in a repli-
cated experiment where the original manual method is replaced with a key-

2The information about searching and filtering functionalities has been based on the man-
ual for DOORS version 8.3. The instruction of how to use Telelogic Doors for linking used in
this experiment is available at ����������	
������������	��	������	���	��
��
�	��
�	����
����	������	��	����		����������

128



4. EXPERIMENTAL DESIGN

word searching and filtering tool?

Q1a: Is the assisted method more efficient in consolidating two require-
ments sets than the manual method (where efficiency is calculated as the
number of analyzed requirements)?

Q1b: Is the assisted method more correct in consolidating two require-
ments sets by assigning more correct links than the manual method (cor-
rectness is calculated as a number of correctly linked requirements)?

Q1c: Does the assisted method help to miss fewer requirements links
than the manual method?

Q2: Is there any difference between the original and replicated experiment
sessions for the same method?

Q2a: Is there any difference in the results for the assisted method be-
tween the original and the replicated experiments?

Q2b: Is there any difference in the results for the manual methods be-
tween the original and the replicated experiments?

The aim of Q1 is to assess if the results obtained in the original experi-
ment holds even if one of the tools is changed. The research question Q1 is
divided into three sub-questions, where each of them is explicitly address-
ing various quality aspects of the consolidation process. Question Q2 aims
to assess the difference between the two experiments. The possible differ-
ences provide valuable input regarding the nature of the consolidation task
and the subjects used in both experiments.

The central part of the requirements consolidation task is finding simi-
larities between the two sets of requirements as described in detail in Sec-
tion 3. The methods evaluated in the experiment were implemented in two
tools: (1) ReqSimile (Natt och Dag et al, 2006) and (2) Telelogic Doors (IBM,
2010a). As mentioned in Section 1, the goal of the study is not to evaluate
the tools in general, but to compare the methods that they provide. The
planning phase was based on the original experiment (Natt och Dag et al,
2006) and, when possible, the original material is reused and extended ac-
cording to the guidelines of designing experiments presented by Wohlin
et al (2000). In order to draw more general conclusions, the authors put
additional effort into minimizing the difference between this experiment
design and the original experiment design.

Since most of the design has been reused from the original experiment,
the evaluation of the experiment design for the replication sakewas limited
to checking additional changes. The changes concern questionnaire im-
provements and new instructions regarding the use of the Telelogic Doors
tool (IBM, 2010a). The experiment design was evaluated by an additional
researcher, experienced in conducting empirical research in software en-
gineering, before executing the experiment. The same researcher partici-

129



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

Assisted orManual
method

Figure 2.1: The process of using the support tool for requirements consoli-
dation.

pated in the pilot study where both tools were used to find similar require-
ments and create links between them. Comments and suggestions regard-
ing readability and understandability of the laboratory instructions were
given and later implemented. Finally, since the requirements sets used in
this experiment were the same as in the original experiment, the correct
answer to the consolidation task remained unchanged 3.

Similarly to the original experiment, this replication study was also
conducted in the form of a laboratory experiment, since it captures the
consolidation problem in an untainted way. Figure 2.1 depicts the con-
ceptual solution of the consolidation activity. To the left in Figure 2.1, two
requirement sets A and B are shown. They represent two consecutive sub-
missions of requirements specifications from the same key customer. We
can also assume that the earlier specification is set A in this case, and that it
would have already been analyzed and the result from the analysis is avail-
able in the central requirements database. The subjects use one of the tools,
either Telelogic Doors for the manual method (IBM, 2010a) or ReqSimile for
the assisted method (Natt och Dag et al, 2006), to find requirements in the
set B that were already analyzed in the set A and to mark them by assign-
ing a link between them. The output of the process is shown to the right

3The experiment pack can be accessed at ����������	
������������	��	���

���	���	��
��
�	���	����
����	������	����	���	���
�

130



4. EXPERIMENTAL DESIGN

of Figure 2.1. The subset A’ comprises all requirements that are not linked
to any requirement in the set A. The subset B’ represents all new require-
ments that have not previously been analyzed. Finally, there is the subset
C, which comprises all requirements in the new specification that previ-
ously have been analyzed. The analyst would then send the requirements
in set B’ to the experts for analysis. The experts are thus relieved from the
burden of re-analyzing the requirements in subsets A’ and C.

4.1 Goals, Hypothesis, Parameters and Variables

The variables in this experiment were kept unchanged from the original
study (Natt och Dag et al, 2006). They can be grouped into independent,
controlled and dependent:

• The independent variable is the method used in the experiment. The
two methods compared are manual and assisted.

• The controlled variable is the experience of the participants. In order
to analyze the individual experience of the subjects, a questionnaire
was used.

The dependent variables are:
T - time used for the consolidation
N - the number of analyzed requirements
Ncl - number of correct links
Nil - number of incorrect links
Ncu - number of correctly not linked
Niu - number of missed links (incorrectly not linked)

These dependent variables are used to analyze the hypotheses. The
number of analyzed requirements is used in case the subjects are not able
to analyze all requirements, which will affect Niu and Ncu. The hypotheses
for comparing the manual and the assisted method remain unchanged from
the original experiment design. The rationale of the proposed hypothe-
ses is based on the following theory regarding using the assisted method.
The assisted method provides a list of candidate requirements ranked by
their similarity degree to a currently analyzed requirement. As a result the
requirements analysts has to review only a subset of all possible combina-
tions, for example the top ten candidate links. Thus we state a hypothesis
that the assisted method can help to analyze requirements faster. Moreover,
since the most similar requirements are placed next to each other on the
list of candidates it is easier to read all potential candidates that exhibit
high degree of lexical similarity. The result is expected to be an increased
number of correct links, better precision and accuracy. Finally, the sorting
according to lexical similarity should, in our opinion, help to miss fewer
correct requirement links, since there is a high probability that all possible

131



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

links to analyze will be show in the top 10 or 20 candidate requirements.
Presented below are six null hypotheses:

(H1
0) The assisted method results in the same number of requirements ana-

lyzed per minute, N/T, as the manual method.

(H2
0) The assisted method results in the same share of correctly linked re-

quirements, Ncl/(Ncl +Niu), as the manual method.

(H3
0) The assisted method results in the same share of missed requirements

links, Niu/(Ncl + Niu), as the manual method.

(H4
0) The assisted method results in the same share of incorrectly linked

requirements, Nil/N, as the manual method.

(H5
0) The assistedmethod is as precise, Ncl/(Ncl + Nil), as themanualmethod.

(H6
0) The assisted method is as accurate, (Ncl + Ncu)/(Ncl + Nil + Ncu +

Niu), as the manual method.

Since the subjects may not use exactly the same time for the task, the per-
formance is normalized as the number of analyzed requirements divided
by the total time spent on the consolidation task (in minutes).

4.2 Subjects

In this study, a different set of subjects compared to the original experi-
ment, although from the same kind of population was used. The sample
includes participants of the course in Requirements Engineering at (Lund
University, 2011a). The course is an optional master-level course offered
for students at several engineering programs including computer science
and electrical engineering. It gives 7.5 ETCS points (ECTS, 2010) which
corresponds to five weeks full time study. Although the experiment was a
mandatory part of the course, the results achieved by the subjects had no
influence on their final grade from the course. The students were between
24 and 41 years old with an average of 27 years. There were 4 female and
41 male students. Before conducting the experiment, the subjects had been
taught requirements engineering terminology and had gained practical ex-
periences through their course project. The result from the pre-test ques-
tionnaire revealed that the difference in English reading and writing were
small, varying from "very good knowledge" for the majority of subjects to
"fluent knowledge" for some of them. When it comes to the industrial ex-
perience in software development of the subjects, most of them reported no
experience at all (28 out of 45 students). Among the subjects that reported
any degree of industrial experience, the length of the experience varied be-

132



4. EXPERIMENTAL DESIGN

Table 2.1: The number of years of industrial experience in software devel-
opment for pairs of the subjects that participated in this replication. The
remaining pairs of subjects exhibited no industrial experience for both pair
members. The letter A indicates that a pair of subjects used the assisted
method while the letter M indicates that a pair of subjects used the manual
method. The IDs (Mx and Ay) are consistent with Table 2.5. The rows high-
lighted bold text indicate data points that were removed from the analysis
(outliers).

Pair of subjects Experience of the first
subject in the pair (in
years)

Experience of the second
subject in the pair (in
years)

A1 0.5 1.5
A3 1 1
A7 1 2
A10 0 1
A11 0.5 1
M4 1 2
M5 0.5 0
M6 0.25 0
M7 0.5 1
M8 0.25 1.5

tween three months and two years with an average value of 11 months.
The analysis of industrial experience in pairs of subjects revealed that ten
pairs had varying degrees of industrial experience which was not always
equal. The analysis of the experience of both pair members is presented in
Table 2.1. The difference in experience varied between three months and
15 months with an average value of nine months. The impact of the indus-
trial experience on the results achieved by these subjects is outlined and
discussed in detail in Section 7.1 and Table 2.7.

We have also performed an analysis of the experience of subjects from
the project course that the requirements used in this experiment were de-
veloped here (Lund University, 2011b). The results of the analysis are pre-
sented in Table 2.2. The results revealed that 22 out of the 45 subjects have
not taken the course that the requirements originate from, while the rest
had taken the course and acted in various roles during the project phase of
the course.

Next, the roles taken in the course that the requirements originate from
in the pairs formed by subjects were analyzed. For 9 pairs, outlined in
Table 2.2, the pairs are formed by an inexperienced person and an expe-

133



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

Table
2.2:

The
experience

and
the

roles
of

the
subjects

thatparticipated
in

the
replication

from
the

course
thatthe

require-
m
ents

originate
from

.T
he

letter
A
indicates

thata
pair

ofsubjects
used

the
assisted

m
ethod

w
hile

the
letter

M
indicates

that
a
pair

of
subjects

used
the

m
anualm

ethod
(the

num
bers

are
consistentw

ith
Table

5).
The

row
s
highlighted

w
ith

b
o

ld
te

x
t

indicate
data

points
thatw

ere
rem

oved
from

the
analysis

(outliers).

Pair
ofsubjects

R
ole

ofthe
firstsubjectin

the
pair

R
ole

ofthe
second

subjectin
the

pair

M
2

H
as

nottaken
the

course
Tester

M
3

H
as

nottaken
the

course
System

group
m
em

ber
M
4

D
evelopm

entM
anager

and
D
eveloper

TestM
anager

and
Tester

M
5

Tester
H
as

nottaken
the

course
M
6

System
G
roup

M
em

ber
ProjectM

anager
M
7

H
as

nottaken
the

course
D
eveloper

M
9

System
G
roup

M
em

ber
D
eveloper

M
1

0
D

e
v

e
lo

p
m

e
n

t
M

a
n

a
g

e
r

P
ro

je
ct

M
a

n
a

g
e

r
M

1
1

H
a

s
n

o
t

ta
k

e
n

th
e

co
u

rse
S

y
ste

m
G

ro
u

p
M

e
m

b
e

r

A
1

ProjectM
anager

H
as

nottaken
the

course
A
2

ProjectM
anager

Tester
A
3

TestM
anager

and
Tester

H
as

nottaken
the

course
A
4

D
eveloper

D
eveloper

A
5

H
as

nottaken
the

course
Tester

A
6

ProjectM
anager

H
as

nottaken
the

course
A

7
D

e
v

e
lo

p
e

r
H

a
s

n
o

t
ta

k
e

n
th

e
co

u
rse

A
12

D
eveloper

134



4. EXPERIMENTAL DESIGN

rienced person from the course. This may have a positive impact on the
task, since the more experienced person can help the inexperienced per-
son to understand the nature and origin of the requirements set. However,
the more experienced person can bias the consolidation task by bringing
knowledge about the requirements sets and possible similar requirements
from the course. The remaining seven pairs represented experience from
various roles including: developer, development manager system group
manager, project manager and tester. Only one pair had the same experi-
ence from being a developer, in other cases the roles taken in the course
project did not overlap.

When it comes to the experience in analyzing and reviewing require-
ments, 80% of the subjects declared to have experience only from courses.
Among the remaining 20% of the subjects, one pair (M5) had experience
from both courses and industry (less than one year). In this case, the sec-
ond pair member had only experience from courses. Furthermore, in cases
(A1,A3 and A11), one pair member reported both experience from courses
and less than a year of industrial experience in analyzing and reviewing re-
quirements. In all three cases, these participants were paired with subject
reporting only experience from the courses. Finally, in the case of pair M8,
one member reported more than one year of industrial experience, while
the other pair member reported no experience at all. The analysis of the re-
sults achieved by these subjects in relation to their experience is discussed
in Section 7.1.

A further question concerned the subject’s experience with the tool that
implements the manual method, that is Telelogic Doors. The analysis indi-
cated that 91% of subjects reported no experience with Telelogic Doors and
that they had never heard about the tool. Although four persons have
heard about the tool, they have never used it. We can conclude that the
subjects are homogenous in this matter and that we can exclude this threat
from aspects influencing the results.

4.3 Treatments

The treatments of the experiment are the methods used in supporting the
requirements consolidation task. The assisted method is implemented in
the ReqSimile tool using linguistic engineering to calculate the degree of
similarity between requirements by lexical similarity as a way of approxi-
mating semantic similarity (Natt och Dag et al, 2004) (for more details see
Section 3).

The other treatment is the manual method which comprises searching
and filtering functionalities provided by the Telelogic Doors tool (IBM,
2010a). The goal of the experiment is not to compare the two tools in gen-
eral, but the functionality that they provide to support the requirements
consolidation task. The objects used in the original and the replicated
experiment are listed in Table 2.3. Compared to the original experiment,

135



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

Table 2.3: The treatments and tools used in the original and the replicated
experiments.

Original experiment Replicated experiment
Treatment Assisted

method
Manual
method

Assisted
method

Manual
method

Tool ReqSimile ReqSimileM ReqSimile Telelogic
Doors

one of the tools was kept unchanged while the second one was changed.
The change comprises substituting ReqSimileM from the original design
(Natt och Dag et al, 2006) by Telelogic Doors (IBM, 2010a) for the manual
method. More information regarding tools used in the replication can be
found in Section 4.5.

4.4 Requirements

Two requirements sets were reused from the original experiment. The re-
quirements specifications were produced as a part of a course "Software
Development of Large Systems" (LundUniversity, 2011b). The course com-
prises a full development project, including: requirements specification,
test specification, high-level design, implementation, test, informal and
formal reviews and acceptance testing. At the end of the course, the stu-
dents deliver a first release of the controller software for a commercial
telecommunication switch board. Two requirements specifications were
randomly selected from the course given in years 2002 and 2003. The re-
quirements have been specified in use case style or features style (Laue-
sen, 2002), and all are written using natural language. Two requirements
sets containing 30 and 160 requirements respectively, were imported to Re-
qSimlieA and Telelogic Doors. An example of requirements from the spec-
ification comprising 30 requirements is depicted in Table 2.4. However, the
requirements were neither written by a native English language writer, nor
given to a native English language speaking, experienced requirements an-
alyst for editing and rephrasing.

4.5 Tools

In this experiment, one tool remained unchanged from the original exper-
iment while the other tool was changed. The tool that implements the
assisted method, that is ReqSimile (Natt och Dag, 2006b), was kept un-
changed. The user interface of ReqSimile is presented in Figure 2.2. The
left side of the top pane of the window presents a list of requirements. The

136



4. EXPERIMENTAL DESIGN

Ta
bl
e
2.
4:
Ex

am
pl
e
re
qu

ir
em

en
ts
fr
om

th
e
sp
ec
ifi
ca
ti
on

co
m
pr
is
in
g
13
9
re
qu

ir
em

en
ts
.

K
ey

Id
Ty
pe

Se
le
ct
io
n

D
es
cr
ip
ti
on

3
Sc
en
ar
io
13

Fu
nc
ti
on

al
Se
rv
ic
e:

R
eg
ul
ar

ca
ll

R
eg
ul
ar

ca
ll-
bu

sy
A
ct
or
s:

A
:C
al
lin

g
su
bs
cr
ib
er
,
B:
C
al
le
d

su
bs
cr
ib
er
,
S:
Sy
st
em

Pr
er
eq
ui
si
te
s:

Bo
th

A
an
d
B
ar
e
co
n-

ne
ct
ed

to
th
e
sy
st
em

an
d
ar
e
no

t
un

ho
ok

ed
.
St
ep

13
.1
.
A

un
ho

ok
s.

St
ep

13
.2
.
S
st
ar
ts
gi
vi
ng

di
al
to
ne

to
A
St
ep

13
.3
.

A
di
al
s
th
e
fir
st
di
gi
t
in

B_
s
su
bs
cr
ib
er

nu
m
be
r
St
ep

13
.4
.
S

st
op

s
gi
vi
ng

di
al
to
ne

to
A
.S
te
p
13
.5
.
A
di
al
s
th
e
re
m
ai
ni
ng

th
re
e
di
gi
ts
in

B_
s
su
bs
cr
ib
er

nu
m
be
r
St
ep

13
.8
.S

st
ar
ts
gi
v-

in
g
bu

sy
to
ne

to
A
St
ep

13
.9
.A

ha
ng

s
up

St
ep

13
.1
0.
S
st
op

s
gi
vi
ng

bu
sy

to
ne

to
A

80
SR

S4
16
06

Fu
nc
ti
on

al
Se
rv
ic
e:

C
al
l

fo
r-

w
ar
di
ng

A
ct
iv
at
io
n
of

ca
ll
fo
rw

ar
di
ng

to
a
su
bs
cr
ib
er

th
at

ha
s
ac
ti
-

va
te
d
ca
ll
fo
rw

ar
di
ng

sh
al
l
be

ig
no

re
d
by

th
e
sy
st
em

.
Th

is
is
re
ga
rd
ed

as
an

er
ro
ne
ou

s
ac
ti
va
ti
on

,a
nd

an
er
ro
r
to
ne

is
gi
ve
n
to
th
e
su
bs
cr
ib
er
.(
M
ot
iv
at
io
n:

To
ge
th
er
w
it
h
SR

41
60
7,

av
oi
ds

ca
ll
fo
rw

ar
di
ng

in
cl
os
ed

lo
op

s)
11
1

SR
S4
18
04

Fu
nc
ti
on

al
Se
rv
ic
e

in
te
ra
ct
io
n

Th
e
se
rv
ic
e
ca
ll
fo
rw

ar
di
ng

sh
al
l
be

de
ac
ti
va
te
d
if
a
cu
s-

to
m
er
re
m
ov

es
ei
th
er
th
e
su
bs
cr
ib
er
fr
om

w
hi
ch

ca
lls

ar
e
fo
r-

w
ar
de
d
or

th
e
su
bs
cr
ib
er

to
w
hi
ch

ca
lls

ar
e
fo
rw

ar
de
d.

137



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

data has already been pre-processed by the tool so the user can start an-
alyzing requirements for similarities. Selecting a requirement (1) makes
the requirement’s details display on the right (2) and a list of similar re-
quirements in the other set appear in the bottom pane (7), sorted on the
similarity value (3). Requirements that have already been linked in the set
of analyzed requirements are highlighted using another (gray) color (6).
Requirements that have been linked to the currently selected requirements
(1) are highlighted using another (green) color (5). Unlinked requirements
are not highlighted (8). Links can be made between the selected require-
ment (2) and the requirement with the associated link button (4). Once a
requirement has been selected (1), the user has to perform two operations,
click on the requirement that is supposed to be linked and click the button
“link” to make the link. The second tool, described by Natt och Dag et al

Figure 2.2: The user interface of the ReqSmiliA tool used in
the experiment. The full-size color figure can be found at
http://fileadmin.cs.lth.se/serg/ExperimentPackages/ReplicationReqSimile/
ReqSimiliA.bmp

(2006) as ReqSimileM was changed in this experiment to Telelogic Doors

138



4. EXPERIMENTAL DESIGN

Figure 2.3: The user interface of Telelogic Doors used in
the experiment. The full-size color figure can be found at
http://fileadmin.cs.lth.se/serg/ExperimentPackages/ReplicationReqSimile/
DOORS.png

139



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

(IBM, 2010a). The user interface of Telelogic Doors is shown in Figure 2.3.
The two sets of requirements were opened in Doors from separated mod-
ules and placed next to each other on the screen. Figure 2.3 illustrates one
of the requirements sets opened in a module. This orientation is similar
to ReqSimile’s view and enables easy visual comparing between the two
sets of requirements. The finding and filtering capabilities were used in
Telelogic Doors to perform the consolidation task. These capabilities can
be accessed respectively from the Edit menu and the Find command or the
Tools menu and the Filters command. The subjects were given detailed in-
structions with screen-shots of each step and each dialog window that was
related to finding and filtering capabilities. After finding similar require-
ments, links were established using the tool’s built in traceability solution.
During the planning activities, it was discovered that making links in Telel-
ogic Doors is not as straightforward as in ReqSimile, where only onemouse
click is required. In this case, the user has to perform two operations in or-
der to search for or filter out desired requirements. To make a link, the user
must perform two operations: initiate the link on the source side and ter-
minate the link on the destination side. 4 The subjects received no training
in using the tools other than the instruction given at the beginning of the
experiment and some practice time, to get familiar with the tool.

4.6 Correct Consolidation

To enable measurement of the subjects’ accuracy of linking requirements
that are semantically similar, the original key for assigning correct links
has been reused. This original key was created by the first author of the
original experiment article (Natt och Dag et al, 2006), having many years
of experience from this course in various roles. It is therefore justifiable to
consider this key as one provided by an expert in the domain. The key was
created a priori to any analysis of the subjects’ assigned links in order to
reduce any related validity threats. More information regarding the correct
consolidation key, together with the distribution of the position at which
the correctly similar requirements are placed by the tool in the ranked lists,
is available in the original experiment article (Natt och Dag et al, 2006).

4.7 Instrumentation

In this experiment, most of the original experiment’s guidelines were kept
unchanged. In particular, the instructions for how to use the assistedmethod
(ReqSimile tool) was reused. A new set of instructions describing how to
use the manual method (Telelogic Doors) to find similar requirements and
assign links between them, was developed and evaluated by an indepen-
dent researcher. Since Telelogic Doors has a more complex user interface,

4The instructions for linking requirements in Telelogic Doors is available at
http://fileadmin.cs.lth.se/serg/ExperimentPackages/ReplicationReqSimile/HelpSheetDoors.pdf.

140



4. EXPERIMENTAL DESIGN

the instructions were significantly longer than those for ReqSimile, con-
sisting of eight pages of text and figures. Due to its length (8 pages), it was
decided that subjects using Telelogic Doors should get more time to read
through the instructions for that application. The pre- and post-test ques-
tionnaires were updated according to the changes made from the original
study. In the pre-test questionnaire, the authors added one question about
the experience using Telelogic Doors to be able to measure the impact of
this phenomenon on the results. Furthermore, two questions related to
English skills that were separated in the original design were merged into
one. The rationale for this decision was that the subjects of the experi-
ment will only read requirements so their skills in writing are not relevant.
A pre-test questionnaire including five questions about the subjects’ in-
dustrial experience in software development, experience with analyzing
and revising requirements and possible knowledge and skills in Telelogic
Doors was prepared. Before collecting the data, an additional experienced
researcher evaluated the questionnaire to check the understandability of
questions and their relevance for this study.

Due to a limited number of available computers in the laboratory room,
the subjects were asked to work in pairs for the experiment. This deviates
from the original experiment design, where subjects were performing the
task individually and demands additional analysis to ensure that groups
were formed equally. Some changes were also made to the post-test ques-
tionnaire. The original questions regarding (1) the time spent on the con-
solidation task, (2) the number of finished requirements, (3) the number
of found duplicates, similar and new requirements and (4) the usefulness
of used methods were kept unchanged. Moreover, two questions about
the scalability of used methods and possible improvements were kept un-
changed comparing to the original experiment design. 5

4.8 Data Collection Procedure

The data collection procedure was kept as similar as possible to the original
experiment design. The subjects were given the introduction and problem
description by the moderator. After the introduction, subjects were given
some time to read through the assigned tool’s instruction and make them-
selves familiar with its user interface. At this stage, the groups assigned
to work with Telelogic Doors were given some extra time (approximately
5-10 minutes) since the tool interface was more complex and the instruc-
tion was longer. One of the important changes here is that the subjects an-
swered pre-study test right before starting the task. The results of the pre-
study survey were analyzed afterward and are presented in Section 4.2.
Next, the subjects were asked to work for 45 minutes on the consolidation

5Both questionnaires are available at ����������	
�����������

�	��	������	���	��
��
�	���	����
����	������	���	�	������ and
http://fileadmin.cs.lth.se/serg/ExperimentPackages/ReplicationReqSimile/PostTest.pdf

141



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

task. The results from the actual experiment were collected by analyzing
the information recorded in the tools about the number of links made and
requirements analyzed by the subjects. The experimental results were also
checked against the results of the post-questionnaire to ensure consistency.
The post-questionnaire was asked after performing the task.

4.9 Validity Evaluation

As for every experiment, questions about the validity of the results must be
addressed. Threats to validity are presented and discussed using the clas-
sification of threats to conclusion, internal, construct and external validity
as proposed by Wohlin et al (2000).

Conclusion validity. In order to not have too low power of the statisti-
cal tests, parametric tests (t-test) were used after having investigated the
normality of the data.

Subjects were selected from the same education program to limit their
heterogeneity. Moreover, the questionnaire about the experience of sub-
jects from industry, experience from the course where requirements orig-
inate from and experience in reviewing requirements was used to assess
the heterogeneity of the subjects in these aspects. However, the threat re-
lated to the fact that subjects were asked to work in pairs may impact the
conclusion validity. It affects in particular the random heterogeneity of
subjects, since created pairs may manifest differences in industrial expe-
rience or experience from the previous courses. We discuss this threat in
the analysis of the pre-study questionnaire results in Section 4.2 and the
results achieved by the subject in relation to their experience in Section 7.1.
The way how the subjects took seats in the laboratory room and thus the
way how they were assigned to the methods can also be questioned here.
As pointed out byWilkinson et al (1999), random assignment is sometimes
not feasible in terms of the control or measure of the confounding factors
and other source of bias. Elements outside the experimental setting that
may disturb the results were minimized. Students were not interrupted
during the experiment sessions and no significant noise was present. In
order to minimize random irrelevance in experimental setting, the experi-
ment moderators ensured that any discussions in pairs of subjects should
be made as quietly as possible.

Although all subjects have taken the same education program for 2.5
years, the individual differences in industrial experience, experience in the
course from which the requirements originate, and knowledge of English
may affect the results. The searching for a specific result threat was ad-
dressed by not notifying the subjects which method is supposed to per-
form better than the other. The threat to the reliability of measurements is
addressed by reusing the original measurements for the replication case.
Moreover, all subjects received the same instruction for using the treat-
ments which helps to standardize the application of treatments to subjects.

142



4. EXPERIMENTAL DESIGN

Finally, the error rate of the significance level and the use of Bonferroni
correction (Arcuri and Briand, 2011) are among the threats to conclusion
validity. The possibility of using the Bonferroni correction to adjust the
level of significance is discussed in Section 7.

Internal validity. In this case, threats related to the history, maturation
etc. have to be mentioned. The history threat to internal validity is mini-
mized by applying one treatment to one object. Both days when the exper-
iment sessions were held where normal working days not followed by any
holidays (the first session took place on Tuesday and the second session
on Friday). The maturation threat was minimized by dedicating only 45
minutes for the consolidation task (we assume that the subjects won’t get
bored by the task in 45 minutes). The instrumentation threat is addressed
in two ways: (1) by reusing the original experimentation instrumentation,
if no changes were needed, and (2) reviewing the instrumentation docu-
mentation by an independent researcher. However, since subjects were not
divided into groups according to the results of the pre-study questionnaire
(the questionnaire has been filled in right before the experiment’s execu-
tion), the statistical regression threat can not be as easily addressed as in
the original experiment. The analysis related to this threat is presented in
Sections 4.2 and 7.

The incentives of participants are, next to their experience, an impor-
tant factor that may influence the results of this study. According to the
classification presented by Höst et al (2005), both the original experiment
and replication can be classified as I2 E1 where I2 means that the project
is artificial (in terms of incentive). The subjects typically have no prior
knowledge of the artifacts that they are working with and the require-
ments sets used in the experiment were developed by the researcher or
borrowed from an industrial organization. The E1 level on the experience
scale means that the subjects are undergraduate students with less than
three months recent industrial experience, where recent means less than
two years ago. Although the identical comparison of two I2E1 cases is not
present in Höst et al (2005), the example of two experiments classified as
E1 I1 (where I1 means an isolated artifact) shows no significant difference
in their outcomes. Moreover, three other pairs of experiments, classified in
the same category, also shows the same outcomes (Höst et al, 2005).

The selection threat, as in the original design, may influence the results
since the subjects are not volunteers and the laboratory session where the
experiment was performed is a mandatory part of the course. The social
threat to internal validity is addressed since the subject had nothing to gain
from the actual outcome of the experiment; the grading in the course is not
based on results of, or preparation for, the experiment. Unlike the original
experiment design, the experiment groups were not separated, however
no information about which method is expected to perform better was re-
vealed to the subjects. The possibility of looking at other subjects’ results
during the experiment execution was minimized by placing the subject in

143



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

a way that separated each of the two treatments by the other treatment.
Compensatory rivalry may be a problem in this case, since the group that
will use the open-source solution (ReqSimile) or the commercial solution
(Telelogic DOORS) may try to perform better to make their favor type of
software win. This threat was addressed by explicitly stating in the be-
ginning of the experiment that there is no favorite or assumingly better
method. The potentially more problematic threat is that the subjects had
to analyze and link requirements written in English when they had them-
selves used only Swedish to specify their own requirements in the domain.
Further, the participants ability to objectively evaluate their skill in English
language is a subject to question. In further work it would be interesting
to execute the experiment on a set of native English subjects, also handling
the original set of requirement to a native speaker experienced require-
ments analyst who will edit and rephrase them.

Construct validity. In this case, the theory is that the assisted method
implemented in the ReqSimile tool provides better assistance for a partic-
ular task than the method implemented in Telelogic Doors. We base this
theory on the fact that the assisted method provides a list of candidate re-
quirements augmented with the degree of lexical similarity. As a result,
the analyst can only look at a subset of possible candidate requirements
(the most similar requirements, up to a certain threshold) thus saving time
required to do the task. Moreover, we believe that the list of possible can-
didates helps the analyst to miss fewer requirements links and increase the
precision ofmaking the links. In contrast to the original experiment design,
none of the authors have developed any of the tools. However, the origi-
nally mentioned threat related to the awareness of subjects about their own
errors is still present in this experiment. This threat may have influenced
the number of correct and faulty links. Also, as pointed out by Natt och
Dag et al (2006), when subjects know that the time is measured, it is pos-
sible that they become more aware of the time spent and the performance
results may be affected.

The level of experience of the subjects, especially in reviewing require-
ments, may influence the outcome of the experiment. This threat to con-
struct validity is addressed by the analysis and discussion of the results
achieved by the subjects having experience in reviewing requirements in
Section 7. Because the same 30 and 160 requirements were used by all
subjects in both treatments and experimental sessions, this may result in
a situation where the cause construct is under-represented. This threat is
discussed in Section 7 where alternative designs for this experiment are
outlined. Moreover, keeping the requirements sets unchanged opens up
the possibility of discussing other factors as well as differences between
the original and replicated experiment to assess their influence on the re-
sults. The interaction of different treatments threat to construct validity
is minimized by involving the subjects in only one study. The differences
in the user interfaces and their usability may have influenced the results

144



5. EXPERIMENT EXECUTION

achieved by the subject. In particular, this threat could influence the num-
bers of requirements analyzed and links assigned by the subjects. This
threat has been addressed in two ways: (1) by providing detailed instruc-
tions on how to make links in the tools and by giving the subjects as much
time as they requested to get familiar and comfortable with the user inter-
face, (2) bymaking the user interfaces look as similar as possible by placing
the two requirements sets next to each other in Telelogic DOORS. Finally
the evaluation apprehension threat is minimized by: (1) clearly stating that
the performance of the subject has no effect on their grade in the course and
(2) by using requirements that were not written by the subjects.

External validity. The largest threat in this category is the number of
analyzed requirements. Since only a relatively small number of require-
ments was analyzed during the experiment, it is hard to generalize the
results to large sets of requirements, which often is the case in industry
projects (Berenbach et al, 2009; Leuser, 2009). Using students as subjects is
another large threat. Even though the subjects were on their last year of
studies, they can be considered as rather similar to an ordinary employee.
However, as mentioned by Kitchenham et al (2002) students are the next
generation of software professionals and they are relatively close to the
population of interest. Since they participated in the requirements engi-
neering course, they are familiar with the application domain. Finally, the
diversity of experience of subject from industry and from analyzing and
reviewing requirements, although hindering the conclusion validity, has a
positive influence on the heterogeneity of the population sample used in
this experiment.

The time spent on the task is also among potential threats to external
validity. To analyze 30 requirements in 45 minutes subject should spend
on average 90 seconds on each requirement. It remains an open question
whether or not this is enough time for the subjects to perform both lexi-
cal and semantic analysis. However, this threat was partly addressed by
stating at the beginning of the experiment that the subjects don’t have to
analyze all 30 requirements in 45 minutes (the subjects had to record how
many requirements were analyzed and how they browsed the list of can-
didate requirements).

5 Experiment execution

The replication was run in two two-hour laboratory sessions in January
2008. The first 15 minutes of each session were dedicated to the presen-
tation of the problem. During this presentation, the importance of the in-
dustrial applicability of the results and the goal of the experiment were
stressed. All students were given the same presentation. The general
overview and differences between the included methods and tools were
presented without favoring one method over the other. To avoid bias-

145



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

ing, no hypotheses were revealed and it was made very clear that it is not
known which approach will perform better. After the presentation of the
problem, students were given time to get familiar with the instructions
of how to use the tools and report that they are ready to start working
on the task. The starting time was recorded in the questionnaire as stu-
dents required varying times to get familiar with the instructions. After
the 45 minutes time assigned for the task, subjects were asked to stop,
record the number of analyzed requirements, the time, and to fill in the
post-questionnaire. The remaining time was used for exchanging experi-
ences and discussion the about tools used. This approach is similar to the
original experiment execution described by Natt och Dag (2006). The dif-
ference from the original experiment is that subjects used both methods in
both experimental sessions. Half of the subject pairs in each session (there
were two sessions in total) were assigned to the assisted method while the
other half to themanual method. The subjects were to use only onemethod
during the experiment and participate in only one of the two sessions. The
difference from the original experiment here is that the methods were not
separated in different sessions. That is, in each session the pairs using the
assisted and the manual methods were mixed.

After the presentation, the subjects were assigned to the methods. Be-
cause only one laboratory room could be used for each session and this
roomdid not have enough computers for all subjects (whichwas not known
while planning the experiment), the subjects were asked to work in pairs.
Each pair was randomly assigned to the method later used for the consol-
idation task. There were no name tags or other indicators of the method
on the laboratory desks when subjects took their seats in the laboratory
room. Therefore, subjects could not take a preferable method seat or be
attracted by the name on the desk. Subjects were asked to discuss the so-
lutions only within their own pair. Since the nearest group was not using
the same method, the possibility of comparing or discussing results was
avoided. The subjects were allowed to ask questions of the moderator, if
they experiences any problems. Only answers related to the difficulties of
using tools were given in a straightforward manner. No answers related to
assessing similarity between requirements were given. The material used
in the experiments comprised:

• The ReqSimile application with automated support of similarity cal-
culations and a database containing: (1) 30 randomly selected re-
quirements from the first set, (2) all 160 requirements from the second
set. These requirements should be browsed through by the subjects.

• The Telelogic Doors application with the same two sets of require-
ments imported into two separatedmodules. The application’s graph-
ical user interface was set as presented in Figure 2.3 in order to make
it as similar to the ReqSimile user interface as possible.

146



6. EXPERIMENT RESULTS ANALYSIS

• The documentation comprising: (1) An industrial scenario describ-
ing the actual challenge (one page). (2) A general task description
(one page). (3) Detailed tasks with space for noting down start and
end times (one page). (4) A short FAQwith general questions and an-
swers about the requirements (one page). (5) A screen shot of the tool
user interface with the description of the different interface elements
in the ReqSimile case (one page) or a 8 pages instruction with screen
shots from the steps needed to analyze requirements and make links
using Telelogic Doors.

• The instruction to the students was as follows: (1) Review as many of
the requirements as possible from the list of 30 requirements shown
in the tool. For each reviewed requirement, decide if there are any
requirements in the other set that can be considered identical or very
similar (or only a little different) with respect to intention. (2) As-
sign links between requirements that you believe are identical or very
similar. (3) Note down the start and finish time. (4) When finished,
notify the moderator.

Given the experience from the original study, it was decided to dedi-
cate 45 minutes to the consolidation task. The subjects were notified about
the time left for the task both 15 and five minutes before the end of the
lab session. After approximately 45 minutes, subjects were asked to stop
working on the task unless they, for any reason, spent less than 40 minutes
on the task. All students were asked to fill in a the post-test questionnaire
described in Section 4.7. Apart from noting the finishing time and the num-
ber of analyzed requirements, subjects were also asked to assess the useful-
ness of used methods in terms of the given task and, if applicable, propose
improvements. Right after executing the experiment, it was known which
data points had to be removed due to tool problems or subjects’ attitude.
Three groups had problems with the tools used which resulted in loss of
data and one group performed unacceptably analyzing only three require-
ments during 45 minutes and making only two links. These four groups
were treated as outliers and removed from the analysis.

6 Experiment results analysis

In this section, methods of analyzing the results are described. In order to
keep the procedures as similar to the original experiment design as simi-
lar as possible, the same statistical methods were used to test if any of the
null hypotheses can be rejected. Additional analysis was also performed in
order to assess if working in pairs influences the performance of subjects.
Hypotheses were analyzed separately, while any relations and accumu-
lated results are presented in Section 7. The standard t-test has been used,
as the data was confirmed to have a normal distribution. Just as in the orig-

147



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

inal experiment from which requirements were reused, in this experiment
one analyzed requirement can be linked to several others. The results from
measuring dependent variables can be found in Table 2.5. Subjects that
used ReqSimile are marked with the letter A (as an abbreviation of the as-
sisted method), and subjects that used Telelogic Doors with the letter M
(as an abbreviation of the manual method). The dependent variables are
described in Section 4.1. Table 2.5 presents the results from both experi-
mental sessions (Tuesday and Friday sessions).

RowsM10, M11, A7 and A8 in Table 2.5 represent data points that were
removed from the analysis. The pair M10 was removed from the results
due to the inconsistency between the results stated in the post-task ques-
tionnaire and the results saved in the tool. The pair M11 was removed due
to loss of data. Similar problems caused the authors to remove group A8
from the analysis since the links were not saved in the tool. Finally, group
A7 was removed due to their lack of their commitment to the task.

The time spent on the task is presented in column 2 of Table 2.5. The
results for the number of finished requirements, derived from the post
questionnaire and confirmed with the results recorded in the tool used, are
listed in column 3. Next, other dependent variables values are presented
in the remaining columns. The values were calculated based on the results
saved in the tools and from the answers to the questionnaires questions.

Figure 2.4: The results for the number of analyzed requirements.

The results for the number of analyzed requirements per minute are
depicted as a box plot in Figure 2.4. It can be seen that there is no statis-
tically significant difference in the number of analyzed requirements be-

148



6. EXPERIMENT RESULTS ANALYSIS

Table 2.5: The results frommeasuring dependent variables. The rows high-
lighted bold text indicate data points that were removed from the analysis
(outliers).

Pair of
subjects

T
(min)

N Links
as-
signed

Correctly
linked
(Ncl)

Correctly
not
linked
(Ncu)

Incorrectly
linked
(Nil)

Missed
(Niu)

M1 38 12 6 1 4 5 6
M2 41 13 10 5 4 5 3
M3 46 30 15 11 10 4 9
M4 44 13 10 5 4 5 3
M5 45 18 16 8 11 8 12
M6 48 20 5 2 6 3 9
M7 45 22 21 6 6 15 8
M8 44 19 9 4 7 5 8
M9 46 19 15 7 5 8 5
M10 45 16 9 4 4 5 5
M11 45 18 ? ? ? ? ?
A1 41 14 13 5 5 8 5
A2 45 20 25 9 4 16 3
A3 49 18 19 5 3 14 6
A4 45 13 25 5 0 20 3
A5 50 20 15 8 4 7 4
A6 50 21 19 6 3 13 6
A7 29 3 11 1 0 12 0
A8 44 30 ? ? ? ? ?
A9 34 30 23 13 7 10 7
A10 41 30 16 12 8 4 8
A11 50 23 19 7 7 12 7
A12 35 30 20 13 8 7 7

149



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

tween the manual and the assisted method. The group that used the man-
ual method analyzed on average 0.41 requirements per minute while the
group that used the assisted method analyzed on average 0.51 requirements
per minute. In this case, we observe that the medians are most likely equal,
while the lower and upper quartiles values differ significantly. The t-test
gave a p-value of 0.20 which gives no basis to reject the null hypothesis H1

0 .
The notches of the box plot overlap. To summarize, the assisted method
turned out not to be more efficient in consolidating two requirements sets
than the manual method (research question Q1a).

Figure 2.5: The results for the share of correctly assigned links.

The results for the number of correct links assigned by subjects are de-
picted in Figure 2.5. The group that used the assisted method correctly
assigned on average 58% of the links that the expert assigned, while the
group that used the manual method correctly assigned on average 43% of
the correct links. The medians differ significantly from 61% for the assisted
method to around 42% for the manual method. The t-test gave in this case
the p-value 0.013 whichmakes it possible to reject hypothesis H2

0 . Thus, we
can state a positive answer to research question Q1b, the assisted method is
superior to the manual method when consolidating two requirements sets
when measured by which method delivers more correct links.

To address hypothesis H3
0 , requirements analyzed by each pair of sub-

jects were reviewed, and the number of links that should have been as-
signed but were not, was calculated. In the case when subjects did not
analyze all requirements, only requirements that had been analyzed were
taken into consideration. Each pair of subjects stated in their post-test

150



6. EXPERIMENT RESULTS ANALYSIS

Figure 2.6: The results for the percentage of missed links.

questionnaire how many requirements were analyzed and how they had
worked through the list of requirements. This information was used to cor-
rectly count the number of missed links. The results are depicted in Figure
2.5. The group that used the assisted method missed on average 41% of
the links, while the group that used the manual method missed on average
57% of the links. The medians in this case are 38% for the assisted method
and 57% for the manual method. The t-test gives a p-value of 0.0207 which
means that we can reject H3

0 and confirm the original experiment’s conclu-
sions by making the conjecture that the assisted method helps the subjects
to miss significantly fewer requirements links than the manual method (re-
search question Q1c).

For the number of incorrectly assigned links (Nil) (related to research
question Q1), the t-test resulted in a p-value of 0.14, so the hypothesis H4

0
cannot be rejected. Furthermore, for the hypothesis H5

0 (related to research
question Q1) the t-test gave the p-value 0.62 and for the hypothesis H6

0 (re-
lated to research question Q1) the t-test resulted in the p-value 0.72. To
summarize, research question Q1 can be answered as “yes”, for some as-
pects. Our results confirm the results from the original experiment for cor-
rectness and number of missed links but we can’t confirm the result for the
efficiency. As in the original experiment the hypotheses H4

0 , H5
0 , H6

0 could
not be rejected here. Compared to the original experiment, this experiment
confirms no statistical difference in the number of incorrect links, precision
and accuracy between the two analyzed treatments. The question regard-
ing different results for H1

0 is discussed in Section 7. The summary of the

151



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

Table 2.6: The results of the t-tests for original and replicated experiments.

Hypotheses The p-values in the
original study (Natt
och Dag et al, 2006)

The p-values in this
replication

H1
0 Efficiency 0.0034 0.20

H2
0 Correct links 0.0047 0.013

H3
0 Missed links 0.0047 0.02

H4
0 Incorrect links 0.39 0.14

H5
0 Precision 0.39 0.62

H6
0 Accuracy 0.15 0.72

original and the replicated experiments is depicted in Table 2.6.

7 Experiment results interpretation and discus-

sion

This section presents an interpretation of the results presented in Section 6.
Since this experiment was conducted on a set of students, it is important to
emphasize here that the results from this study are interpreted in the light
of the population where the experiment was held (Kitchenham et al, 2002).
The section discusses the results of this experiment in isolation as well as
in relation to the results of the original experiment.

7.1 Interpretation of this experiment

The results achieved in this replicated experiment allow for the rejection
of two out of six stated null hypotheses (see Table 2.6). As already men-
tioned, four data points were removed from the analysis for various rea-
sons, as described in Section 6. The results achieved by groupA7 show that
the subjects were not motivated to do the task or misunderstood the task
(they analyze only 3 requirements in 29minutes). It is surprising since both
subjects in this pair had one or more years of industrial experience (pairs
with similar experience (A3 and M4) performed significantly better on this
task), but no experience in reviewing requirements. It is an open question
how they could influence the results if properly motivated. Similarly, due
to unexpected tool issues (the results were not saved in the tool) we can
only assume that the results achieved by groups A8 and M11 could posi-
tively influence the results for both assisted andmanual method (group A8
achieved efficiency of 0.68 requirement per minute, groupM11 0.4 require-

152



7. EXPERIMENT RESULTS INTERPRETATION AND DISCUSSION

ment per minute and group M10 0.35 requirements per minute). Adding
these three incomplete data points (A8, M10 and M11) to the analysis of
the performance will not change the result of the hypothesis H1

0 testing
(although it can minimize the p-value to 0.0890).

As for the H1
0 (performance) hypothesis (research question Q1a), the

lack of a statistically significant difference can be interpreted in the fol-
lowing way: we have not found this property (namely lower efficiency
of the manual method comparing to the assisted method) on a different
requirements management tool, namely Telelogic DOORS. The lack of sta-
tistical significance can be explained by a rather large variation in the as-
sisted method (the minimum value for the performance is 0.29 requirement
per minute while the maximum value is 0.89 requirement per minute).
Furthermore, albeit the medians are almost identical for both the assisted
and the manual method with respect to the performance, the range of the
third quartile is much larger in the assisted method. This fact can be in-
terpreted in favor of practical significance (Kitchenham et al, 2002) in the
following way: if we assume that both groups assigned to the methods
are rather homogeneous, we can also assume that in both groups there are
similar numbers of more and less motivated subjects. In the light of the
fact that motivation has been reported to be an important determinant of
productivity and quality of work in many industries (Baddoo et al, 2006),
the practical significance of the results is that the assisted method gives the
possibility to achieve higher values of the performance than the manual
method. As more motivated subjects usually achieve better results with a
given task, we can assume that the top scores for both methods correspond
to the most motivated pairs of subjects. The evidence reported by Badoo et
al(2006), albeit studied on developers rather than requirements engineers,
confirms that the traditional motivators of software developers, e.g. intrin-
sic factors, but also opportunity for achievement, technically challenging
work and recognition have a strong influence on the developer’s perfor-
mance. Thus, when comparing the top score of both methods, we could
conclude that the assisted method may boost the performance of the moti-
vated subjects more than less motivated subjects.

The analysis of the results for efficiency versus the experience of the
subjects revealed that the subjects with experience reviewing requirements
(pairs A1, A3 and A11) were not the fastest (the values were lower or
around the median value). We can postulate here that the industrial ex-
perience led these pairs to be more cautious when analyzing requirements.
On the other hand, the top score in this group (A9) was achieved by a
pair of subjects that reported no industrial experience and no experience
from the course from which the requirements originated. Surprisingly, the
two lowest values of performance were achieved by the pairs having ei-
ther one year of industrial experience, including experience with review-
ing requirements (pair A3), or experience from the course from which the
requirements originated (pair A4). In the light of these facts, we can not

153



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

draw any strong conclusions about the effect of both industrial experience
and experience with reviewing requirements on the performance of sub-
jects. However, our results show indications of negative impact of expe-
rience on the performance of the subjects. The full analysis of results of
experienced versus inexperienced subjects is presented later in this section
and in Tables 2.7 and 2.8.

The results concerning the number of correct links (research question
Q1b) can be interpreted as follows. The group that used the assistedmethod
assigned on average 58% of the correct links, while the group that used the
manual method assigned on average 43% of the correct links. The results of
the t-test allows us to reject H2

0 . This fact may be interpreted in the follow-
ing way in favor of the assisted method: even if the assisted method is put
next to a rather sophisticated requirements management tool, it can still
provide better support for assessing more correct links between require-
ments. The fact that both in the original and the replicated studies the
assisted method provided a better support in linking similar requirements
may lead to the following two interpretations: (1) the method is better in
this matter, and (2) working in pairs has a minimum or equal impact on
the two methods when it comes to the number of correctly linked require-
ments.

The results for the number of missed requirements links (research ques-
tion Q1c) confirm the results of the original experiment. The t-test confirms
that the assisted method can help to miss fewer requirements links than the
manual method. Missing fewer links may be important when large sets of
requirements have to be analyzed, which is a reasonable practical interpre-
tation of this result. This result also confirms the interpretation that in the
case of the assisted method, showing a list of similar requirements candi-
dates limits the solution space for the analyst which results in a smaller
number of missed requirements links.

Similarly to the original experiment, the results from the experiment
can also not reject hypotheses H4

0 , H5
0 and H6

0 (research question Q1). The
lack of statistically significant differences in these cases may be interpreted
as the possible existence of additional factors that affect the consolidation
of requirements process which were not controlled in the experiment. For
example, since it is much easier to make a link in ReqSimile than in Tele-
logic DOORS this may affect the number of incorrect links, precision and
accuracy. This threat to construct validity is described in Section 4.9 and is
considered as one of the topics for further work.

The fact that subjects worked in pairs may also influence the results.
Even though working in pairs has generally been considered having a
positive impact on the task, for example in pair programming (Begel and
Nachiappan, 2008), the results among researchers are inconsistent (Hulkko
and Abrahamsson, 2005; Parrish et al, 2004). Therefore, assessing the im-
pact of working in pairs in more decision-oriented software engineering
tasks is even more difficult. Thus, it can be assumed that working in pairs

154



7. EXPERIMENT RESULTS INTERPRETATION AND DISCUSSION

may sometimes influence the performance of these types of tasks posi-
tively, and sometimes negatively. In this case, we assume that subjects
were similarly affected by this phenomenon both in the assisted and in the
manual method.

The influence on the results of fluency in reading and reviewing re-
quirements in the English language can be interpreted in the following
way. Since subjects reported either “very good knowledge” or “’fluent
knowledge’ in reading and writing English our interpretation of this fact is
that this aspect equally influenced all subjects. Moreover, the subjects were
allowed to ask questions for clarification, including understanding the re-
quirements during the experiment. However, it remains an open question
what can be the results of the experiment when performed on native En-
glish language speaking subjects.

The analysis of the influence of the industrial experience of the subjects
of the results achieved is depicted in Table 2.7. The data has been analyzed
for all pairs of subjects, as well as for subjects using the same method.
Four out of the total 11 pairs of subjects using the assisted method reported
having some industrial experience. For the manual method, 5 out of 9 pairs
of subjects included in the data analysis reported having some industrial
experience. Subjects were paired in a way that minimizes the difference in
the experience of pair members. Moreover, only in two cases (pairs M5 and
M6) were pairs formed of one experienced and one inexperienced subject
(see section 4.2 for more detail about the subjects).

The analysis of the relationship of industrial experience to the results is
based on the arithmetic average values of the results achieved. Table 2.7
shows that in most cases industrial experience negatively influenced the
results (and tested hypotheses). The cells colored bold in Table 2.7 indi-
cate cases where industrial experience has a positive effect on the analyzed
aspect. For all hypotheses for subjects using the manual method, the in-
dustrial experience had a negative impact on the results achieved. In the
case of the assisted method, the experienced subjects made fewer incorrect
links and had better precision and accuracy. The results from comparing all
subjects show the same pattern as the results for the assisted method. While
the results are implausible, they may be an indicator that general software
engineering industrial experience may not be useful in the task of analyz-
ing requirements, at least when the experience is minimal to small. Thus,
we state a hypothesis that experience in reviewing requirements and the
domain knowledge should significantly help in achieving better results by
our subject. Keeping in mind the scarceness of the data, we provide some
examples that we used to support the hypothesis in the text that follows.

Six pairs of subjects reported having experience analyzing and review-
ing requirements outside of the courses taken in their education. In one
case (M8), a person with more than one year of industrial experience was
paired with a person with no experience. Although it may be expected that
an experienced pair member can significantly influence the results of this

155



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

Table 2.7: The analysis of the industrial experience of the subjects in rela-
tion to their results. The values in bold text indicate cases where industrial
experience had positive effect on the analyzed aspect.

All data Assisted method Manual method
Exp. Unexp. Exp. Unexp. Exp. Unexp.

Efficiency H1
0 [N/T] 0.44 0.48 0.51 0.52 0.40 0.42

Correct H2
0 [%] 44 55 53 61 39 47

Missed H3
0 [%] 55 44 46 38 60 52

Incorrect H4
0 [%] 39 54 40 66 38 33

Precision H5
0 [%] 45 43 50 41 42 46

Accuracy H6
0 [%] 46 43 49 40 44 48

pair, the efficiency of this pair was only 0.02 higher than the median value
of the efficiency for the subjects using the manual method. The number
of correct links is 10% lower, the number of incorrect links is 10% higher
while precision and accuracy are very close to the average values for the
entire group using the manual method. In the case of pair M7, a person
with experience only from courses was paired with a person with less than
a year of industrial experience in analyzing and reviewing requirements.
The results achieved by this pair are higher than the average in terms of ef-
ficiency (7% higher), close to the average for the share of correct links, and
below the average for the remaining attributes (30% more incorrect links
than the average, 16% lower than the average for the precision and 12%
lower than the average for the accuracy). The remaining 3 pairs of subjects
(A1 and M5) were composed of a person with only academic experience
with a person with less than a year of industrial experience. Pair M5 ana-
lyzed 0.4 requirement per minute which is close to the average value (0.41),
achieved 40% of correct links (the average value is 43% for this group) and
44% of incorrect links. The precision achieved by pair M5 is 50% which
is 4% higher than the average. When it comes to the accuracy, pair M5
achieved 46% accuracy (the average value was 46%). The results for effi-
ciency for pairs (A1, A3 and A11) were below or about the average values,
and these data points could have been partly responsible for the fact that
hypothesis H1

0 could not be rejected. The results for these pairs for the
number of correct links and the share of missed links were also below the
average and the median values. The results for the number of incorrect
links were around the mean value and above the median value. Finally,
the results for the precision and accuracy were below the median values.
To summarize, the influence of experience in analyzing and reviewing re-
quirements can’t be clearly defined and statistically confirmed, as subjects
report both results above and below the average values.

As the last step of the analysis, we investigate whether prior experience
in the course that originated the requirements in some manner influences

156



7. EXPERIMENT RESULTS INTERPRETATION AND DISCUSSION

the results achieved by the subjects. We can assume that this experience
can somehow be compared to specific domain knowledge. In the course
model, all team members are actively involved in analyzing and review-
ing requirements. Thus, we only distinguish between subjects that took
and did not take the course. For six pairs of subjects, both subjects have ex-
perience from the course, for seven other pairs only one pair member had
experience from the course. Finally for six pairs, both subjects reported no
experience from the course. The pairs where both members had experi-
ence and where both members had no experience were equally distributed
between the methods (three pairs for each method). The assisted method
had four pairs with experience and lack of experience. The analysis is de-
picted in Table 2.8. Pairs where both pair members had experience from
the course are abbreviated with the letter “E”, where only one pair mem-
ber had experience are abbreviated with “E and U” and where none of
the two pair members had any experienced from the course is abbreviated
with the letter “U”.

Analyzing the differences between the average results for all three sub-
groups for both methods we can see that the expected behavior can only
be confirmed for the number of correct links. Pairs with experience in the
course achieved better correctness than inexperienced pairs, independent
of whether one or both members had the experience. Another interesting
observation here is that inexperienced subjectsmissed on average only 34%
of requirements links, while experienced subjects respectively missed 50%
(both pair members experienced) and 57% (when one of the pair members
had some experience). The lowest average precision and accuracy levels
were recorded for pairs where one pair member had experience from the
course from which the requirements were taken. The analysis of the pairs
working with the same method confirms the analysis of all data points.
For the manual method experienced pairs turned out to be more correct
than the inexperienced pairs. For the assisted method, pairs where both
members where experienced were more correct, but pairs where only one
member had experience where not as correct as the inexperienced pairs.
Finally, the pairs where only one personwas experienced performedworse
in all aspects for both methods analyzed than the pairs where both persons
were experienced.

7.2 Interpretation of the results from both experiments

In this section, we provide the analysis and discussion of the results achieved
in both the original and the replicated experiments. We have used standard
t-tests to test if there are any significant differences between the two exper-
iments. From the results of the t-tests between the same methods depicted
in Table 2.9, we can see no significant difference for any of the cases (re-
search question Q2). However, some interesting differences between the
two experiments for the efficiency of the subjects using the assisted method

157



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

Table 2.8: The analysis of the experience from the course where require-
ments originate from. E denoted that both pair members are experienced, E
& U denoted one experienced and inexperienced person working together
and U denoted that both pair members were inexperienced.

All data Assisted method Manual method
E E&U U E E&U U E E&U U

Efficiency H1
0 [N/T] 0.45 0.39 0.57 0.53 0.38 0.69 0.37 0.40 0.46

Correct H2
0 [%] 56 51 46 68 53 58 46 48 34

Missed H3
0 [%] 50 57 34 56 59 31 44 55 37

Incorrect H4
0 [%] 58 54 30 85 58 56 31 50 27

Precision H5
0 [%] 42 39 50 40 37 56 45 42 44

Accuracy H6
0 [%] 43 41 49 39 39 53 47 45 46

can be seen from the box-plot visualization in Figure 2.7. As can be seen in
Figure 2.7, the results for the efficiency of the assisted method in this experi-
ment have amuch larger range of values, whichmay be the reasonwhy the
hypothesis H1

0 could not be rejected (research question Q2a). As described
in Section 7.1 the two lowest values of performance were achieved by the
pairs having either one year of industrial experience, including experience
from reviewing requirements (pair A3), or experience from the course from
which the requirements originate (pair A4).

However, one of the possible explanations for the difference between
the performance in this experiment and in the original experiment differs
may be that more advanced searching and filtering functionalities have
been used in the current manual method. Contrary to the original experi-
ment, the manual method in this experiment uses advanced searching and
filtering functionalities which may (to some extent) be comparable to the
lexical similarity analysis because they also present only a subset of an-
alyzed requirements to the analyst. The analyst using the filtering and
searching functionality has to provide a meaningful search string to filter
out similar requirements, while in the lexical similarity case the analysis is
done automatically. Our interpretation is supported by Figure 2.8 which
depicts the results of the performance for the manual method between the
original and the replicated experiments. The median value for this replica-
tion study is 0.41 and is 0.05 higher than in the original experiment (0.36).
However, the second quartile has more diverse values than in the origi-
nal experiment. Moreover, we can assume that the filtering method has a
higher degree of uncertainty which is shown by the results for the accuracy.

7.3 Discussion

In this section, we discuss alternative designs for this experiment as well
as the differences between the two experiment sessions (the replication has

158



7. EXPERIMENT RESULTS INTERPRETATION AND DISCUSSION

Table 2.9: The results of the t-tests for the original and the replicated exper-
iments for the same methods.

Hypotheses Assisted old/new (p-
value) (research ques-
tion Q2a)

Manual old/new (p-
value) (research ques-
tion Q2b)

H1
0 Efficiency 0.48 0.27

H2
0 Correct links 0.93 0.30

H3
0 Missed links 0.37 0.20

H4
0 Incorrect links 0.21 0.73

H5
0 Precision 0.81 0.45

H6
0 Accuracy 0.90 0.41

been run in two sessions). Using alternative design could be beneficial
for the comparative analysis of the original and the replicated experiment
(RQ2). For example the paired t-test could have been used to support com-
parison between this replication study and the original study (Kachigan,
1991). However, the it remains an open question if paired units are similar
with respect to "noise factors" for both the assisted and the manual methods
used. It could also have been beneficial to the validity if the subjects an-
swered the pre-questionnaire before running the study and were then as-
signed to treatments based on the result of this questionnaire. The manual
analysis of the two experiment sessions did not reveal any significant dif-
ferences between the Tuesday and the Friday sessions. However, to fully
address this threat to validity, additional statistical tests should be used.
Finally, changing the design of the study to use random samples of 30 and
160 requirements for each subject, generated from a much large dataset of
requirements is one of the options for further work.

During this experiment six hypotheses were tested using the same data
set, and more tests were performed comparing the data from the original
and replicated experiments. The result of performing multiple compar-
isons on the same data is increased probability of Type I error, which in
case of only one comparison is equal to the obtained p-value (Arcuri and
Briand, 2011). Thus, the Bonferroni correction should be discussed here. In
this case, we performed 18 tests, 6 tests comparing the assisted and man-
ual method (to answer the research question Q1), 6 tests comparing the
old/new experiments with regard the assisted method (to answer the re-
search question Q2a) and 6 tests comparing the old/new experiments with
regard to the manual method (to answer the research question Q2b). This
yields a significance level of 0.05/18 = 0.0027 according to Bonferroni. In
this case it is no longer possible to reject hypotheses H2

0 and H3
0 . The cor-

rection has no impact on the results of the tests between the original and

159



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

Figure 2.7: The result of comparing the efficiency of the assisted method in
two experiment sessions.

the replicated experiments. However, the correction has not been used in
the original experiment and has been criticized by a number of authors
(Arcuri and Briand, 2011; Perneger, 1998; Nakagawa, 2004) where some
of them do not recommend using the Bonferroni adjustment (Arcuri and
Briand, 2011). In the light of this criticism, it is an open question for this
work as to whether or not this correction should be used. Therefore, we re-
port the obtained p-values for all performed tests in case the readers want
to evaluate the results using the Bonferroni correction or other adjustment
techniques (Arcuri and Briand, 2011).

The relationship between the efficiency and the practical experience of
the subjects may have been investigated using multivariate analysis. For
example, understanding if the efficiency of the subjects was related to their
accuracy could have been investigated by recording the efficiency of link-
ing requirements at random as a reference point. Since this has not been
done, we consider this analysis as possible future work and thus outside
the scope of this article.

8 Conclusions

Large market-driven software companies face new challenges that emerge
due to their extensive growth. Among those challenges, a need for efficient
methods to analyze large numbers of requirements, issued by various cus-
tomers and other stakeholders, has emerged (Regnell and Brinkkemper,

160



8. CONCLUSIONS

Figure 2.8: The results of the efficiency achieved by the manual method in
the original and the replicated experiments.

2005). The result is an increasing effort dedicated to analyzing incom-
ing requirements against those requirements already analyzed or imple-
mented. This task is also called requirements consolidation. The core of
the requirements consolidation process is finding the similarities between
requirements and recording them by making links between them (Natt
och Dag et al, 2006).

In this paper, we present a replicated experiment that aims to assess
whether a linguistic method supports the requirements consolidation task
better than a searching and filtering method. In this experiment, twometh-
ods implemented in two different tools were compared for the require-
ments consolidation task. The assisted method, which utilizes natural lan-
guage processing algorithms to provide a similarity list for each analyzed
requirements, was comparedwith themanualmethod, which utilizes search-
ing and filtering algorithms to find similar requirements. After deciding
which requirements were similar, the subjects assigned links between the
requirements. The conclusions of this paper are as follows:

• Subjects using the assisted method were statistically not more effi-
cient in consolidating requirements than the subjects using the man-
ual method (research question Q1a), which is a different result com-
pared to the original study

• The assisted method was confirmed as significantly more correct in
consolidating requirements than themanualmethod (themanualmethod

161



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

was changed from the original experiment) (research question Q1b),
which is inline with the original study.

• The assisted method helps to miss fewer requirements links than the
manual method (research question Q1c), which is the same result as
in the original study.

• The hypotheses that could not be rejected in the original study (in
terms of the number of incorrect links, precision and accuracy related
to research question Q1) could also not be rejected in this experiment.
Further investigation is required to understand the reasons for these
results.

• The analysis of the results achieved for the same method (assisted
or manual) between the original and the replicated study (research
questionQ2) shows no significant difference in any of the cases. How-
ever, some differences in favor of the searching and filtering method
have been observed between the results of the performance of the
subjects using the manual methods.

To summarize, for two of our hypotheses the results reported in this
replication study confirm the results achieved in the original experiment.
The first confirmed hypothesis (H2

0) is that the assisted method helps to
make more correct links than the manual method. The second confirmed
hypothesis (H3

0) indicates that the assisted method helps to miss fewer re-
quirements links than the manual method. The statistical significance in
performance of the assisted method achieved over the manual method (hy-
pothesis H1

0) is not confirmed in this study. The remaining three hypothe-
ses regarding the number of incorrect links (hypothesis H4

0), precision (hy-
pothesis H5

0) and accuracy (hypothesis H6
0) could not be rejected, which is

the same situation as reported in the original experiment (Natt och Dag
et al, 2006). In order to investigate the possible reasons for the difference
in the remaining case, this paper provides a cross-case analysis of the same
methods across the two experiment sessions as well as detailed analysis of
the relations between the experience of the subjects and their results.

The analysis revealed that the pairs of subjects with experience in the
course that originated the requirements achieved better correctness than
inexperienced pairs, independent of whether one of both members had the
experience. At the same time, the pairs of subjects without any experience
missed on average fewer requirements links than the experienced pairs of
subjects. Furthermore, the pairs where only one person had experience
performed worse in all aspects than the pairs where both persons were

162



8. CONCLUSIONS

experienced. The analysis revealed no statistical difference for any of the
cases (which refers to the research question RQ2). However, the analysis
of the efficiency of the subjects using the assisted method in the two exper-
iments, depicted in Figure 2.7, revealed that the values for the efficiency
achieved in this replication have a much higher range. The results for the
efficiency of the manual methods in the two experiments, depicted in Fig-
ure 2.8, shows similar range of values, but different medians. It should be
noted that there are validity threats to the study as described in Section 4.9,
e. g. experience of the subjects and their incentives, the number of subjects
participating, requirements used in the experiment, and the multiple com-
parison threats.

Performing a third experiment with experienced practitioners and re-
quirements sets from industry is left for future work. Moreover, it would
be interesting to further investigate the influence of working in pairs on
the requirements consolidation task as well as to analyze the influence of
the construction of the user interfaces on the efficiency of correctness of the
subjects.

Acknowledgments

This work is supported by VINNOVA (Swedish Agency for Innovation
Systems) within the UPITER project. Special acknowledgments to Richard
Berntsson-Svensson for participating in the pilot study and reviewing the
paper. We are also thankful to Lars Nilsson and David Callele for review-
ing the paper and excellent language comments.

163



PAPER II: REPLICATION OF AN EXPERIMENT ON LINGUISTIC TOOL
SUPPORT FOR CONSOLIDATION OF REQUIREMENTS FROM MULTIPLE
SOURCES

164



REFERENCES

Bibliography

Aguilera C, Berry D (1991) The use of a repeated phrase finder in require-
ments extraction. J Syst Softw 13:209–230

Antoniol G, Canfora G, Casazza G, De Lucia A, Merlo E (2002) Recovering
traceability links between code and documentation. Software Engineer-
ing, IEEE Transactions on 28(10):970 – 983

Arcuri A, Briand L (2011) A practical guide for using statistical tests to
assess randomized algorithms in software engineering. In: Proceeding of
the 33rd international conference on Software engineering, ACM, New
York, NY, USA, ICSE ’11, pp 1–10

Baddoo N, Hall T, Jagielska D (2006) Software developer motivation in a
high maturity company: a case study. Software Process: Improvement
and Practice" pp 219–228

Basili V, Shull F, Lanubile F (1999) Building knowledge through families of
experiments. IEEE Transactions on Software Engineering 25(4):456 –473

Begel A, Nachiappan N (2008) Pair programming: what’s in it for me? In:
Proceedings of the Second ACM-IEEE international symposium on Em-
pirical software engineering and measurement: ESEM ’08, ACM, New
York, USA, pp 120–128

Berenbach B, Paulish DJ, Kazmeier J, Rudorfer A (2009) Software & Sys-
tems Requirements Engineering: In Practice. Pearson Education Inc.

Breaux T (2009) Exercising due diligence in legal requirements acquisition:
A tool-supported, frame-based approach. Atlanta, GA, United states, pp
225 – 230

Cleland-Huang J, Chang CK, Ge Y (2002) Supporting event based traceabil-
ity through high-level recognition of change events. In: COMPSAC ’02:
Proceedings of the 26th International Computer Software and Applica-
tions Conference on Prolonging Software Life: Development and Rede-
velopment, IEEE Computer Society, Washington, DC, USA, pp 595–602

Cleland-Huang J, Settimi R, Duan C, Zou X (2005) Utilizing supporting
evidence to improve dynamic requirements traceability. In: Proceedings
of the 13th IEEE International Conference on Requirements Engineer (RE
2005), pp 135–144

Cleland-Huang J, Berenbach B, Clark S, Settimi R, Romanova E (2007) Best
practices for automated traceability. Computer 40(6):27–35

165



REFERENCES

Cleland-Huang J, Czauderna A, Gibiec M, Emenecker J (2010) A machine
learning approach for tracing regulatory codes to product specific re-
quirements. In: Proceedings of the 32nd ACM/IEEE International Con-
ference on Software Engineering,ICSE ’10, ACM, New York, NY, USA,
pp 155–164

De Lucia A, Fasano F, Oliveto R, Tortora G (2007) Recovering traceabil-
ity links in software artifact management systems using information re-
trieval methods. ACM Trans Softw Eng Methodol 16(4):13

ECTS (2010) The ECTS grading systems defined by European Com-
mission. ����������	
�
���
�����	
�
����������
�������� , ac-
cessed 07/09/2011

Fabbrini F, Fusani M, Gnesi S, Lami G (2001) An automatic quality eval-
uation for natural language requirements. In: Proceedings of the 7th
International Workshop on Requirements Engineering Foundation for
Software Quality (REFSQ 2001), pp 4–5

Fantechi A, Gnesi S, Lami G, Maccari A (2003) Applications of linguistic
techniques for use case analysis. Requir Eng 8(3):161–170

Fricker S, Gorschek T, Byman C, Schmidle A (2010) Handshaking with im-
plementation proposals: Negotiating requirements understanding. IEEE
Software 27:72–80

Gacitua R, Sawyer P, Gervasi V (2010) On the effectiveness of abstraction
identification in requirements engineering. In: Requirements Engineer-
ing Conference (RE), 2010 18th IEEE International, pp 5 –14

Gervasi V (1999) Environment support for requirements writing and anal-
ysis. PhD thesis, University of Pisa

Gervasi V, Nuseibeh B (2000) Lightweight validation of natural language
requirements: A case study. In: Proceedings Fourth International Con-
ference on Requirements Engineering. ICRE 2000, IEEE Comput. Soc, pp
113–133

Goldin L, Berry D (1997) Abstfinder, a prototype natural language text ab-
straction finder for use in requirements elicitation. Autom Softw Eng
4:375–412

Gorschek T, Garre P, Larsson S, Wohlin C (2007) Industry evaluation of the
requirements traction model. Requirements Engineering 12(3):163–190

Gotel O, Finkelstein A (1994) An analysis of the requirements traceability
problem. In: Proceedings of the First International Conference on Re-
quirements Engineering, RE’94, pp 94 –101

166



REFERENCES

Hayes J, Dekhtyar A, Osborne J (2003) Improving requirements tracing via
information retrieval. In: Proceedings of the 11th IEEE International Re-
quirements Engineering Conference (RE’03), pp 138 – 147

Higgins S, Laat M, Gieles P, Geurts E (2003) Managing requirements for
medical it products. IEEE Software 20(1):26-33

Höst M, Wohlin C, Thelin T (2005) Experimental context classification: In-
centives and experience of subjects. In: Proceedings of the 27:th Interna-
tional Conference on Software Engineering (ICSE), pp 470–478

Huffman Hayes J, Dekhtyar A, Sundaram S (2006) Advancing candidate
link generation for requirements tracing: The study of methods. IEEE
Trans Softw Eng 32(1):4–19

Huffman Hayes J, Dekhtyar A, Sundaram S, Holbrook E, Vadlamudi S,
April A (2007) Requirements tracing on target (retro): improving soft-
ware maintenance through traceability recovery. Innovations in Systems
and Software Engineering 3:193–202

Hulkko H, Abrahamsson P (2005) A multiple case study on the impact
of pair programming on product quality. In: Proceedings of the 27:th
International Conference on Software Engineering ICSE ’05, ACM, New
York, NY, USA, pp 495–504

IBM (2010a) Rational doors (former telelogic doors) product description.
������������	
��
��������������������������������������� ,
accessed 07/09/2011

IBM (2010b) Rational doors product description (former telelogic doors),
accessed 15/04/2010. ������������	
��
���������������������

������������������, accessed 07/09/2011

IEEE (2010) The ieee keyword taxonomy webpage. ����������


�������
�����������������������
��, accessed 07/09/2011

Ivarsson M, Gorschek T (2009) Technology transfer decision support in re-
quirements engineering research: a systematic review of REj. Requir Eng
14(3):155–175

Jackson P, Moulinier I (2002) Natural language processing for online appli-
cations. Text retrieval, extraction and categorization, Natural Language
Processing, vol 5. Benjamins, Amsterdam, Philadelphia

Jarke M (1998) Requirements tracing. Commun ACM 41:32–36

Kachigan S (1991) Multivariate statistical analysis: A conceptual introduc-
tion. Radius Press

167



REFERENCES

Kamsties E, Berry D, Paech B (2001) Detecting ambiguities in requirements
documents using inspections. In: Proceedings of the First Workshop on
Inspection in Software Engineering (WISE 2001), pp 68–80

Karlsson L, sa G Dahlstedt A, Natt Och Dag J, Regnell B, Persson A (2002)
Challenges in market-driven requirements engineering - an industrial
interview study. In: Proceedings of the Eighth International Workshop
on Requirements Engineering: Foundation for Software Quality (REFSQ
2002)

Kitchenham B, Pfleeger S, Pickard L, Jones P, Hoaglin D, Emam E, Rosen-
berg J (2002) Preliminary guidelines for empirical research in software
engineering. IEEE Trans Softw Eng 28(8):721–734

Konrad S, Gall M (2008) Requirements engineering in the development of
large-scale systems. In: Proceedings of the 16th International Require-
ments Engineering Conference (RE 2008), pp 217–222

Kotonya G, Sommerville I (1998) Requirements Engineering. John Wiley &
Sons

Lauesen S (2002) Software Requirements – Styles and Techniques.
Addison–Wesley

Leuser J (2009) Challenges for semi-automatic trace recovery in the auto-
motive domain. In: Proceedings of the 2009 ICSE Workshop on Trace-
ability in Emerging Forms of Software Engineering TEFSE’09, IEEE
Computer Society, Washington, DC, USA, pp 31–35

Lin J, Chou Lin C, Cleland-Huang J, Settimi R, Amaya J, Bedford G, Beren-
bach B, Khadra O, Duan C, Zou X (2006) Poirot: A distributed tool sup-
porting enterprise-wide automated traceability. In: Requirements Engi-
neering, 14th IEEE International Conference, pp 363 –364

Lormans M, van Deursen A (2006) Can lsi help reconstructing require-
ments traceability in design and test? In: Proceedings of the Conference
on Software Maintenance and Reengineering CSMR’06, IEEE Computer
Society, Washington, DC, USA, pp 47–56

Lund University (2011a) The requirements engineering course (ets170)
at the lund university. ������������	�
���	��������, accessed
07.09.2011

Lund University (2011b) The software development of large systems
course page at lund university. ��������	�
���	����	����, accessed
07.09.2011

Macias B, Pulman S (1995) Amethod for controlling the production of spec-
ifications in natural language. Comput J 48(4):310–318

168



REFERENCES

Manning C, Schütze H (2002) Foundations of Statistical Natural Language
Processing. MIT Press

Marcus A, Maletic J (2003) Recovering documentation-to-source-code
traceability links using latent semantic indexing. In: Proceedings of the
25th International Conference on Software Engineering ICSE’03, IEEE
Computer Society, Washington, DC, USA, pp 125–135

Mich L, Mylopoulos J, Nicola Z (2002) Improving the quality of conceptual
models with nlp tools: An experiment. Tech. rep., University of Trento

Nakagawa S (2004) A farewell to bonferroni: the problems of low statistical
power and publication bias. Behavioral Ecology 15(6):1044–1045

Natt och Dag J (2006a) Managing natural language requirements in large-
scale software development. PhD thesis, Lund University, Sweden

Natt och Dag J (2006b) The reqsimile tool website. ����������	
�
��
	��������������, accessed 07/09/2011

Natt och Dag J, Gervasi V, Brinkkemper S, Regnell B (2004) Speeding up
requirements management in a product software company: Linking
customer wishes to product requirements through linguistic engineer-
ing. In: Proceedings of the 12th International Requirements Engineering
Conference (RE 2004), pp 283–294

Natt och Dag J, Thelin T, Regnell B (2006) An experiment on linguistic
tool support for consolidation of requirements from multiple sources
in market-driven product development. Empirical Software Engineering
11(2):303–329

PanisM (2010) Sucessful deployment of requirements traceability in a com-
mercial engineering organization ... really. In: Proceedings of the 18th
IEEE International Requirements Engineering Conference, pp 303–307

Parrish A, Smith R, Hale D, Hale J (2004) A field study of developer pairs:
Productivity impacts and implications. IEEE Softw 21(5):76–79

Perneger T (1998) What’s wrong with Bonferroni adjustments, vol 316

Pohl K, Bockle G, van der Linden F (2005) Software Product Line Engineer-
ing: Foundations, Principles and Techniques. Springer

Ramesh B, Jarke M (2001) Toward reference models for requirements trace-
ability. IEEE Trans Softw Eng 27(1):58–93

Ramesh B, Powers T, Stubbs C, Edwards M (1995) Implementing require-
ments traceability: a case study. In: Proceedings of the Second IEEE In-
ternational Symposium on Requirements Engineering RE’95, IEEE Com-
puter Society, Washington, DC, USA, p 89

169



REFERENCES

Rayson P, Emmet L, Garside R, Sawyer P (2001) The revere project: Experi-
ments with the application of probabilistic NLP to systems engineering.
In: Natural Language Processing and Information Systems, Springer,
Lecture Notes in Computer Science, vol 1959, pp 288–300

Regnell B, Brinkkemper S (2005) Engineering and Managing Software Re-
quirements, Springer, chap Market–Driven Requirements Engineering
for Software Products, pp 287–308

Regnell B, Beremark P, Eklundh O (1998) A market-driven requirements
engineering process: Results from an industrial process improvement
programme. Requirements Engineering 3(2):121–129

Rolland C, Proix C (1992) A natural language approach for requirements
engineering. In: Advanced Information Systems Engineering, Springer
Berlin / Heidelberg, Lecture Notes in Computer Science, vol 593, pp
257–277

Rupp C (2000) Linguistic methods of requirements engineering (NLP). In:
Proceedings of the EuroSPI 2000, pp 68–80

Ryan K (1993) The role of natural language in requirements engineering. In:
Proceedings of the IEEE International Symposium on Requirements En-
gineering, San Diego California, IEEE Computer Society Press, pp 240–
242

Samarasinghe R, Nishantha G, Shutto N (2009) Total traceability system:
A sustainable approach for food traceability in smes. In: Industrial and
Information Systems (ICIIS), 2009 International Conference on, pp 74 –79

Sawyer P, Cosh K (2004) Supporting measur-driven analysis using nlp
tools. In: Proceedings of the 10th International Workshop on Require-
ments Engineering: Foundations of Software Quality (REFSQ 2004), pp
137–142

Sawyer P, Rayson P, Garside R (2002) REVERE: Support for requirements
synthesis from documents. Inf Syst Front 4(3):343–353

Sawyer P, Rayson P, Cosh K (2005) Shallow knowledge as an aid to deep
understanding in early phase requirements engineering. IEEE Trans
Softw Eng 31(11):969–981

Shull F, Carver J, Vegas S, Juristo N (2008) The role of replications in em-
pirical software engineering. Empir Software Eng 13(2):211–218

Sjøberg D, Hannay J, Hansen O, Karahasanovic V, Liborg A, Rekdal N
(2005) The survey of controlled experiments in software engineering.
IEEE Trans Softw Eng 31(9):733–753

170



REFERENCES

Sommerville I, Sawyer P, Sawyer P (1997) Viewpoints: principles, problems
and a practical approach to requirements engineering. Ann Softw Eng
3:101–130

Strens M, Sugden R (1996) Change analysis: a step towards meeting the
challenge of changing requirements. In: Engineering of Computer-Based
Systems,1996. Proceedings., IEEE Symposium andWorkshop on, pp 278
–283

Wiegers K (2003) Microsoft Press

Wilkinson L (1999) Statistical methods in psychology journals: Guidelines
and explanations. American Psychologist 54(8):594–604

Wilson W, Rosenberg L, Hyatt L (1997) In: Proceedings of the 19th inter-
national conference on Software engineering ICSE’97, ACM, New York,
NY, USA, pp 161–171

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslen A (2000)
Experimentation in Software Engineering An Introduction. Kluwer Aca-
demic Publishers

Zowghi D, Offen R (1997) A logical framework for modeling and reasoning
about the evolution of requirements. In: Proceedings of the Third IEEE
International Symposium on Requirements Engineering, pp 247 –257

171



REFERENCES

172



Paper III

Obsolete Software Requirements

Krzysztof Wnuk1, Tony Gorschek2, Showayb Zahda2
1Department of Computer Science,

Lund University, Sweden
���������	
�������
���
��

2School of Computing Software Engineering Research Lab,
Blekinge Institute of Technology,
SE-371 79 Karlskrona, Sweden

����
������������
��, �������������
���
��

under revision for
Information and Software Technology 2012

ABSTRACT

[Context] Coping with rapid requirements change is crucial
for staying competitive in the software business. Frequently
changing customer needs and fierce competition are typical drivers
of rapid requirements evolution resulting in requirements ob-
solescence even before project completion. [Objective] Although
the obsolete requirements phenomenon and the implications
of not addressing them are known, there is a lack of empir-
ical research dedicated to understanding the nature of obso-
lete software requirements and their role in requirements man-
agement. [Method] In this paper, we report results from an
empirical investigation with 219 respondents aimed at inves-
tigating the phenomenon of obsolete software requirements.
[Results] Our results contain, but are not limited to, defining
the phenomenon of obsolete software requirements, investigat-
ing how they are handled in industry today and their poten-
tial impact. [Conclusion] We conclude that obsolete software
requirements constitute a significant challenge for companies
developing software intensive products, in particular in large
projects, and that companies rarely have processes for handling
obsolete software requirements. Further, our results call for fu-
ture research in creating automated methods for obsolete soft-
ware requirements identification and management, methods
that could enable efficient obsolete software requirements man-
agement in large projects.





1. INTRODUCTION

1 Introduction

Software, as a business, is a demanding environment where a growing
number of users, rapid introduction of new technologies, and fierce com-
petition are inevitable (DeBellis and Haapala, 1995; Regnell and Brinkkem-
per, 2005; Gorschek et al, 2010). This rapidly changing business environ-
ment is challenging traditional Requirements Engineering (RE) approaches
(Ramesh et al, 2010; Gorschek et al, 2007a,b). The major challenges in this
environment are high volatility and quick evolution of requirements, re-
quirements that often tend to become obsolete even before project com-
pletion (DeBellis and Haapala, 1995; Cao and Ramesh, 2008; Wnuk et al,
2009; Hood et al, 2008b). At the same time the product release time is cru-
cial (Chen et al, 2005; Wohlin et al, 1995; Sawyer, 2000) for the success of
the software products, especially in emerging or rapidly changing mar-
kets (Chen et al, 2005).

Coping with rapid requirements change is crucial as time-to-market
pressures often make early pre-defined requirements specifications inap-
propriate almost immediately after their creation (Cao and Ramesh, 2008).
In Market-Driven Requirements Engineering (MDRE), the pace of incom-
ing requirements (Regnell and Brinkkemper, 2005) and requirements change
is high. Software companies have to identify which requirements are ob-
solete or outdated. The rapid identification and handling of potentially
obsolete requirements is important as large volumes of degrading require-
ments threatens effective requirements management. In extreme cases, ob-
solete requirements could dramatically extend project timelines, increase
the total cost of the project or even cause project failure; and even the suc-
cessful identification of the obsolete requirements without handling adds
little or no product value (Murphy and Rooney, 2006; Stephen et al, 2011;
Merola, 2006). Thus, the identification, handling, and removal of obsolete
requirements is crucial.

The phenomenon of obsolete requirements and the implications of not
handling them are known (Hood et al, 2008c; Murphy and Rooney, 2006;
Stephen et al, 2011; Savolainen et al, 2005; Loesch and Ploederoeder, 2007;
Mannion et al, 2000; Herald et al, 2009). At the same time, several re-
searchers focused on topics related to the phenomenon of obsolete require-
ments, e.g. requirements volatility and scope creep (Robertson and Robert-
son, 1999; Iacovou and Dexter, 2004; DeMarco and Lister, 2003; Houston
et al, 2001; Gulk and Verhoef, 2008; Zowghi and Nurmuliani, 2002; Locon-
sole and Borstler, 2005). However, very little research has been performed
into obsolete requirements management or guidelines, see e.g. (Wiegers,
2003; Lauesen, 2002; Kotonya and Sommerville, 1998; Sommerville and
Sawyer, 1997; Lamsweerde, 2009; Aurum andWohlin, 2005a). Standards (IEEE,
1997; Institute, 2011) do not explicitly mention the phenomenon of Obso-
lete Software Requirements (OSRs). The term itself is only partly defined
and empirically anchored (Savolainen et al, 2005).

175



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS

In this paper, we present the results from an empirical study, based on a
survey with 219 respondents from different companies. The survey inves-
tigated the phenomenon of obsolete requirements and included, an effort
to define the phenomenon based on the perceptions of industry practition-
ers. The study also aimed to collect data on how obsolete requirements are
perceived, how they impact industry, and how they are handled in indus-
try today.

This paper is structured as follows: section 2 provides the background
and related work, section 3 describes the research methodology, section 4
describes and discusses the results of the study, and section 5 concludes
the paper.

2 Background and Related Work

Requirements management, as an integral part of requirements engineer-
ing (Hood et al, 2008b; Sommerville and Sawyer, 1997), manages the data
created in the requirements elicitation and development phases of the project.
Requirementsmanagement integrates this data into the overall project flow
(Hood et al, 2008b) and supports the later lifecycle modification of the re-
quirements (Hood et al, 2008b). As changes occur during the entire soft-
ware project lifetime (Hood et al, 2008a), managing changes to the require-
ments is a major concern of requirements management (Lauesen, 2002;
Kotonya and Sommerville, 1998) for large software systems. Moreover, in
contexts like MDRE, a constant stream of new requirements and change re-
quests is inevitable (Regnell and Brinkkemper, 2005). Uncontrolled changes
to software may cause the cost of the regression testing to exceed 100 000
dollars (Hood et al, 2008b). Further, the absence of requirements manage-
ment may sooner or later cause outdated requirements specifications as
the information about changes to original requirements is not fed back to
the requirements engineers (Hood et al, 2008b). Finally, the requirements
management process descriptions in literature seldom consider managing
obsolete requirements (Lauesen, 2002; Wiegers, 2003).

Scope creep, requirements creep and requirements leakage (also re-
ferred to as uncontrolled requirements creep) (Robertson and Robertson,
1999; Iacovou and Dexter, 2004) are related to OSRs. DeMarco and Lis-
ter (2003) identified scope creep as one of the five core risks during the
requirements phase and state that the risk is a direct indictment of how
requirements were gathered in the first place. Scope creep has also been
mentioned as having a significant impact on risk and risk management in
enterprise data warehouse projects (Legodi and Barry, 2010). Houston et
al (2001) studied software development risk factors and 60% of 458 respon-
dents perceived that requirements creep was a problem in their projects.
Anthes (1994) reported that the top reason for requirements creep in 44%
of the cases is a poor definition of initial requirements. Scope creep can

176



2. BACKGROUND AND RELATED WORK

lead to significant scope reductions as overcommitment challenges are ad-
dressed. This, in turn, postpones the implementation of the planned func-
tionality and can cause requirements to become obsolete (Wnuk et al, 2009)
or project failure (Iacovou and Dexter, 2004).

Despite its importance as a concept, in relation to managing require-
ments for software products, the phenomenon of OSRs seems to be un-
derrepresented in literature. To the best of our knowledge, only a handful
of articles and books mention the terms obsolete requirements or/and ob-
solete features. Among the existing evidence, Loesch and Ploederoeder
(2007) claim that the explosion of the number of variable features and vari-
ants in a software product line context is partially caused by the fact that
obsolete variable features are not removed. Murphy and Rooney (2006)
stress that requirements have ’a shelf life’ and suggest that the longer it
takes from defining requirements to implementation, the higher the risk of
change (this inflexibility is also mentioned by Rue et al (2010)). Moreover,
they state that change makes requirements obsolete, and that obsolete re-
quirements can dramatically extend project timelines and increase the total
cost of the project. Similarly, Stephen et al (2011) list obsolete requirements
as one of the symptoms of failure of IT project for the UK government.
While the report does not define obsolete requirements per se, the symp-
tom of failure is ascribed to obsolete requirements caused by the inability
to unlock the potential of new technologies by timely adoption.

The phenomenon of OSRs has not yet been mentioned by standardiza-
tion bodies in software engineering. Neither the IEEE 830 standard (IEEE,
1997) nor CMMI (v.1.3) (Institute, 2011) mention obsolete software require-
ments as a phenomenon. Actions, processes and techniques are also not
suggested in relation to handling the complexity. On the other hand, Savolainen
et al (2005) propose a classification of atomic product line requirements
into these categories: non-reusable, mandatory, variable and obsolete. More-
over they propose a short definition of obsolete requirements and the pro-
cess of managing these requirements for software product lines “by mark-
ing them obsolete and hence not available for selection into subsequent
systems”. Mannion et al (2000) propose a category of variable require-
ments called obsolete and suggest dealingwith them as described by Savolainen
et al (2005).

OSRs are related to the concept of requirements volatility. SWEBOOK
classifies requirements into a number of dimensions and one of the them
is volatility and stability. SWEBOK mentions that some volatile require-
ments may become obsolete (IEEE Computer Society, 2004). Kulk and
Verhoef (2008) reported that the maximum requirements volatility rates
depend on size and duration of a project. They proposed a model that
calculates the “maximum healthy volatility ratios” for projects. Locon-
sole and Börstler (2005) analyzed requirements volatility by looking at the
changes to use case models while Takahashi and Kamayachi (1989) inves-
tigated the relationship between requirements volatility and defect den-

177



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS

sity. On the other hand, Zowghi and Nurmuliani (2002) proposed a tax-
onomy of requirement changes where one of the reasons for requirements
changes is obsolete functionality, defined as “functionality that is no longer
required for the current release or has no value for the potential users”.
For this paper, we understand requirements volatility as a factor that influ-
ences requirements change but different from requirements obsolescence.
OSRs are, according to our understanding, any type of requirement (sta-
ble, small, large, changing) that is not realized or dismissed, but which
accumulates in the companies’ databases and repositories. Requirements
obsolescence is defined as a situation where volatility becomes outdated
and remains in the requirements databases (Harker et al, 1993; McGee and
Greer, 2009).

Looking at previouswork, software artifact obsolescence has beenmen-
tioned in the context of obsolete hardware and electronics in, for example,
military, avionics or other industries. Among others, Herald et al proposed
an obsolescence management framework for system components (in this
case hardware, software, and constraints) that is mainly concerned with
system design and evolution phases (Herald et al, 2009). While, the frame-
work contains a technology roadmapping component, it does not explic-
itly mention OSRs. Merola (Merola, 2006) described the software obsoles-
cence problem in today’s defense systems of systems (the COTS software
components level). He stressed that even though the issue has been rec-
ognized as being of equal gravity to the hardware obsolescence issue, it
has not reached the same visibility level. Merola outlines some options
for managing software obsolescence, such as negotiating with the vendor
to downgrade the software license, using wrappers and software applica-
tion programming interfaces, or performing market analysis and surveys
of software vendors.

Due to the limited number of studies in the literature dedicated to the
OSR phenomenon, we decided to investigate the concept utilizing a survey
research strategy. We investigated the extent to which obsolete software re-
quirements are perceived as a real phenomenon and as a real problem in
industry. Moreover, we investigated how OSRs are identified and man-
aged in practice, and what contextual factors influence OSRs.

3 Research methodology

This section covers the research questions, the research methodology, and
the data collection methods used in the study.

3.1 Research questions

Due to the limited number of related empirical studies identified in rela-
tion to OSRs, we decided to focus on understanding the OSR phenomenon

178



3. RESEARCH METHODOLOGY

and its place in the requirements engineering landscape. Thus, most of the
research questions outlined in Table 3.1 are existence, descriptive, as well
as classification questions (Easterbrook et al, 2008). Throughout the re-
search questions, we have used the following definition of OSRs, based on
the literature study and the survey:

“An obsolete software requirement is a software requirement, implemented or not,
that is no longer required for the current release or future releases, and which has
no value or business goals for the potential customers or users of a software artifact
for various reasons.1”

3.2 Research design

A survey was chosen as the main tool to collect empirical data, enabling
us to reach a larger number of respondents from geographically diverse
locations (Singer et al, 2008). Automation of data collection and analy-
sis ensured flexibility and convenience to both researchers and partici-
pants, (Easterbrook et al, 2008; Dawson, 2005; L. M. Rea, 1005).

The goal of the survey was to elicit as much information from industry
practitioners as possible in relation to OSRs. Therefore, we opted for an
inclusive approach to catch as many answers as possible. This prompted
the use of convenience sampling (L. M. Rea, 1005). The details in relation
to survey design and data collection are outlined below.

3.2.1 Survey design

The questionnaire was created based on a literature review of relevant top-
ics, such as requirements management, volatility, and requirements trace-
ability (see Section 2). The questions were iteratively developed. Each ver-
sion of the questionnaire was discussed among the authors and evaluated
in relation to how well the questions reflected the research questions and
the research goals.

The questionnaire contained 15 open and close-ended questions of dif-
ferent formats, e.g. single choice questions and multiple choice questions.
In open-ended questions, respondents could provide their own answers as
well as select a pre-defined answer from the list. The answers were ana-
lyzed using the open coding method Strauss and Corbin (1990). The data
analysis was started without a preconceived theory in mind. We read all
the answers and coded interesting answers by assigning them to a category
with similar meaning. For close-ended questions, we used a Likert scale
from 1 to 5, where 1 corresponds toNot likely and 5 toVery likely (Wikipedia,
2011).

1For reader convenience we present the definition in this section, rather than after presen-
tation of the results. The description of how the definition was derived is available in Section
4.

179



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS
Table

3.1:R
esearch

questions

R
e

se
a

rch
q

u
e

stio
n

A
im

E
x

a
m

p
le

a
n

sw
e

r

R
Q
1:

Based
on

em
pirical

data,
w
hat

w
ould

be
an

appropriate
definition

of
O
bsolete

Softw
are

R
equirem

ents
(O

SR
)?

Instead
of

defining
the

phenom
enon

ourselves
w
e
base

the
definition

on
how

the
phenom

enon
is
perceived

in
industry.

“A
n
obsolete

softw
are

requirem
ents

is
a

requirem
ent

that
has

not
been

included
into

the
scope

ofthe
projectfor

the
last5

projects”

R
Q
2:

W
hat

is
the

im
pact

of
the

phe-
nom

enon
of

obsolete
softw

are
require-

m
ents

on
the

industry
practice?

To
investigate

to
w
hat

degree
is
O
SR

a
serious

concern.
“Yes

itis
som

ehow
serious”

R
Q
3:

D
oes

requirem
ent

type
affect

the
likelihood

of
a
softw

are
requirem

ent
be-

com
ing

obsolete?

A
re

there
certain

types
ofrequirem

ents
thatbe-

com
e
obsolete

m
ore

often
than

others?
C
an

these
types

be
identified?

“A
m
arket

requirem
ent

w
ill

becom
e
ob-

solete
m
uch

faster
than

a
legal

require-
m
ent.”

R
Q
4:

W
hat

m
ethods

exist,
in

industry
practice,

that
help

to
identify

obsolete
softw

are
requirem

ents?

To
enact

a
process

to
detect,

identify
or

find
obsolete

softw
are

requirem
ents

or
nom

inate
re-

quirem
ents

thatrisk
becom

ing
obsolete.

“To
read

the
requirem

ents
specification

carefully
and

check
if
any

requirem
ents

are
obsolete”

R
Q
5:W

hen
O
SR

s
are

identified,how
are

they
typically

handled
in

industry?
In

orderto
identify

possible
alternatives

forO
SR

handling,w
e
firstneed

to
understand

how
they

are
handled

today.

“W
e

should
m
ark

found
obsolete

re-
quirem

ents
as

obsolete
butkeep

them
in

the
requirem

ents
database”

R
Q
6:

W
hat

context
factors,

such
as

projectsize
or

dom
ain,influence

O
SR

s?
A
s
a
step

in
understanding

and
devising

solu-
tions

for
handling

O
SR

s,itis
im

portantto
iden-

tify
contextualfactors

thathave
an

influence
on

the
obsolete

requirem
ents

phenom
enon.

“O
SR

s
are

m
ore

com
m
on

in
large

projects
and

for
products

thatare
sold

to
an

open
m
arket(M

D
R
E
context)”

R
Q
7:

W
here

in
the

requirem
ents

life
cy-

cle
should

O
SR

s
be

handled?
To

position
requirem

ents
obsolescence

in
the

re-
quirem

ents
engineering

life
cycle.

“They
should

be
a
part

of
the

require-
m
ents

traceability
task”

180



3. RESEARCH METHODOLOGY

The questionnaire was divided into two parts: one related to OSRs (9
questions), and one related to demographics (6 questions). Table 3.2 shows
the survey questions, with a short description of their purpose (2nd col-
umn), the list of relevant references (3rd column), and a link to the ad-
dressed research question (4th column). It should be observed that an
OSR is defined in this work in the context of the current release in order
to keep the question fairly simple and avoid introducing other complicat-
ing aspects. For reasons of brevity, we do not present the entire survey in
the paper. However, the complete questionnaire, including the references
that were used to construct the categories for the answers is available on-
line (Wnuk, 2011e).

3.2.2 Operation (execution of the survey)

The survey was conducted using a web-survey support website called Sur-
veyMonkey (Monkey, 2011). Invitations to participate in the questionnaire
were sent to the potential audience via:

• Personal emails — utilizing the contact networks of the authors

• Social network websites (Linkedin, 2011) — placing the link to the
questionnaire on the board of SE and RE groups and contacting in-
dividuals from the groups based on their designated titles such as
senior software engineer, requirements engineer, system analyst, and
project manager to name a few

• Mailing lists — requirements engineering and software engineering
discussion groups (Wnuk, 2011c)

• Software companies and requirementsmanagement tool vendors (Wnuk,
2011d)

Masters and undergraduate students were excluded as potential respon-
dents because their experience was judged insufficient to answer the ques-
tionnaire. The questionnaire was published online on the 3rd of April,
2011 and the data collection phase ended on the 3rd of May, 2011. In to-
tal, approximately 1700 individual invitations were sent out with 219 com-
pleted responses collected. The response rate, around 8%, is an expected
level (Easterbrook et al, 2008; Singer et al, 2008). The results of the survey
are presented in Section 4.

3.3 Validity

In this section, we discuss the threats to validity in relation to the research
design and data collection phases. The four perspectives of validity dis-
cussed in this section are based on the classification proposed byWohlin et
al (Wohlin et al, 2000).

181



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS

Table
3.2:M

apping
betw

een
the

questionnaire
questions

and
the

research
questions

Q
u

e
stio

n
P

u
rp

o
se

R
e

le
v

a
n

t
re

fe
re

n
ce

s
R

Q

Q
1

To
derive

the
definition

of
O
bsolete

Softw
are

R
equirem

ents
(Savolainen

et
al,2005;H

erald
et

al,2009;
Z
ow

ghi
and

N
urm

uliani,
2002;

M
erola,

2006)

R
Q
1

Q
2

To
investigate

the
im

pactofthe
O
SR

s
on

indus-
try

practice
(M

urphy
and

R
ooney,2006;Stephen

et
al,

2011)
R
Q
2

Q
3

To
investigate

how
likely

the
various

types
of

requirem
ents

w
ould

becom
e
obsolete

The
list

of
requirem

ents
types

w
as

derived
from

analyzing
several

requirem
ents

clas-
sifications

(H
arker

et
al,

1993;
M
cG

ee
and

G
reer,2009)

R
Q
3

Q
4

To
investigate

the
possible

w
ays

of
identifying

O
SR

in
the

requirem
ents

docum
ents

(Loesch
and

Ploederoeder,
2007;

H
erald

etal,2009)
R
Q
4

Q
5

To
investigate

the
possible

actions
to

be
taken

againstobsolete
requirem

ents
after

they
are

dis-
covered

(Loesch
and

Ploederoeder,
2007;

H
erald

etal,2009)
R
Q
5

Q
6

To
investigate

w
hether

there
is
a
correlation

be-
tw

een
projectsize

and
the

effects
ofO

SR
s

The
classification

of
different

sizes
of

re-
quirem

ents
engineering

w
as

adopted
from

R
egnelletal(R

egnelletal,2008)

R
Q
6

Q
7

To
investigate

ifO
SR

s
are

related
to
the

softw
are

context
(Stephen

etal,2011)
R
Q
6

Q
8

To
understand

w
here

in
the

requirem
ents

life
cycle

O
SR

s
should

be
handled

C
urrent

standards
for

requirem
ents

engi-
neering

and
process

m
odels

(IEEE,1997;In-
stitute,

2011)
do

not
consider

obsolete
re-

quirem
ents.

R
Q
5,

partly
R
Q
7

Q
9

To
investigate

ifindustry
has

processes
form

an-
aging

O
SR

(Loesch
and

Ploederoeder,2007;
Savolainen

etal,2005)
R
Q
5

182



3. RESEARCH METHODOLOGY

Construct validity. Construct validity concerns the relationship between
the observations from the study and the theories behind the research. The
phrasing of questions is a threat to construct validity. The authors of this
paper and an independent native English speaker and writer-reviewer re-
vised the questionnaire to alleviate this threat. To minimize the risk of
misunderstanding or misinterpreting the survey questions, a pilot study
was conducted on master students in software engineering. No partici-
pant in the pilot study indicated that the requirements categories in ques-
tion 3 (Wnuk, 2011e) were hard to understand or vague. Still, the reader
should keep in mind that the data given by respondents is not based on
any objective measurements and thus its subjectivity affects the interpreta-
tion of the results. The mono-operational bias (Wohlin et al, 2000) threat to
construct validity is addressed by collecting data from more than 200 re-
spondents from 45 countries. Finally, the mono-method bias (Wohlin et al,
2000) threat to construct validity was partly addressed by analyzing re-
lated publications. While several related publications have been identified
(see Section 2), this threat is not fully alleviated and requires further stud-
ies. Finally, considering social threats to construct validity it is important
to mention the evaluation apprehension threat (Wohlin et al, 2000). The
respondents’ anonymity was guaranteed.

Some may argue that using the same questionnaire to define the term
and to investigate it threatens construct validity. However, the fact that
the presented OSR definition is based on over 50% of the answers and
that the definition turned out to be independent of the respondents’ roles,
the size of the organizations, the length of the typical project, the domain
and the development methodologies used gives us the basis to state that
the understanding of the measured phenomenonwas rather homogeneous
among the respondents (Section 4.2). In addition, we do gain one aspect by
combining the two, namely the subject’s interpretation/understanding of
what an obsolete requirement is. We are able to identify if respondents dis-
agree, a fact which is essential for combining results (several respondents
answers) for analysis.

Conclusion validity. Conclusion validity is concerned with the ability to
draw correct conclusions from the study. To address the measures reliabil-
ity threat, the questions used in the study were reviewed by the authors of
this paper and one external reviewer, a native English speaker. The low sta-
tistical power threat (Wohlin et al, 2000) was addressed by using as suitable
statistical tests as was possible on the given type of data. Before running
the tests, we tested if assumptions of the statistical tests were not violated.
However, since multiple tests were conducted on the same data, the risk
of type-I error increases and using, for example, the Bonferroni correction
should be discussed here. Since the correction was criticized by a num-
ber of authors (Arcuri and Briand, 2011; Nakagawa, 2004) it remains an
open question if it should be used. Therefore, we report the p-values of all
performed tests in case the readers want to evaluate the results using the

183



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS

Bonferroni correction or other adjustment techniques (Arcuri and Briand,
2011). Finally, the random heterogeneity of subjects (Wohlin et al, 2000)
threat should be mentioned here as this aspect was only partly controlled.
However, low heterogeneity of subjects allows us to state conclusions of a
greater external validity.

Internal validity. Internal validity threats are related to factors that af-
fect the causal relationship between the treatment and the outcome. Re-
views of the questionnaire and the pilot study addressed the instrumenta-
tion threat (Wohlin et al, 2000) to internal validity. The maturation threat
to internal validity was alleviated by measuring the time needed to partic-
ipate in the survey in the pilot study (15 minutes). The selection bias threat
to internal validity is relevant as non-random sampling was used. Since
the respondents were volunteers, their performance may vary from the
performance of the whole population (Wohlin et al, 2000). However, the
fact that 219 participants from 45 countries with different experience and
industrial roles answered the survey minimizes the effect of this threat. Fi-
nally, the level of education in development processes and methodologies
may have impacted the results from the survey. It remains future work to
investigate whether this factor impacts the results. However, as the sur-
vey participants are professionals (many of whom work in large success-
ful companies) their education might not be the main issue for discussion.
What is interesting, however, is that we are investigating the state of cur-
rent industry practice and not how it might be. Education is a powerful
tool, but not the focus of this paper.

External validity. External validity threats concern the ability to gener-
alize the result of research efforts to industrial practice (Wohlin et al, 2000).
The survey research method was selected to assure as many responses as
possible, generating more general results (Easterbrook et al, 2008; Leth-
bridge et al, 2005; L.M. Rea, 1005) than a qualitative interview study. More-
over, the large number of respondents from various countries, contexts,
and professions contributes to the generalization of results.

4 Results and Analysis

The survey was answered by 219 respondents. When questions allowed
multiple answers, we calculated the results over the total number of an-
swers, not respondents. For questions that used a Likert scale, we present
the results using average rating and the percentage received by each an-
swer on the scale. All results are presented in percentage form and com-
plemented by the number of answers or respondents when relevant. The
answers given to the open questions were analyzed using the open coding
method Strauss and Corbin (1990) (Section 3.2.1). Statistical analysis, when
relevant, was performed using the chi-square test (Siegel and Castellan,
1998), and the complete results from the analysis, including contingency

184



4. RESULTS AND ANALYSIS

tables for some of the answers (Wnuk, 2011a), are listed online.

4.1 Demographics

18% [40]

13% [28]

11% [25]

8% [18]

5% [12]
5% [11]

4% [8]
3% [7]

2% [5]
2% [4]

0%

2%

4%

6%

8%

10%

12%

14%

16%

18%

20%

%
of

re
sp
on

de
nt
s

Figure 3.1: Top 10 countries among respondents

Figure 3.1 depicts the top 10 respondent countries (out of 45)2. The
full list of the countries is available in (Wnuk, 2011b). The US and the UK
constitute about 30% of the total respondents and 54% of the respondents
came from Europe.

Figure 3.2 depicts the main roles of the respondents in their organi-
zations. About one quarter of the respondents (24.9% or 54 respondents)
described their role as requirements engineers, analysts or coordinators.
The second largest category, Other (with 30 answers), include roles such as
System Engineers, Software Quality Assurance, Process Engineers, and Business
Analysts. The third largest category was Researchers or Academics (11.5% of
all answers). Software Project Managers and Software Architect or Designer
roles had the same number of respondents (22 each). Twelve respondents
declared their main role as Software Product Manager, a relatively high num-
ber since product managers are generally few in an organization. This

2The actual category names have been changed for readability purposes. The original
names are mentioned using italics in the paper and are available in the survey question-
naire (Wnuk, 2011e)

185



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS

24,9% [54]

13,8% [30]

11,5% [25]
10,1% [22] 10,1% [22]

8,3% [18] 7,8% [17]

5,5% [12] 5,5% [12]

1,4% [3] 0,9% [2]
0%

5%

10%

15%

20%

25%

30%

%
of

re
sp
on

de
nt
s

Figure 3.2: Main role of respondents

would seem to indicate that middle and senior managers overall repre-
sented a substantial part of the respondents.

Figure 3.3 gives an overview of the business domain of the respondents.
A total of 32.8% stated the IT or Computer and Software Services. The second
largest group (12.5%) is Engineering (automotive, aerospace and energy).
These were followed by Telecommunication (10.7%) and Consultancy (9.3%).

Figure 3.4 depicts the sizes of the respondents’ organizations. We can
see that more than half of the respondents work in large companies (>501
employees).

Figure 3.5 looks at the average duration of a typical project in the re-
spondents’ organizations. About half of the respondents (∼45%) were in-
volved in projects that lasted for less than a year, one quarter in projects
that lasted between one and two years and one quarter in projects typi-
cally lasting more than two years.

Figure 3.6 investigates the development methodologies and processes
used by the respondents. Since this question allowed for the possibility
of providing multiple answers, the results are based on the number of re-
sponses. Agile development tops the list of answers with approximately
a quarter (23.6%). Incremental and evolutionary methodology (18.8%) is
in second place. Surprisingly, waterfall is still common and widely used
(17.7%). In the Other category, the respondents reported that they mixed
several methodologies “combination of agile and incremental” or “it is a

186



4. RESULTS AND ANALYSIS

32,8%
[123]

12,5%
[47] 10,7%

[40] 9,3%
[35] 7,3%

[29] 6,1%
[23] 5%

[19]
5 %
[19] 2,7%

[10]
3%
[11]

1,9%
[7]

1,6%
[6]

1,6%
[6]

0%

5%

10%

15%

20%

25%

30%

35%
%
of

re
sp
on

se
s

Figure 3.3: Types of business domains of respondents

12,5% [27]

5,1% [11]
7,4% [16]

6% [13] 6,9% [15]
8,3% [18]

53,7% [116]

0%

10%

20%

30%

40%

50%

60%

Less than 10
employees

11 – 20
employees

21 – 50
employees

51 – 100
employees

101 – 200
employees

201 – 500
employees

over 501
employees

%
of

re
sp
on

de
nt
s

Figure 3.4: Size of respondents’ organization

mix of incremental, agile and others”. Other respondents used “V-Model”,
“SLIM”, “CMMI Level 3”, “CMMI Level 5” or had their own tailoredmethod-
ology “created for each company by blending methods/processes”.

187



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS

6,8% [14]

23,7% [49]

20,8% [43]

24,6% [51]

9,2% [19]

15% [31]

0%

5%

10%

15%

20%

25%

30%

0 3
months

4 – 6
months

7 – 12 months 13 – 24 months 25 – 36 months Over 37 months

%
of

re
sp
on

de
nt
s

Figure 3.5: Average duration of typical projects from our respondents

23,6%
[99]

18,8%
[79] 17,1%

[72]

9,1%
[38]

7,6%
[32]

5,7%
[24] 5%

[21]
4,3%
[18]

3,8%
[16]

2,6%
[11]

2,4%
[10]

0%

5%

10%

15%

20%

25%

%
of

an
sw

er
s

Figure 3.6: Development processes and methodologies

Figure 3.7 investigates the type of requirements engineering the respon-
dents are involved in. Since this question also allowed multiple answers,
the results are calculated based on the total number of responses. Bespoke

188



4. RESULTS AND ANALYSIS

44,2% [164]

29,3% [109]

19,9% [74]

5,1% [19]

1,4% [5]

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

50%

Bespoke or contract MDRE Outsourced projects Open Source Other

%
of

an
sw

er
s

Figure 3.7: Types of Requirements Engineering

or Contract driven requirements engineering received 44.2% of all the answers.
Market-driven requirements engineering received 29.5%, while Open source
only 5.1%. Outsourced projects appeared in 19.9% of the answers. Six an-
swers were given to the Other category. Two respondents suggested none
of the following. One was working with “normal flow, requirements from
product owner or developers”, one with “builds” one mainly with infras-
tructure projects, and one with “large SAP implementation projects in a
client organization”.

4.2 Defining obsolete requirements (RQ1)

Defining the term Obsolete Software Requirement (OSR) is central to the
understanding of the phenomenon. The categories used in this question
were inspired by the definitions of OSR found in literature (Section 2),
and are defined in the context of the current release (Section 3.2.1). Fig-
ure 3.8 depicts the answers from all respondents. Since the question al-
lows multiple answers, the results are calculated for all the answers, not
the respondents. The primary answer selected (29.9%) defines OSR as “no
longer required for the current release for various reasons”. This result is in line
with the definition of obsolete functionality provided by Zowghi and Nur-
muliani (Zowghi and Nurmuliani, 2002). The definition of an OSR as a
requirement that: “has no value for the potential users in the current release”
received 21% if the responses. This category is similar to the definition of
obsolete software applications provided by Merola (Merola, 2006), as ap-

189



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS

29,9% [128]

21% [90]

16% [62]

14,5% [46]

10% [70]

7,7% [33]

0% 5% 10% 15% 20% 25% 30% 35%

is no longer required

has no value for the potential users

was never used or impl. in the product

is duplicated/redundant

is rejected/refused to be included

Other (please specify)

How do You define an obsolete software requirement

Figure 3.8: Respondents’ definition of an OSR

plications are taken off the market due to decrease in product popularity
or other market factors.

A total of 33 responses (7.7%) were in the Other category. Of these, 8
respondents (∼ 25%) suggested that an OSR is not necessarily confined to
the current release, but it also goes to future releases. Respondents stressed
that an OSR is a requirement that has lost its business goal or value. Other
interesting definitions included: “an OSR is a requirement that evolved in
concept but not in documentation”, “an OSR will be implemented but will
not be tested”, and “carved by the IT to showcase technical capabilities to
the end user”.

As a result, the following definition of an OSR was formulated:
“An obsolete software requirement is a software requirement (imple-

mented or not) that is no longer required for the current release or future
releases and, for various reasons, has little or no business value for the
potential customers or users of a software product.”

We performed statistical analyses to investigate whether there were re-
lationships between the selected definition of OSRs and the respondents’
roles, the size of organizations and the development methodologies used.
Overall, the relationships were statistically insignificant due to violations
of the chi-square test assumptions (some alternative answers had too few
respondents, see Table A.2 in (Wnuk, 2011a)). However, significant results
could be observed (using the chi-square test) between the top 5methodolo-
gies ( Figure 3.6) and the results for choice of OSR definition (p-value 0.011,
Table A.2a in (Wnuk, 2011a)). Respondents that reported using a Rational
Unified Process (RUP) methodology less frequently selected the definition
of OSRs as no longer required for the current release (31.3% of all answers

190



4. RESULTS AND ANALYSIS

compared to over 50%) or never implemented in the product (34.4% of all
answers compared to over 40%) than respondents that reported utilizing
any of the remaining four methodologies. Moreover, the RUP respondents
provided more answers in the Other category and indicated that OSRs can
be “a requirement that evolved in concept but not in documentation” or
“an abstract requirement to showcase the technical capability to the end
user”. Finally, only three RUP respondents defined OSR as a requirement
that is rejected for inclusiong in the current release, while about 20% of the
respondents that selected the other top four methodologies selected this
answer. This would seem to indicate that the perceived definition of an
OSR for respondents using the RUP methodology is more stable than that
for respondents using other methodologies.

Since the RUP methodology considers iterative development with con-
tinuous risk analysis as a core component of the method (IBM, 2011), we
can assume that the risk of keeping never used or implemented require-
ments in the projects is lower. Moreover, the majority of the RUP respon-
dents also reported working on bespoke or contract-driven projects, where
the number of changes after the contract is signed is limited and usually
extensively negotiated. Thus it appears to be possible that the RUP re-
spondents could avoid rejected or refused requirements and could manage
to achieve more precise and stable agreements with their customers (IBM,
2011) which in turn could result in fewer OSRs.

Reviewing the top five methodologies, the most popular answer was
no longer required for the current release. Interestingly, among the respon-
dents working with agile, incremental or evolutionary methodologies, the
fourth most popular answer was never used or implemented in the product.

In contrast, respondents who worked with waterfall, prototyping or
RUP methodologies have the same order of popularity of answers. The
definition of an OSR as awas never used or implemented in the product require-
ment was the secondmost popular answer while the option is duplicated/re-
dundant in the current release was the third most popular answer. The pos-
sible interpretation of these results is that agile and incremental method-
ologies less frequently experience OSRs as never used or implemented but
experience more OSRs as duplicated requirements and requirements with
no value for the potential users.

Further analysis reveals that the definition of OSRs is not significantly
related to the size of the companies, the length of the typical project, or
the domain (p-values in all cases greater than 0.05). Domain and project
length could be seen as qualifiers of OSRs. For example, projects running
over long periods could suffer increased requirements creep (Wnuk et al,
2009). However, this would most probably not be visible in the definition
of OSRs, but rather in the impact of OSRs, which is investigated in the next
section.

191



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS

4.3 The potential impact of OSRs (RQ2)

Trivial 
10% 

Somehow 
serious 

45% 

Serious 
39% 

Very 
serious 

6% 

Figure 3.9: Impact of OSRs on industry practice

When queried about the potential impact of OSRs on their product de-
velopment efforts a total of 84.3% of all respondents considered OSR to
be Serious or Somehow serious (Figure 3.9). This indicates that among the
majority of our respondents OSRs seems to have a substantial impact on
product development. Our result confirms previous experiences. (See, e.g.,
Murphy and Rooney (Murphy and Rooney, 2006), Stephen et al (Stephen
et al, 2011) and Loesch and Ploederoeder (Loesch and Ploederoeder, 2007)).
For 6% of the respondents OSRs are a Very serious issue, while 10% (21 re-
spondents) deemed OSR a Trivial matter.

To further decompose and test context variables, e.g., company size,
respondents’ roles and development methodologies, we performed chi-
square tests (Table A.1 in (Wnuk, 2011a)) between the context variables
and the degree to which OSRs were considered having a substantial im-
pact. The tests resulted in p-values greater than 0.05, which indicates that
no statistically significant relationships between the analyzed factors could
be seen. We can, however, ascertain that a clear majority of the respondents
deemed the phenomenon of OSRs a relevant factor to be taken into consid-
eration in development efforts.

192



4. RESULTS AND ANALYSIS

Of the 21 (10%) respondents who considered OSRs to be Trivial, approx-
imately 58% worked with requirements or in project management roles.
This would seem to indicate that those respondents, contrary to those in
software development roles, have less difficulty in managing OSRs. An
analysis of the answers to questionnaire question 9 ( (Wnuk, 2011a) and
Section 4.9) revealed that 10 respondents who considered OSRs to be Trivial
also confirmed having a process for managing OSRs. Thus, it appears to be
a logical conclusion that the negative influence of OSRs on product devel-
opment could be alleviated by designing and introducing an appropriate
process of managing OSRs. More about the current processes discovered
among our respondents can be found in Section 4.9.

Further analysis of the respondents who considered OSRs as Trivial in-
dicated that more than 80% of them worked for large companies with >
101 employees. Since large companies often use more complex process
models (Berenbach et al, 2009), in contrast to small companies which might
have budget constraints to prevent hiring highly quality professionals and
whose processes are typically informal and rather immature (Quispe et al,
2010), we could assume that the issue of managing OSRs could have been
already addressed in these cases.

Further analysis of the Trivial group indicated that almost half of them
(47.6%) worked in the IT or computer and software services domain, In the
service domain, the main focus of requirements engineering is to identify
the services that match system requirements (Bano and Ikram, 2010). In
the case of insufficient alignment of new requirements with the current
system, product development may simply select a new, more suitable, ser-
vice. This, in turn, might imply that the OSRs are discarded by replacing
the old service with the new one. Further, the typical product lifetime for
IT systems is usually shorter than for engineering-focused long-lead time
products (Kossmann et al, 2009) (such as those in the aerospace industry),
which in turn could minimize the number of old and legacy requirements
that have to be managed. The possible interpretation of our analysis is that
OSRs are less critical in IT and service oriented domains. Although this
is a possible and plausible explanation, further investigation is needed to
reach a conclusion.

Among the respondents who considered OSRs Very serious (13 respon-
dents), the majority (53.8%) worked in large companies and used agile,
ad-hoc, or incremental methodologies (61.6%). This result seems to indi-
cate that OSRs are also relevant for agile development and not reserved
for only more traditional approaches like waterfall. Ramesh et al (2010)
pointed out after Boehm (2000) that quickly evolving requirements that of-
ten become obsolete even before project completion significantly challenge
traditional (waterfall) requirements engineering processes. Murphy and
Rooney (2006) stressed that the traditional requirements process seriously
contributes to the creation of obsolete requirements by creating a “latency
between the time the requirements are captured and implemented”. This

193



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS

latency should be lower in agile projects, characterized by shorter itera-
tions and greater delivery frequency. This might indicate that either the
latency is present in agile projects as well, or that latency is not the primary
determinant of OSRs. It should be observed that 69.2% of the respondents
who considered OSRs as Very serious reported having no process for han-
dling OSRs. This could indicate why OSRs were considered a Very serious
problem.

The cumulative cross tabulation analysis of the respondents who con-
sideredOSRs Somehow serious, Serious orVery serious (total 196 respondents,
89%) confirmed the severe impact of OSRs on largemarket-driven and out-
sourced projects (Section 4.7.2). Moreover, 76.8% of those respondents re-
ported that they had no process, method, or tool for handling OSRs. In
addition, 72.3% of respondents who considered OSRs Somehow serious, Se-
rious or Very serious used manual methods to identify OSRs. It is also in-
teresting to observe that the were only small differences between answers
fron respondents who declared the following: Agile software development
or Incremental or evolutionary development methodologies, and Waterfall de-
velopment. Respondents using Waterfall development (and considered OSRs
Serious or Somehow serious or Very serious) were somewhat more prone to
dismiss the impact of OSRs compared to respondents using Agile software
development or Incremental or evolutionary development methodologies. This
would seem to indicate that, because waterfall-like processes usually re-
strict late or unanticipated changes and focus on extensive documenta-
tion (2007; 2008; 1987), the impact of OSRs in those processes could be
minimized. However, it says nothing about the extent that the realized
features were useful or usable for the customers. Some waterfall projects
may not have perceived OSRs to be a major issue for the project, but they
might be for the product per se. That is, implementing an outdated fea-
ture might not be a perceived as a problem in a project. At the product
level, where the overall value of the product for the customer should be
maximized through the selection of the right features to implement and
best alternative investment should be considered, another feature could be
implemented instead of the outdated one. This is a classical case of per-
spective being a part of the value consideration as described by Gorschek
and Davis (2008).

The type of requirements engineering context factor (Figure 3.7) only
minimally influenced the overall results for this questionnaire question.
Respondents who reported to work with Bespoke or contract driven require-
ments engineering graded OSRs slightly less serious than respondents who
reported working with MDRE. This seems to indicate that OSRs are a prob-
lem in both contract driven (where renegotiation is possible (Regnell and
Brinkkemper, 2005)) and market-driven (where time to market is domi-
nant (Regnell and Brinkkemper, 2005)) projects. However, the difference
could also indicate that there is a somewhat alleviating factor in contract-
based development. That is, contract based development aims at deliver-

194



4. RESULTS AND ANALYSIS

ing features and quality in relation to stated contract, thus getting paid for
a requirement even if it is out of date at delivery time. In anMDRE context,
however, the product might fail to sell if the requirements are not fulfilled
and the features out of date (Regnell and Brinkkemper, 2005).

4.4 Requirements types and OSRs (RQ3)

The respondents were asked to choose what types of requirements were
most likely to become obsolete (Likert scale, 1 = Not likely, and 5 = Very
likely). The classification was based on a review of several classification
schemesAurum andWohlin (2005b); Shan et al (2010); Bourque andDupuis
(2004); Nurmuliani et al (2004). We chose to use the pre-defined “types” de-
rived from classifications proposed by Harker et al (1993) and McGee and
Greer (2009) because Harker et al (1993) categorized software requirements
based on their changing nature and McGee and Greer (2009) developed a
taxonomy of software requirements change sources based on knowledge
and experience of project managers.

Figure 3.10: Types of OSRs likely to become obsolete

According to the results depicted in Figure 3.10, OSRs seem to belong
to the categories of Incorrect or misunderstood requirements (mean 3.88), In-
consistent requirements (mean 3.74), or Ambiguous requirements (mean 3.72).
While several studies focused on the problem of inconsistencies between
requirements, e.g., by proposing techniques to identify and remove incon-
sistencies (Robinson and Pawlowski, 1999), decomposing a requirements
specification into a structure of “viewpoints” (Russo et al, 1998), or dis-
tributing development of specifications from multiple views (Finkelstein
et al, 1994) , they didn’t study inconsistent requirements as a potential
source of OSRs. From a becoming obsolete standpoint, the level and qual-

195



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS

ity of specification should not matter per se. However, if the lack of quality
of a requirement’s specification is seen as an indicator of a lack of invest-
ment in the analysis and specification of the requirement, several possible
scenarios could emerge. For example, practitioners in industry might have
a gut feeling that certain requirements will become OSRs and thus, are not
worth the effort. Another possibility is that OSRs are harder (require more
effort and knowledge) to specify than other requirements types, although,
it could just as well indicate that most requirements are specified badly
and thus are also OSRs. Further investigation is needed to investigate the
potential reasons for the results achieved. The only thing we can say for
certain is that requirements becoming obsolete seem to suffer from inade-
quacies in terms of correctness, consistency, and ambiguous specification.

Interestingly, requirements from domain experts were considered less
likely to become obsolete than requirements from customers, end users,
and developers respectively. One explanation could be that domain ex-
perts possess the knowledge and experience of the domain, and thus their
requirements may be less likely to change (Easterbrook, 2004). On the
other hand, since the customers are the main source of software require-
ments and the main source of economic benefits to the company, their re-
quirements are crucial to the success of any software project (Gorschek and
Wohlin, 2005). This implies that this category must be kept up to date and
thus be less likely to become obsolete. Another possible explanation could
be that customer requirements are not as well or unambiguously specified
as internal requirements (Gorschek and Wohlin, 2005; Lauesen, 2002), re-
sulting in a tendency of those requirements to become obsolete faster or
more frequently.

Obsolescence of customer requirements, rather than internal require-
ments from domain experts, is confirmed by Wnuk et al (2009). They re-
ported that stakeholder priority dictates removal and postponement of the
requirements realization, and domain experts are often part of the priori-
tization of all requirements. On the other hand, Kabbedijk et al (2010) re-
ported that change requests from external customers are more likely to be
accepted than change requests from internal customers. This might imply
that some customer requirements are handled as change requests instead
of as requirements input to development projects. In both cases, the au-
thors reported high requirements volatility, which is in line with the study
by Zowghi and Nurmuliani (2002) who related obsolete requirements re-
lated to requirements volatility.

According to our respondents, requirements related to standards, laws
and regulations are the least likely to become obsolete, which seems log-
ical, as the lifetime of legislation and standards is often long in compari-
son to customer requirements. Furthermore, the low average score for the
Requirements related to third party components e.g. COTS (even lower than
for the requirements related to the company’s organization and policies)
also seems to be logical, especially in relation to the results for RQ2 (Sec-

196



4. RESULTS AND ANALYSIS

tion 4.3) where almost half of the respondents who considered OSRs to be
Trivial worked with IT or Computer and software services domain. We assume,
after Bano and Ikram (2010), that COTS are used in the software service do-
main. The results for the respondents who worked with Outsourced projects
(question 15 in (Wnuk, 2011e)) are in accordance with the overall results.

The differences between the respondents who worked with Outsourced,
MDRE and Bespoke or contract driven requirements engineering projects in re-
lation to the degree of obsolescence of COTS requirements are subtle. This
may suggest that other aspects not investigated in this study could influ-
ence the results. Although OSRs do not appear to be related to the main
challenges of COTS systems, i.e., the mismatch between the set of capabil-
ities offered by COTS products and the system requirements (Kohl, 2001),
the nature of the COTS selection process, ( e.g. many possible systems to
consider and possible frequent changes of the entire COTS solution ), may
help to avoid OSRs.

Further analysis of the influence of the context factors indicates that
the respondents’ domains, company size, and methodologies have mini-
mal impact on the results. Not surprising, more respondents who worked
with projects running over longer time spans graded Functional require-
ments originated from end users as Very likely to become obsolete than respon-
dents who worked with short projects (8.7% of respondents who worked
with projects <1 year and 25.7% respondents who worked with projects
> 1 year). One explanation could be that long projects, if deprived of
direct and frequent communication with their customers and exposed to
rapidly changing market situations, can face the risk of working on re-
quirements that are obsolete from the users’ point of view. This interpre-
tation is to some extent supported by the results from RQ7 ( Table 3.4)
where the respondents graded MDRE contexts (characterized by limited
possibilities to directly contact the end users and continuously arriving re-
quirements (Regnell and Brinkkemper, 2005)) or Outsourced projects (where
communication is often done across time zones and large distances (Holm-
strom et al, 2006)) as more affected by OSRs than bespoke contexts. The
success of Market-driven projects primarly depends on the market response
to the proposed products (Regnell and Brinkkemper, 2005), which if re-
leased with obsolete functionality, may simply be required by customers.
Thus, we believe that it is important to further investigate additional fac-
tors that could render Functional requirements originated from end users obso-
lete.

4.5 Methods to identify OSRs (RQ4)

More than 50% of the answers pointed out that manual ways of discov-
ering OSRs are currently the primary method ( Figure 3.11). At the same
time, the context factors such as the different methodologies, types of RE,
length of the projects, roles of respondents and the domain that respon-

197



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS

71% [154]

17% [38]

17% [38]

15% [32]

11% [24]

0% 20% 40% 60% 80%

Manually by review

I have a predefined status called obsolete

Other

I never found them

Automatic

How do you discover OSR in a req document or database

Figure 3.11: Methods used to identify OSRs

dents worked in did not significantly affect the top answer for this ques-
tion. A total of 13.29% of all answers indicated the presence of a predefined
“obsolete” status. Furthermore, 11.19% of all answers (32 answers) were
given to the category I never found them or I never thought of finding them.
Finally, less than 10% of all answers (24 answers) indicated the existence of
any sort of automation to identify OSRs.

In the Other category, seven respondents mentioned that OSRs could
be identified “by execution of test cases based on requirements” or “dur-
ing regression testing cycles”. Further, three answers suggested “using re-
quirements traceability matrix while testing the software” while three an-
swers suggested improved communication “by discussion of user stories
with stakeholders”. Finally, one respondent suggested that goal-oriented
requirements engineering makes “finding OSRs trivial”.

The answers from respondents who indicated using automated ways
of discovering OSRs provided some names for the automated techniques,
e.g., “customized system based on JIRA that takes OSRs into account by us-
ing special view filters”, “traceability using DOORs to analyze for orphan
and to track and status obsolete requirements”, or “a tool called Aligned
Elements to detect any inconsistencies including not implemented require-
ments”. This would indicate that some tool support is present. However,
tool efficiency and effectiveness was not part of this study.

Further analysis indicated that the majority of respondents using tools
of some sort worked with companies with > 501 employees (62%). This
seems reasonable as large companies usually have more money for tool
support (Quispe et al, 2010), and can even request especially tailored soft-
ware from the requirements management tool vendors. The fact that au-

198



4. RESULTS AND ANALYSIS

tomated methods to identify OSRs are rare among the smaller companies
calls for further research into lightweight and inexpensive methods of OSR
identification that can more easily be adapted in those companies. Further-
more, as both smaller and larger companies fall short in automation and
assuming that larger companies can invest more money into education,
this is probably not due to education either.

More than half (15) of the respondents from the automated group also
indicated that they identify OSRs manually. One explanation could be that
automated methods are used together with manual methods, e.g., after
the respondents manually mark requirements as obsolete or perform other
preliminary analysis that enables automated sorting. Searching, tagging
or filtering capabilities in their requirements management tools are most
likely dominant and seen as automated in relation to OSRs, but this task
is done in an ad-hoc manner and not integrated with their requirements
management process. Thus the “level of automation” needs further inves-
tigation.

The reasonably high number of answers given to the category I never
found them or I never thought of finding them is intriguing and needs further
investigation. Thirty respondents from this group (93.8%) also indicated
having no process for managing OSRs. This seems logical as the inability
to find OSRs could be related to the lack of processes for managing OSRs.
Further, the majority of the respondents that indicated never finding OSRs
worked with projects shorter than 12 months, and one fourth of them indi-
cated having an ad-hoc process for managing requirements. The relatively
short project times were not an indication of OSRs not being an issue as
>80% of these same respondents indicated OSRs as being a Serious or Very
serious issue. The absence of a defined and repeatable process might be a
better indicator for not identifying OSRs in this case. In addition, water-
fall was represented in more than 11% of the cases, while only about 6%
worked in an agile manner.

Neither organizational size nor development methodology were statis-
tically significant factors in terms of how OSRs were discovered or iden-
tified (Table A.5 in (Wnuk, 2011a)). However, a statistically significant
relationship was identified in relation to the top five methodologies and
how OSRs were identified (chi-square test p<0.004, Table A.5a in (Wnuk,
2011a)). This result could be explained by the following: (1) respondents
who worked with waterfall methodology admitted more often to never
finding OSRs (11%) than respondents who worked with agile methodolo-
gies (3.8%), (2) more respondents who worked with RUP methodology
(34%) selected the option I have a predefined status called obsolete than re-
spondents who worked with agile methodology (10%). Looking further,
we could also see that the majority of the respondents who worked with
RUP or Prototyping methodologies also worked with companies with>201
employees. This would seem to indicate that within the two mentioned
methodologies it is possible to implement tool support for identification

199



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS

of OSRs. It is worth mentioning that a statistically significant relationship
was also achieved between the top 5 methodologies and the results for
choice of OSR definition (p-value 0.011, Table A.2a in (Wnuk, 2011a)) and
Section 4.3. The results suggest that the respondents who worked with
the RUPmethodology may have a different opinion about the definition of
OSRs and more frequently use a predefined status called obsolete to iden-
tify OSRs.

Looking at the types of requirements engineering used, the results showed
that the respondents who work with Bespoke or contract driven requirements
engineering didn’t use predefined categories for OSRs; it was not part of
their standard procedure to sort out OSRs. This seems to be logical as the
majority of the respondent who admitted to never finding OSRs worked
with bespoke or contract-driven projects. Finally, only one respondent
mentioned automatic methods of finding OSRs.

For the context factor of project length, longer projects have more auto-
mated ways of identifying OSRs (the difference is about 5%) than shorter
projects. This seems reasonable as longer projects usually invest more into
project infrastructure and project management tools and processes. How-
ever, a large part of the longer projects respondents also indicated manual
methods of identifying OSRs (about 60% for projects >1year). In com-
parison, subjects typically working in shorter projects used more tool sup-
ported automated methods (about 52% for projects <1 year). Thus the
respondents working in longer projects did see the point of, and did try to,
identify OSRs to a larger extent than the ones working in shorter duration
projects, although manual methods dominated.

The analysis of the influence of the respondents’ roles on the results re-
vealed onlyminimal differences. Among the interesting differences, project
and product managers respondents gave no answers in the I never found
them category. This may indicate that they always find OSRs. Further,
the management roles had the highest score for manual identification of
OSRs. This result might indicate that management is, to some extent, more
aware of the need for finding OSRs which may severely impede the project
efforts. However, tool support is often lacking.

4.6 Handling of identified obsolete software requirements
(RQ5)

More than 60% of the answers (results for multiple answer questions are
calculated based on all the answers) indicated that the respondents kept
the OSRs but assigned them a status called “obsolete” (see Figure 3.12).
This might indicate that OSRs are a useful source of information about the
history of the software product for both requirements analyst and software
development roles. Moreover, 21.9% of all answers (66) suggested moving
OSRs into a separated section in requirements documents. These views
were the most popular among the respondents regardless of their role,

200



4. RESULTS AND ANALYSIS

54% [163]

21,9% [66]

8,9% [27]

8,6% [26]

6,6% [20]

0% 10% 20% 30% 40% 50% 60%

Keep them, but assign them a status called
“obsolete” and write the reason why they become

obsolete for future reference

Move them into a separated section titled obsolete
requirements or the like

Keep them, but assign them a status called
“obsolete”

Delete/remove them from the database/document

Other

Figure 3.12: Methods used to manage identified OSRs

methodology, domain, size, project length and context. One could inter-
pret this response as indicating that the most suitable way to manage iden-
tified OSRs is to classify them as obsolete, supplying rationale, and move
them into a separated section or document or SRS. However, maintaining
traceability links between OSRs and other requirements could prove work
intensive, especially if end-to-end traceability is required (Berenbach et al,
2009). Regnell et al (2008) discuss scalable methods for managing require-
ments information where effective grouping of requirements e.g., placing
semantically similar requirements in the same module, could enable more
efficient maintenance of large structures of requirements (although OSRs
were not mentioned specifically).

Looking at the answers given the Other category, two answers sug-
gested informing the stakeholders about assigning a requirement an ob-
solete status. Furthermore, two respondents suggested to “hide and tag
requirements that are obsolete using requirements management tools”. In-
terestingly, one respondent questioned “why would you spend time in on
dealing with not needed things”. Since this person worked with a very
small company with about 20 employees, we assume that the problem of
overloaded database with legacy requirements is not known to this person.
Finally, the other answers in this category mostly suggested keeping OSRs
and optionally writing the justification.

Most of the answers in the Other category (∼6%, 20 answers) suggested

201



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS

either removing OSRs, or keeping them, but moving them to a separated
section or module in the database. Only ∼9% of answers (26) suggested
deleting the OSRs from the requirements database or document. This sug-
gests that most respondents think OSRs should be stored for reference and
traceability reasons. However, keeping OSRs appears to be inconsistent
with recommended practice for reducing the complexity of large and very
large projects (Regnell et al, 2008; Buhne et al, 2004), and handling infor-
mation overload as highlighted by Regnell et al (2008). The desired behav-
ior in large and very large projects would seem to indicate the removal of
unnecessary requirements to decrease the complexity of the requirements
structure and traceability links. One possible avenue for further investiga-
tion is to evaluate the value of keeping OSRs.

Of the group who opted for OSRs deletion upon identification, the
majority of the answers came from respondents who worked with large
companies (>501 employees, 77%) and long projects (>12 months, 53.9%).
Moreover, a majority of these respondents considered OSRs to be Serious
or Somehow serious ( Section 4.3). On the contrary, respondents that worked
in smaller companies opted to keep OSRs.

Analysis revealed a lack of statistically significant relationships between
the answers for this question ( Figure 3.12) and the respondents’ roles, do-
mains, organizational size and, methodologies used (Table A.6 in (Wnuk,
2011a)). However, some indications could be observed. Respondentswork-
ing in the engineering domain seemed to prefer the deletion of OSRs com-
pared to respondents from other domains. One possible explanation could
be that since the projects in the engineering domain are highly regulated,
and often require end-to-end traceability (Berenbach et al, 2009), keeping
OSRs in the scope could clutter the focus threatening to impede require-
ments and project management activities.

Type of requirements engineering factor turned out to have a mini-
mal impact on the results regarding this question. However, one obser-
vation worth mentioning is that more support was given to the option of
removing OSRs among the respondents who worked with Bespoke or con-
tract driven requirements engineering (12.3%) than respondents who worked
in MDRE (9.2% of answers). This appears to be logical as, in bespoke
projects, obsolete requirements could be discarded after the contract is ful-
filled. In market-driven projects they could be kept and later used during
the requirements consolidation task, where new incoming requirements
could be examined against already implemented or analyzed requirements
which include OSRs (Natt och Dag et al, 2006) .

202



4. RESULTS AND ANALYSIS

Table 3.3: OSRs effect on project size (215/219 respondents)

(1) Not

likely

(2)

Some-

what

likely

(3)

Likely

(4)

More

than

likely

(5)

Very

likely

Rating

Aver-

age

Small-scale (∼10
of req.)

35.3%
(76)

35.8%
(77)

13.5%
(29)

7.0%
(15)

8.4%
(18)

2.17

Medium-scale
(∼100 of req.)

9% (19) 31.6%
(67)

41.5%
(88)

16.0%
(34)

1.9%
(4)

2.70

Large-scale
(∼1000 of req.)

3.8%
(8)

17.1%
(36)

31.3%
(66)

32.7%
(69)

15.2%
(32)

3.38

Very large-scale
(>10000 of req.)

8.1%
(17)

12.8%
(27)

16.6%
(35)

23.7%
(50)

38.9%
(82)

3.73

4.7 Context factors and obsolete software requirements (RQ6
and RQ7)

4.7.1 Obsolete software requirements and project size

The respondents were asked to indicate to what extent the phenomenon of
OSRs would potentially (negatively) impact a project, and whether project
size had anything to do with the likelihood of negative impact. The re-
spondents used a Likert scale from 1 (Not likely impact) to 5 (a Very likely
impact). The results are presented in Tables 3.3 and 3.4 below. The size
classification is graded in relation to number of requirements and interde-
pendencies, inspired by Regnell et al (2008).

Column 7 in Table 3.3 presents the average rating for each project size.
We see that the larger the project, the more likely there will be a negative
effect from OSRs. Looking at Table 3.3 for Small-scale requirements projects,
most respondents deemed OSR impact as Not likely (35.3%) or Somewhat
likely (35.8%). However, moving up just one category to Medium-scale re-
quirements projects with hundreds of requirements, the respondents indi-
cated the impact as being Likely (41.5%). The trend continues with More
than likely (32.7) for Large-scale requirements projects, and Very likely for Very
large-scale requirements projects (38.9%). The results confirm the viewpoint
of Herald et al (2009) who listed OSRs as one of the risks in large integrated
systems.

One interesting observation is that the results could be seen as po-
tentially contradictory to the results from questionnaire question 2 ( Sec-
tion 4.3) where the respondents who worked in larger companies (over
100 employees) graded the overall impact of OSRs slightly lower than re-

203



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS

Table 3.4: How likely OSRs affect various project types (215/219 respon-
dents)

(1) Not

likely

(2)

Some-

what

likely

(3)

Likely

(4)

More

than

likely

(5)

Very

likely

Rating

Aver-

age

Bespoke
projects

14.4%
(31)

32.1%
(69)

26%
(56)

16.3%
(35)

11.2%
(24)

2.78

Market-driven
projects

6.5%
(14)

20%
(43)

35.8%
(77)

23.3%
(50)

14.4%
(31)

3.19

Outsourced
projects

2.3%
(5)

16.4%
(35)

35.7%
(76)

27.2%
(58)

18.3%
(39)

3.43

spondents from smaller companies. However, since large companies often
have large databases of requirements (Regnell et al, 2008) and often run
projects with several thousands of requirements Konrad and Gall (2008),
this would suggest that there are other factors that influence the impact of
OSRs.

When it comes to the influence of methodology used by our respon-
dents, we report that the respondents who used Agile software development
methodology primarily graded OSRs as only Likely to affect Large-scale re-
quirements projects, while respondents who used Waterfall methodology
primarily graded the impact of OSRs as More likely. Interestingly, this result
seems to contradict the results for RQ2 (Section 4.3), where the majority of
respondents who considered OSRs Very serious worked in large companies
and used agile or incremental methodologies. This might indicate that the
size of the project is not more dominant than the size of the company, and
the methodology used. This requires further investigation.

The respondents who worked with bespoke or contract driven require-
ments engineering primarily graded the effect of OSRs on Large-scale re-
quirements projects as Likely. On the contrary, the respondents who worked
with Market-driven projects primarily graded the impact of OSRs on Large-
scale requirements projects as Very Likely. This result confirms the results
for RQ2 (Section 4.3) where OSRs were also graded less serious by respon-
dents who worked in bespoke contexts. Finally, for the Very large-scale re-
quirements projects our respondents primarily graded the impact of OSRs
as Very likely regardless of context factors.

204



4. RESULTS AND ANALYSIS

4.7.2 Obsolete software requirements and project types

The respondents were also asked to rate how likely it was that OSRs af-
fected various project types (on a scale from 1 to 5, where 1 is Not likely,
and 5 is Very likely). The results for the average rating (column 7 in Ta-
ble 3.4) indicate that Outsourced projects are the most likely to be affected
by OSRs (average rating 3.43). One possible explanation for this result
could be the inherited difficulties of frequent and direct communication
with customers and end users in Outsourced projects. Moreover, as com-
munication in Outsourced projects often needs to be done across time zones
and large distances (Holmstrom et al, 2006; Šmite et al, 2010), the risk of re-
quirements misunderstanding increases, and as we have seen (Section 4.4),
inadequately specified requirements run a higher risk of becoming OSRs.

The high average rating for the Market-driven projects (average scope
3.19) can be explained by the inherited characteristics of the MDRE context
where it is crucial to follow the market and customer needs and the direct
communication with the customer may be limited (Regnell and Brinkkem-
per, 2005). This in turn can result in frequent scope changes (Wnuk et al,
2009) that may render requirements obsolete. Finally, it is worth mention-
ing that the gap between the Market-driven projects and Bespoke projects (av-
erage score 2.78) is wider than betweenOutsourced (average scope 3.43) and
Market-driven projects (average score 3.19). One possible explanation could
be that both Market-driven projects and Outsourced projects suffer similar dif-
ficulties in directly interacting with the end users or customers (Regnell
and Brinkkemper, 2005; Holmstrom et al, 2006) and thus the risk of re-
quirements becoming obsolete could be higher.

The results for all the categories and scales are presented in columns 2
to 6 in Table 3.4. Our respondents primarily graded the impact of OSRs
on Market-driven projects and Outsourced projects as Likely and only Some-
how likely for Bespoke projects. Interestingly, the answer Very likely did not
receive top scores for any of the three types of projects. This would seem to
indicate that the “project type” factor is less dominant in relation to OSRs
than the “size” of the project discussed earlier in this section.

Since the statistical analysis between the results from the question and
the context variables revealed no significant relationships, we performed
descriptive analysis of the results. The respondents who indicated hav-
ing a managerial role (32.7%) primarily graded the impact of OSRs on the
Market-driven projects as More than likely, while the requirements analysts
primarily graded this impact as only Likely. Similar to this result are the re-
sults for RQ2 (Section 4.3) where the managers primarily considered OSRs
as Serious while requirements analysts predominantly considered it Some-
how serious. The comparison is, however, not straight forward as in case of
RQ2 where respondents were grading all types of requirements projects,
not only Bespoke projects. Finally, the opinions of software development
and management roles are aligned when grading the impact of OSRs on

205



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS

bespoke projects (the majority of the respondents from both roles graded
the impact as Somehow likely).

In relation to project duration, interestingly, respondents who worked
with smaller companies (<200 employees) more often graded the effect
of OSRs on Bespoke projects, Market-driven projects or Outsourced projects as
Likely or even Very likely. The majority of the respondents who worked
for companies with > 201 employees selected the Somehow likely answer
for the Bespoke projects and Market-driven projects. This result confirms the
previous analysis (Section 4.7.1) by indicating that size is not the only factor
that impacts the seriousness of OSRs. It can also be speculated that the
phenomenon of OSRs might be clearer in smaller organizations where less
specialization makes outdated requirements more “everybody’s concern”,
while in larger organizations, with high specialization, the view of “not my
job” might play a factor (Berenbach et al, 2009).

4.8 Where in the requirements life cycle should OSRs be
handled (RQ7)

14,8 % [106]

14,6 % [105]

15 % [104]

9,2 % [66]

9,1 % [65]

8,1 % [58]

7,7 % [55]

7,3 % [52]

6,4 % [46]

4,7 % [34]

3,6 % [26]

0% 2% 4% 6% 8% 10% 12% 14% 16%

Requirements changes

Requirements validation

Requirements analysis

Requirements specification

Requirements traceability

Requirements status.

Requirements prioritization

Requirements tracking

Requirements elicitation

Requirements volatility

Other

Figure 3.13: Requirements lifecycle stages for addressing OSRs

The results for this question are presented in Figure 13 as percentages
of the total number of answers (717) since the question allowed multiple
answers. The list of phases (or processes) in the requirements engineering
lifecycle was inspired by Nurmuliani and Zowghi (2002). According to

206



4. RESULTS AND ANALYSIS

our respondents OSRs should first be handled duringRequirements analysis,
Requirements validation and Requirements changes phases (each with about
14% of the answers). This result is, to some extent in line with the study by
Murphy and Rooney (2006), SWEBOK (IEEE Computer Society, 2004), and
Nurmuliani and Zowghi (2002) who report that change leads to volatility,
and volatility in its turn leads to obsolescence. However, less than 5% of
the survey respondents indicate that OSRs should be managed as a part of
chandling requirements volatility seems to support a distinction between
volatility and the phenomenon of OSRs as such. That is, volatility may
be related to OSRs; however, it needs to be handled continuously during
analysis and validation as a part of change management in general.

The high numbers of answers given to Requirements analysis (14.5%)
and Requirements specification (9.2%) phases confirm the suggestions made
by Savolainen et al (2005) to manage OSRs in the requirements analysis
phases. The low score in the Requirements elicitation phase answer (6.42%
of all answers) contradicts the viewpoint of Merola (2006) who suggested
managing obsolete software by continuous and timelymarket tracking and
market trend change identification. This might seem to indicate that our
respondents have difficulties understanding howOSRs could be managed,
for example by finding and dismissing OSRs faster due to continuous elic-
itation depending on the accepted definition of OSRs.

Respondents working with Agile software development methodologies
preferred to handle OSRs as a part of the Requirements changes phase, while
respondents working in a Waterfall manner preferred the Requirements val-
idation phase. This seems logical, as a part of agile methodology is to em-
brace change (Ramesh et al, 2010), while waterfall philosophy sees OSRs
as something to be “handled” more formally in a development step (focus-
ing on the specification and validation phases) (Kotonya and Sommerville,
1998).

Type of requirements engineering context (Figure 3.7) did not seem to
significantly influence answers for this question. Requirements analysis,
validation, and changes phases seemed to be dominant for MDRE and Be-
spoke or contract driven requirements engineering alike. However, looking at
company size and project duration, respondents from larger companies
with longer projects focused on handling OSRs in specific phases, i.e., anal-
ysis and validation. This result seems reasonable as large projects usually
require more extensive requirements analysis due to, e.g., the larger num-
ber of stakeholders involved and possible higher complexity of the system
to be developed (Regnell et al, 2008; Berenbach et al, 2009; Buhne et al,
2004).

Looking at the answers given in the Other category, four answers sug-
gested that OSRs should be managed in all phases of software lifecycle:
one answer suggested all requirements management phases and one sug-
gested quality assurance. Further investigation is needed.

207



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS

4.9 Existing processes and practices regarding managing OSRs
(RQ5)

When queried about the existing processes and practices for managing
OSRs, 73.6% of all respondents (159) indicated that their requirements en-
gineering process does not take OSRs into consideration. This result can
be interpreted as clear evidence of a lack of methods regarding OSRs in in-
dustry and confirms the need for developing methods for managing OSRs.
At the same time, some processes for managing OSRs do exist, as indicated
by 26.4% (57) of our respondents. The list of processes and methods used
by our respondents include:

• Reviews of requirements and requirements specifications (19 respon-
dents)

• Using tools and “marking requirements as obsolete” (6 respondents)

• Requirements traceability (6 respondents)

• Discussing and prioritizing requirements with customers in an agile
context (4 respondents)

• “Mark obsolete requirements as obsolete” (4 respondents) — these
respondents did not indicate if using a tool or not.

• During the requirements management process by identifying OSRs
(3 respondents)

• Moving OSRs into a separated section in the SRS (3 respondents)

• Through a change management process (2 respondents)

• During the requirements analysis process (1 respondent)

• Having a proprietary process (1 respondent)

The identified “categories” of processes and methods above provide
further support for previous results from the survey. For example, the pro-
cess of managing OSRs by requirements reviews overlaps the most popu-
lar way to identify OSRs ( Figure 3.11, Section 4.5), as indicated by our re-
spondents. This would seem to indicate that manually reviewing require-
ments is dominant. Whether or not this is sufficient is another question
which needs to be investigated further. The results confirm what was re-
ported in Section 4.5, that automated methods for identification and man-
agement of OSRs are rare. Therefore, further research on scalable auto-
matic methods for identification and management of OSRs is needed.

Some respondents provided names or descriptions of processes and
methods used for managing OSRs. Those reported include:

208



4. RESULTS AND ANALYSIS

• Projective analysis through modeling — Considered as a promising ap-
proach to study the complexity pertaining to systems of systems (An-
derson et al, 2008), it requires a skilled “process modeler” to seam-
lessly use the modeling paradigm. If and how the method could be
applied for smaller projects, and particularly for identification and
management of OSRs remains an open question. Also, the technique
is used during the requirements analysis phase which has been con-
sidered a good phase for management of OSRs by our respondents
(Figure 3.13).

• Hierarchical requirements’ tables — Specifying requirements on differ-
ent abstraction levels is one of the fundamental techniques of require-
ments engineering that helps various stakeholders to understand re-
quirements better (Lauesen, 2002). Considered as one of the require-
ments specification techniques, this could be promising according to
our respondents (Figure 3.13). This method could be used to control
OSRs to a certain degree as an overview of the requirements can be
achieved, to some extent, through abstraction (Gorschek andWohlin,
2005). However, given large numbers of requirements, scalability of
the method could be a problem.

• Project governance — Support project control activities considering
the environment in which project management is performed (Bekker
and Steyn, 2008). By having greater time scope than ordinary project
management, project governance could, according to our interpreta-
tion, be supportive in the task of continuous identification and man-
agement of OSRs.

• Requirements tracking with risk management — Although we consider
tracking and risk management (Lauesen, 2002) as separated activi-
ties, combining them for the purpose of managing OSRs is an inter-
esting alternative potential. In particular, the role of risk manage-
ment in identification and management of OSRs should be further
investigated, as the software risk management literature does not ap-
pear to mention OSRs as one of the software risks (Boehm, 1991).

• Requirements-based test plans — Aligning requirements with verifica-
tion, although challenging, could be considered critical in assuring
that the developed software fulfills customers’ needs. Creating test
plans based on requirements that are up-to-date and properly reflect
changing customer needs is considered a best practice in software
projects (Pohl, 2010). OSRs may create mismatches and problems
with alignment between requirements and test cases. The discov-
ery of a test result that was correct, however presently wrong, can
indicate that a requirement has become obsolete. We are, however,
uncertain to what degree the practice of writing test plans based on

209



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS

requirements could help in identification and management of OSRs.
The fact that test plans are based on requirements is, to us, indepen-
dent of the fact that these requirements may simply be obsolete.

• Commenting out obsolete code and updating requirements documents ac-
cordingly — This technique of managing OSRs could be considered
promising and should help to keep the requirements aligned with
the newest version of the code. However, the technique seems to only
consider implemented requirements that could be directly traced to
the code level. Given the fact that many requirements (especially
quality requirements) are cross-cutting and require implementation
in several places (Lauesen, 2002) in the source code, an OSR may be-
come even more cross cutting than before. In our opinion, it could
be challenging to correctly map changes in the code to changes in re-
quirements. Thus, mapping change in the code to changes in require-
ments could be part of a solution; however, it lacks the possibility to
identify and remove OSRs prior to implementation.

• Using requirements validation techniques to identify if requirements are no
longer needed — Validating requirements is fundamental for assur-
ing that the customer needs were properly and correctly understood
by the development organization (Lauesen, 2002). In our opinion,
this technique should be used together with customers who can con-
firm if the requirements are relevant. Our respondents also would
like OSRs to be managed during requirements validation phase (Fig-
ure 3.13). However, if requirements reviews are conducted in iso-
lation from “customers” by e.g., requirements analysts, they could
have difficulties in identifying which requirements are, or are about
to become, obsolete. This is further aggravated if the development
organization operates in a MDRE context.

Looking at the context factors of organizational size, developmentmethod-
ology, and respondent role, although no statistically significant correla-
tions could be observed, some interesting points warrant mentioning. Re-
spondents from smaller companies (<50 employees) to a larger degree
had explicit practices for handling OSRs as compared to respondents from
larger companies. This seems reasonable when looking at the methods
for managing OSRs provided, where manual review methods were most
frequent. Quispire et al (2010) mentioned that processes used in small soft-
ware enterprises are often manually based and less automated.

Respondents who worked with MDRE projects (Figure 3.7) reported
having processes that take OSRs into consideration (34.3%), more often
than respondents who worked with Bespoke or contract driven requirements
engineering (26.5%) or Outsourced projects (15.8%) respectively (almost sig-
nificant results with a p-value of 0.059, Table A.8a in (Wnuk, 2011a)). One
possible explanation for this could be high and constant requirements in-

210



4. RESULTS AND ANALYSIS

flux inMDRE contexts (Regnell and Brinkkemper, 2005; Regnell et al, 2008),
combinedwith frequent changes to requirements dictated by rapidly chang-
ing market situations. This in turn is resulting in more requirements be-
coming obsolete, forcing the use of methods to manage OSRs.

Further statistical tests (Table A.8 in (Wnuk, 2011a)) indicated a statisti-
cal significance between the roles of respondents and the existence of pro-
cesses to manage OSRs (p = 0.0012). There was also a moderate association
(Cramer’s V = 0.345) between the respondents’ roles and the existence of
requirements engineering processes that take OSRs into account. From the
cross-tabulation table between the respondents’ roles and the existence of
OSRs handling process (Table A.9 in (Wnuk, 2011a)) we can see that the
respondents who worked in management positions (project and product
managers) were more likely to utilize OSRs handling method compared to
respondents who worked in software development roles, as developers.

Further, the presence of a method or process that considers OSRs seems
to decrease the negative impact of OSRs among our respondents, as 50% of
the respondents who deemed OSRs Trivial confirmed having a process of
managing OSRs (Section 4.3). Moreover, as requirements engineers as well
as product and project managers usually work more with requirements
engineering related tasks than software development roles, it appears to
be logical that more methods of managing OSRs are reported among the
management roles.

4.10 Summary of results

The results from the study are summarized in the following points:

• Our respondents defined an OSR (RQ1) as: “a software requirement
(implemented or not) that is no longer required for the current release
or future releases, and it has no or little business value for the poten-
tial customers or users of a software artifact.” This definition seems
to be homogeneous among our respondents (with a small exception
for the respondents who used RUP methodologies).

• OSRs constitute a significant challenge for companies developing soft-
ware intensive products, with the possible exception of companies
involved in the service domain. The phenomenon of OSRs is consid-
ered serious by 84.3% of our respondents (RQ2). At the same time
73.6% of our respondents reported having no process for handling
obsolete software requirements (RQ5).

• Requirements related to standards and laws are the least likely to be-
come obsolete, while inconsistent and ambiguous requirements are
the most likely to become obsolete (RQ3). Moreover, requirements
originating from domain experts were less likely to become obsolete

211



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS

than requirements originating from customers or (internal) develop-
ers.

• OSRs identification is predominantly a manual activity, and less than
10% of the respondents reported having any automated functionality.
They also confirmed that automatic identification of OSR is difficult
which suggests research opportunities in creating automated meth-
ods for OSR identification and management (RQ4).

• The identified OSRs should, according to more than 60% of the sur-
vey answers, be kept in the requirements document or the database,
but tagged as obsolete. DeletingOSRs is not a desired behavior (RQ5).
Most respondents opted for keeping the OSRs for purposes of refer-
ence and traceability, which seems to indicate that the identification
of OSRs is not the only action, but a wish to potentially use the OSRs
to minimize repeated work (e.g. specifying new requirements that
are the same or similar to already identified OSRs). This is especially
relevant in the MDRE context where “good ideas” can resurface as
proposed by, for example internal developers.

• Although there exist some methods and tool support for the iden-
tification and handling of OSRs, a clear majority of the respondents
indicated no use of methods or tools to support them. Rather, ad-
hoc and manual process seemed to dominate (RQ5). Moreover, even
when the identification of OSRs was deemed central (e.g., for respon-
dents working in longer duration projects), only some tool support
and automation was present (mostly for bespoke projects), but even
here manual processes and routines dominated (Section 4.5).

• Project managers and product managers indicate that they always
findOSRs in their work (Section 4.5), even if many of the respondents
don’t actively look for them.

• OSRs are more likely to affect Large-scale requirements and Very large-
scale requirements projects (RQ6). Larger projects (hundreds of re-
quirements) tend to have larger issues related to the presence of OSRs,
and there seems to be a correlation between impact severity and project
size (amount of requirements). OSRs seem to have a somewhat larger
impact on projects in a MDRE context as compared to bespoke or
contract driven development (Section 4.7.2). However, for very-large
projects (over 10 000 requirements) all respondents, independent of
context factors, agree that the potential impact of OSRs was substan-
tial.

• According to the respondents, OSRs should first of all be handled
during the Requirements analysis and Requirements validation phases
(RQ7). At the same time, less than 5% of the answers indicate that

212



5. CONCLUSIONS AND FURTHER WORK

OSRs should be managed as a part of requirements volatility han-
dling which supports the distinction between volatility and the phe-
nomenon of OSRs as such. Finally, our respondents suggested that
Requirements elicitation is not the best phase to manage OSRs.

• Latency may not be the main determinant of OSRs becoming a prob-
lem. Rather, the results point to the lack of methods and routines for
actively handling OSRs as a central determinant. This would imply
that claimed low latency development models, like agile, has and can
have problems with OSRs.

5 Conclusions and Further Work

Although the phenomenon of obsolete software requirements and its neg-
ative effects on project timelines and the outcomes have been reported in
a number of publications (Hood et al, 2008b; Murphy and Rooney, 2006;
Stephen et al, 2011; Merola, 2006; Cao and Ramesh, 2008), little empiri-
cal evidence exists that explicitly and exhaustively investigates the phe-
nomenon of OSRs.

In this paper, we report results from a survey conducted among 219
respondents from 45 countries exploring the phenomenon of OSRs by: (1)
eliciting a definition of OSRs as seen by practitioners in industry, (2) ex-
ploring ways to identify and manage OSRs in requirements documents
and databases, (3) investigating the potential impact of OSRs, (4) explor-
ing effects of project context factors on OSRs, and (5) defining what types
of requirements are most likely to become obsolete.

Our results clearly indicate that OSRs are a significant challenge for
companies developing software systems — OSRs were considered serious
by 84.3% of our respondents. Moreover, a clear majority of the respondents
indicated no use of methods or tools to support identification and handling
OSRs, and only 10% of our respondents reported having automated sup-
port. This indicates that there is a need for developing automated meth-
ods or tools to support practitioners in the identification and management
of OSRs. These proposed methods need to have effective mechanisms for
storing requirements tagged as OSRs, enabling the use of the body of OSRs
as decision support for future requirements and their analysis. This could
potentially enable automated regression analysis of active requirements,
continuously identifying candidates for OSRs, and flagging them for anal-
ysis.

Although manually managing OSRs is currently the dominant proce-
dure, which could be sufficient in small projects, research effort should
be directed towards developing scalable methods for managing OSRs —
methods that scale to a reality that is often characterized by large numbers
of requirements and a continuous and substantial influx of new require-
ments. The reality facing many product development organizations devel-

213



PAPER III: OBSOLETE SOFTWARE REQUIREMENTS

oping software intensive systems today is that OSRs are a problem, and
as the amount and complexity of software increases so will the impact of
OSRs.

214



REFERENCES

Bibliography

Anderson W, Boxer PJ, Brownsword L (2008) An examination of a struc-
tural modeling risk probe technique. Tech. Rep. CMU/SEI-2006-SR-017,
Software Engineering Institute, Carnegie Mellon University

Anthes G (1994) Nomore creeps! are you a victim of creeping user require-
ments? Computerworld 28(18):107 – 110

Arcuri A, Briand L (2011) A practical guide for using statistical tests to
assess randomized algorithms in software engineering. In: Proceeding of
the 33rd International Conference on Software Engineering, ACM, New
York, NY, USA, ICSE ’11, pp 1–10

Aurum A, Wohlin C (2005a) Engineering andManaging Software Require-
ments. Springer-Verlag New York, Inc., Secaucus, NJ, USA

Aurum A, Wohlin C (2005b) Requirements engineering: Setting the con-
text. In: Aurum A, Wohlin C (eds) Engineering and Managing Software
Requirements, Springer Berlin Heidelberg, pp 1–15

Bano M, Ikram N (2010) Issues and challenges of requirement engineering
in service oriented software development. In: Proceedings of the Fifth
International Conference on Software Engineering Advances (ICSEA),
2010, pp 64 –69

Bekker M, Steyn H (2008) The impact of project governance principles
on project performance. In: Proceedings of the Portland International
Conference on Management of Engineering Technology, 2008. PICMET
2008., pp 1324 –1330

Berenbach B, Paulish DJ, Kazmeier J, Rudorfer A (2009) Software & Sys-
tems Requirements Engineering: In Practice. Pearson Education Inc.

Boehm B (1991) Software risk management: principles and practices. Soft-
ware, IEEE 8(1):32 –41

Boehm B (2000) Requirements that handle ikiwisi, cots, and rapid change.
Computer 33(7):99–102

Bourque P, Dupuis R (2004) Guide to the software engineering body of
knowledge 2004 version. SWEBOK

Buhne S, Halmans G, Pohl K, Weber M, Kleinwechter H, Wierczoch T
(2004) Defining requirements at different levels of abstraction. In: Pro-
ceedings of the 12th IEEE International Requirements Engineering Con-
ference, pp 346 – 347

Cao L, Ramesh B (2008) Agile requirements engineering practices: An em-
pirical study. Software, IEEE 25(1):60 –67

215



REFERENCES

Chen J, Reilly R, Lynn G (2005) The impacts of speed-to-market on new
product success: the moderating effects of uncertainty. IEEE Transac-
tions on Engineering Management 52(2):199 – 212

Curtis W, Krasner H, Shen V, Iscoe N (1987) On building software process
models under the lamppost. In: Proceedings of the 9th international con-
ference on Software Engineering (ICSE 1987), pp 96–103

Dawson C (2005) Projects in Computing and Information Systems: A Stu-
dent’s Guide. Addison Wesley

DeBellis M, Haapala C (1995) User-centric software engineering. IEEE Ex-
pert 10(1):34 –41

DeMarco T, Lister T (2003) Risk management during requirements. IEEE
Software 20(5):99–101

Easterbrook S (2004) What is requirements engineering? ������������	�

�
�
��
�����	������	�������
������������������

Easterbrook S, Singer J, Storey MA, Damian D (2008) Selecting empirical
methods for software engineering research. In: Shull F, Singer J, Sjøberg
D (eds) Guide to Advanced Empirical Software Engineering, Springer
London, pp 285–311

Finkelstein A, Gabbay D, Hunter A, Kramer J, Nuseibeh B (1994) Inconsis-
tency handling in multiperspective specifications. IEEE Trans Softw Eng
20(8):569–578

Gorschek T, Davis A (2008) Requirements engineering: In search of the
dependent variables. Inf Softw Technol 50:67–75

Gorschek T, Wohlin C (2005) Requirements abstraction model. Requir Eng
11:79–101

Gorschek T, Garre P, Larsson S, Wohlin C (2007a) Industry evaluation of
the requirements abstraction model. Requir Eng 12:163–190

Gorschek T, Svahnberg M, Borg A, Loconsole A, Börstler J, Sandahl K,
Eriksson M (2007b) A controlled empirical evaluation of a requirements
abstraction model. Inf Softw Technol 49:790–805

Gorschek T, Fricker S, Palm K, Kunsman S (2010) A lightweight inno-
vation process for software-intensive product development. Software,
IEEE 27(1):37 –45

Gulk G, Verhoef C (2008) Quantifying requirements volatility effects. Sci
Comput Program 72(3):136–175

216



REFERENCES

Harker S, Eason K, Dobson J (1993) The change and evolution of require-
ments as a challenge to the practice of software engineering. In: Proceed-
ings of IEEE International Symposium on Requirements Engineering, pp
266 –272

Herald T, Verma D, Lubert C, Cloutier R (2009) An obsolescence manage-
ment framework for system baseline evolution perspectives through the
system life cycle. Syst Eng 12:1–20

Holmstrom H, Conchuir E, Agerfalk PJ, Fitzgerald B (2006) Global soft-
ware development challenges: A case study on temporal, geographical
and socio-cultural distance. In: Proceedings of the International Confer-
ence on Global Software Engineering, ICGSE ’06., pp 3 –11

Hood C,Wiedemann S, Fichtinger S, Pautz U (2008a) Change management
interface. In: Requirements Management, Springer Berlin Heidelberg,
pp 175–191

Hood C, Wiedemann S, Fichtinger S, Pautz U (2008b) Requirements Man-
agement The Interface Between Requirements Development and All
Other Systems Engineering Processes. Springer, Berlin

Hood C, Wiedemann S, Fichtinger S, Pautz U (2008c) Requirements Man-
agement: The Interface Between Requirements Development and All
Other Systems Engineering Processes. Springer-Verlag Berin

Houston DX, Mackulak GT, Collofello JS (2001) Stochastic simulation of
risk factor potential effects for software development risk management.
Journal of Systems and Software 59(3):247 – 257

Iacovou C, Dexter A (2004) Turning around runaway information technol-
ogy projects. Engineering Management Review, IEEE 32(4):97 –112

IBM (2011) The description of themethod can be found at. ������������	

��
�������������������������

IEEE (1997) IEEE recommended practice for software requirements speci-
fications, 830-1998. ����������������
����
����������������������
����	���
���

IEEE Computer Society (2004) Software Engineering Body of Knowledge
(SWEBOK). Angela Burgess, EUA, URL ����������
������
����

Institute SE (2011) Capability maturity model integration (cmmi), version
1.3. ����������
���
��
����������������������������
��

Kabbedijk J, K Wnuk BR, Brinkkemper S (2010) What decision character-
istics influence decision making in market-driven large-scale software
product line development? In: Proceedings of the Product Line Require-
ments Engineering and Quality workshop 2010, pp 42 –53

217



REFERENCES

Kohl R (2001) Changes in the requirements engineering processes for cots-
based systems. IEEE Computer Society, Los Alamitos, CA, USA, vol 0, p
0271

Konrad S, Gall M (2008) Requirements engineering in the development of
large-scale systems. In: Proceedings of the 2008 16th IEEE International
Requirements Engineering Conference, IEEE Computer Society, Wash-
ington, DC, USA, RE ’08, pp 217–222

Kossmann M, Gillies A, Odeh M, Watts S (2009) Ontology-driven require-
ments engineering with reference to the aerospace industry. In: Proceed-
ings of the Second International Conference on the Applications of Dig-
ital Information and Web Technologies, ICADIWT ’09, pp 95 –103

Kotonya G, Sommerville I (1998) Requirements Engineering. John Wiley &
Sons

L M Rea RP (1005) Designing and Conducting Survey Research: A Com-
prehensive Guide. Jossey-Bass, San Francisco, CA, 94103-1741

Lamsweerde A (2009) Requirements Engineering: From System Goals to
UML Models to Software Specifications. John Wiley

Lauesen S (2002) Software Requirements – Styles and Techniques.
Addison–Wesley

Legodi I, Barry M (2010) The current challenges and status of risk man-
agement in enterprise data warehouse projects in south africa. In: Pro-
ceedings of the Technology Management for Global Economic Growth
(PICMET), pp 1 –5

Lethbridge T, Sim E, Janice J (2005) Studying software engineers: Data col-
lection techniques for software field studies. Empirical Software Engi-
neering 10:311–341

Linkedin (2011) The linkedin website. ������������	
��	
�����

Loconsole A, Borstler J (2005) An industrial case study on requirements
volatility measures. In: Asia-Pacific Software Engineering Conference,
pp 1–8

Loesch F, Ploederoeder E (2007) Restructuring variability in software prod-
uct lines using concept analysis of product configurations. In: Proceed-
ings of the 11th European Conference on Software Maintenance and
Reengineering, CSMR ’07., pp 159 –170

Mannion M, Lewis O, Kaindl H, Montroni G, Wheadon J (2000) Represent-
ing requirements on generic software in an application family model. In:

218



REFERENCES

Proceedings of the 6th International Conerence on Software Reuse: Ad-
vances in Software Reusability, Springer-Verlag, London, UK, pp 153–
169

McGee S, Greer D (2009) A software requirements change source taxon-
omy. In: Proceedings of the Fourth International Conference on Software
Engineering Advances, ICSEA ’09., pp 51 –58

Merola L (2006) The cots software obsolescence threat. In: Proceedings of
the Fifth International Conference on Commercial-off-the-Shelf (COTS)-
Based Software Systems, p 7 pp.

Monkey S (2011) Survey monkey webpage. ������������	
��������
���

Murphy D, Rooney D (2006) Investing in agile: Aligning agile initiatives
with enterprise goals. Cutter IT Journal 19(2):6 –13

Nakagawa S (2004) A farewell to Bonferroni: the problems of low statistical
power and publication bias. Behavioral Ecology 15(6):1044–1045

Natt och Dag J, Thelin T, Regnell B (2006) An experiment on linguistic
tool support for consolidation of requirements from multiple sources in
market-driven product development. Empirical Softw Engg 11:303–329

Nurmuliani N, Zowghi D, Powell S (2004) Analysis of requirements volatil-
ity during software development life cycle. In: Proceedings of the 2004
Australian Software Engineering Conference, pp 28 – 37

Pohl K (2010) Requirements Engineering: Fundamentals, Principles, and
Techniques, 1st edn. Springer Publishing Company, Incorporated

Quispe A, Marques M, Silvestre L, Ochoa S, Robbes R (2010) Requirements
engineering practices in very small software enterprises: A diagnostic
study. In: XXIX International Conference of the Chilean Computer Sci-
ence Society (SCCC), 2010, pp 81 –87

Ramesh B, Cao L, Baskerville R (2010) Agile requirements engineering
practices and challenges: an empirical study. Inf Syst J 20(5):449–480

Regnell B, Brinkkemper S (2005) Market-driven requirements engineering
for software products. In: Aurum A, Wohlin C (eds) Engineering and
Managing Software Requirements, Springer Berlin Heidelberg, pp 287–
308

Regnell B, Svensson RB,Wnuk K (2008) Canwe beat the complexity of very
large-scale requirements engineering? In: Proceedings of the 14th inter-
national conference on Requirements Engineering: Foundation for Soft-
ware Quality, Springer-Verlag, Berlin, Heidelberg, REFSQ ’08, pp 123–
128

219



REFERENCES

Robertson S, Robertson J (1999) Mastering the requirements process. ACM
Press/Addison-Wesley Publishing Co., New York, NY, USA

Robinson W, Pawlowski D (1999) Managing requirements inconsistency
with development goal monitors. IEEE Transactions on Software Engi-
neering 25(6):816–835

Ruel H, Bondarouk T, Smink S (2010) The waterfall approach and require-
ment uncertainty: An in-depth case study of an enterprise systems im-
plementation at a major airline company. Int J Technol Proj Manage
(USA) 1(2):43 – 60

Russo A, Nuseibeh B, Kramer J (1998) Restructuring requirements specifi-
cations for inconsistency analysis: A case study. In: Third IEEE Interna-
tional Conference on Requirements Engineering, IEEEComputer Society
Press, pp 51–60

Savolainen J, Oliver I, Mannion M, Zuo H (2005) Transitioning from prod-
uct line requirements to product line architecture. In: Proceedings of the
29th Annual International Computer Software and Applications Confer-
ence, COMPSAC 2005., vol 1, pp 186 – 195 Vol. 2

Sawyer P (2000) Packaged software: Challenges for re. In: Proceedings of
the Sixth International Workshop on Requirements Engineering: Foun-
dations of Software Quality (REFSQ 2000), pp 137–142

Shan X, Jiang G, Huang T (2010) The study on knowledge transfer of soft-
ware project requirements. In: 2010 International Conference on Biomed-
ical Engineering and Computer Science (ICBECS), pp 1 –4

Siegel S, Castellan N (1998) Nonparametric statistics for the behavioral sci-
ences, 2nd edn. McGraw-Hill

Singer J, Sim SE, Lethbridge TC (2008) Software engineering data collec-
tion for field studies. In: Shull F, Singer J, Sjøberg DIK (eds) Guide to
Advanced Empirical Software Engineering, Springer London, pp 9–34

Sommerville I (2007) Software Engineering. Addison–Wesley

Sommerville I, Sawyer P (1997) Requirements Engineering: A Good Prac-
tice Guide. John Wiley & Sons

Stephen J, Page J, Myers J, Brown A, Watson D, Magee I (2011) System
error fixing the flaws in government it. Tech. Rep. 6480524, Institute for
Government, London

Strauss A, Corbin J (1990) Basics of Qualitative Research: Grounded The-
ory Procedures and Techniques. Sage Publications, Newbury Park, Cali-
fornia

220



REFERENCES

Takahashi M, Kamayachi Y (1989) An empirical study of a model for
program error prediction. IEEE Transactions on Software Engineering
15:82–86

Šmite D, Wohlin C, Gorschek T, Feldt R (2010) Empirical evidence in global
software engineering: a systematic review. Empirical Softw Eng 15:91–
118

Wiegers KE (2003) Software Requirements, Second Edition. Microsoft
Press, Redmond, WA, USA

Wikipedia (2011) Likert scale. ����������	
�
���
�����	
�
��
�����
�����

Wnuk K (2011a) The appendix with analysis can be accessed at.
��������
����
����������������������
��������������������

������
���������
�����

Wnuk K (2011b) The full list of countries can be obtained at.
��������
����
����������������������
��������������������

 �!"#$%�&����

Wnuk K (2011c) The full list of mailing lists can be accessed at.
��������
����
����������������������
��������������������

�
����'
��(��
��)��(������

Wnuk K (2011d) The full list of tool vendors can be accessed at.
��������
����
����������������������
��������������������

�
����*����������

Wnuk K (2011e) The survey questionnaire. ��������
����
��

��������������������
��������������������������
�+�

�&(�,��-(���
�������

Wnuk K, Regnell B, Karlsson L (2009) What happened to our features?
visualization and understanding of scope change dynamics in a large-
scale industrial setting. In: Proceedings of the 17th IEEE International
Requirements Engineering Conference, RE ’09, pp 89 –98

Wohlin C, Xie M, Ahlgren M (1995) Reducing time to market through
optimization with respect to soft factors. In: Proceedings of the 1995
IEEE Annual Engineering Management Conference, ’Global Engineer-
ing Management: Emerging Trends in the Asia Pacific’., International,
pp 116 –121

Wohlin C, Runeson P, Höst M, Ohlsson MC, Regnell B, Wesslén A (2000)
Experimentation in software engineering: an introduction. Kluwer Aca-
demic Publishers, Norwell, MA, USA

221



REFERENCES

Zowghi D, Nurmuliani N (2002) A study of the impact of requirements
volatility on software project performance. Asia-Pacific Software Engi-
neering Conference 0:3

222



Paper IV

Are You Biting Off More Than You Can Chew? A
Case Study on Causes and Effects of Overscoping

in Large–Scale Software Engineering

Krzysztof Wnuk, Elizabeth Bjarnason, ,Björn Regnell
Department of Computer Science,

Lund University, Sweden
���������	
�������������
���������������
�����������
���
��

Information and Software Technology,
Volume 54 Issue 10, October, 2012, Pages 1107-1124

ABSTRACT

Context: Scope management is a core part of software re-
lease management and often a key factor in releasing successful
software products to themarket. In amarket-driven case, when
only a few requirements are known a priori, the risk of over-
scoping may increase. Objective: This paper reports on find-
ings from a case study aimed at understanding overscoping in
large-scale, market-driven software development projects, and
how agile requirements engineering practices may affect this
situation. Method: Based on a hypothesis of which factors that
may be involved in an overscoping situation, semi-structured
interviews were performed with nine practitioners at a large,
market-driven software company. The results from the inter-
views were validated by six (other) practitioners at the case
company via a questionnaire. Results: The results provide a
detailed picture of overscoping as a phenomenon including a
number of causes, root causes and effects, and indicate that
overscoping is mainly caused by operating in a fast-moving
market-driven domain and how this ever-changing inflow of
requirements is managed. Weak awareness of overall goals,
in combination with low development involvement in early
phases, may contribute to ’biting off’ more than a project can
’chew’. Furthermore, overscoping may lead to a number of po-
tentially serious and expensive consequences, including qual-
ity issues, delays and failure to meet customer expectations.
Finally, the study indicates that overscoping occurs also when



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

applying agile requirements engineering practices, though the
overload is more manageable and perceived to result in less
wasted effort when applying a continuous scope prioritization,
in combination with gradual requirements detailing and a close
cooperation within cross-functional teams. Conclusion: The re-
sults provide an increased understanding of scoping as a com-
plex and continuous activity, including an analysis of the causes,
effects, and a discussion on possible impact of agile require-
ments engineering practices to the issue of overscoping. The
results presented in this paper can be used to identify potential
factors to address in order to achieve a more realistic project
scope

224





PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

1 Introduction

Maximizing the business value for a product and a set of available re-
sources may sound like a simple task of selecting features according to the
highest return of investment. However, in market-driven requirements en-
gineering (MDRE) (Karlsson et al, 2007a; Regnell and Brinkkemper, 2005)
software product managers face the challenge of managing continuously
shifting market needs (Abramovici and Sieg, 2002) with a large number of
new and changing requirements (Gorschek andWohlin, 2006) caused both
by a capricious market situation (DeBaud and Schmid, 1999) and by evolv-
ing technologies. In this situation, selecting which requirements to include
into the next release of a software product, also called scoping (Schmid,
2002) or project scoping (Project Management Institute, 2000), is a com-
plex and continuous task of assessing and re-assessing how these scoping
changes impact the common code base of the software product line (Pohl
et al, 2005) on which those products are built (Wnuk et al, 2009). This do-
main scoping is considered part of the product line scoping (Schmid, 2002),
which derives value from the opportunities to reuse functionality of the
product line. These factors, combined with increased market com- petition
and unpredictable market response to new products, force decision mak-
ers to continuously face the task of making and re-evaluating decisions in
an ever evolving world (Aurum and Wohlin, 2003).

Defining the scope of a product to fit a required schedule is a known
risk in project management (Boehm, 1989) and in our previouswork (Wnuk
et al, 2009) we found that the project scope at a large software company
changed significantly throughout the entire project life cycle. These changes
were partly due to overscoping, i.e. setting a scope that requires more
resources than are available. Several researchers have focused on scope
creep where the scope is increased by the developers, and highlighted
this as a serious project risk (Carter et al, 2001; Crockford, 1980; Iacovou
and Dexter, 2004). Others have investigated scoping as a part of release
planning (Schmid, 2002; Svahnberg et al, 2010; Wnuk et al, 2009). How-
ever, no study has yet attempted to investigate the causes and effects of
overscoping even though requirements engineering (RE) decision making
is an acknowledged challenge (Alenljung and Persson, 2008; Aurum and
Wohlin, 2003; Ngo-The and Ruhe, 2005). In this study, we have investi-
gated this phenomenon of overscoping a project, or biting off more that
you can chew, in particular in a market-driven and very-large scale RE
(VLSRE) context (Regnell et al, 2008).

Agile development processes claim to address several of the challenges
involved in scoping frequently changing requirements. For example, in
eXtreme programming (XP) (Beck, 1999) and Scrum (Schwaber and Beedle,
2002) the balance between scope and available resources is managed by ex-
treme prioritization and constant (re)planning of the scope in combination
with time boxing of the individual development iterations. However, ag-

226



1. INTRODUCTION

ile requirements engineering (RE) practices have also been found to pose
new challenges, e.g., in achieving consensus on priorities among multiple
stakeholders and in creating accurate project plans (cost and timeline) for
an entire project (Ramesh et al, 2010).

The main goal of the case study reported on in this paper was to in-
crease the understanding of factors involved in overscoping and thereby
highlight this risk and take a step towards addressing and avoiding over-
scoping of projects. To achieve this, the study was designed to answer the
following questions:

• (RQ1) What causes over- scoping?

• (RQ2) What are the resulting effects of overscoping?

• (RQ3) How may agile RE practices impact the causes and effects of
overscoping?

The case study has been conducted at a large market-driven software de-
velopment company that has started to shift towards a more agile way of
working. The study includes interviews with nine practitioners working
with requirements engineering, software development and product test-
ing. The interview results were then validated via a questionnaire with
another six practitioners from the case company. The contribution of the
presented work includes eight main causes of overscoping complemented
by a number of root causes, and nine main effects of overscoping. In addi-
tion, the results indicate that three of the agile RE practices adopted by the
case company may impact some of these causes and root causes and, thus,
may also reduce the effects of overscoping.

Partial results from this study have previously been published as work-
shop publications in (Bjarnason et al, 2010) where overscoping was prelim-
inarily investigated and in (Bjarnason et al, 2011a) where preliminary re-
sults on the benefits and side effects of agile RE practices were published.
For this article, the results are extended with (1) additional causes, root
causes and effects of overscoping; (2) additional empirical results on over-
scoping from 6 (other) practitioners; and (3) details on the impact of agile
RE practices specifically on overscoping. These extensions were achieved
by further analysis of the full interview material and further validation of
the results through a questionnaire.

The remainder of this paper is structured as follows: Section 2 describes
related work. Section 3 describes the case company, while the research
method is outlined in Section 4. The results are reported in Section 5 for
the interviews and in Section 6 for the validation questionnaire. In Section
7, the results are interpreted and related to other work, and limitations and
validity threats are discussed. Finally, Section 8 contains conclusions and
further work.

227



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

2 Related work

Unrealistic schedules and budgets are among the top ten risks in software
engineering (Boehm, 1989) and some reasons for overloading projects with
scope have been suggested. For example, DeMarco and Lister (2003) men-
tioned that a failure among stakeholders to concur on project goals (also
one of the challenges of agile RE (Ramesh et al, 2010)) can result in an ex-
cessive scope burden on a project. Project overload may also result from
sales staff agreeing to deliver unrealistically large features without consid-
ering scheduling implications (Hall et al, 2002). Furthermore, scope that
is extended beyond the formal requirements by the developers, i.e. scope
creep, is stated by Iaconou and Dexter (Iacovou and Dexter, 2004) as a fac-
tors leading to project failures. Scope creep is also mentioned as having
a big impact on risk and risk management in enterprise data warehouse
projects (Legodi and Barry, 2010). In addition, it is listed as one of five
core risks during the requirements phase, and is a direct consequence of
how requirements are gathered (DeMarco and Lister, 2003). On the other
hand,Gemmer (1997) argues that people’s perceptions of risk and their sub-
sequent behavior is overlooked within risk management and that an in-
creased awareness of causes and effects of risks may lead to an improved
discussion and management of these risks (Gemmer, 1997). Some methods
and tools to mitigate and manage risks related to scoping have been pre-
sented (Crockford, 1980). For example, Carter et al (2001) suggested com-
bining evolutionary prototyping and risk-mitigation strategy to mitigate
the negative effects of scope creep. However, the full issue of overscop-
ing is not explicitly named as a risk in the related work, nor empirically
investigated for their causes and consequences.

Requirements engineering (RE) is a decision intense part of the soft-
ware engineering process (Aurum and Wohlin, 2003), which can support
and increase the probability of success in the development process (Aurum
and Wohlin, 2005a). However, the efficiency and effectiveness of RE deci-
sion making has cognitive limitations (Aurum and Wohlin, 2003), due to
being a knowledge intensive activity. Furthermore, research into the field
of RE decision making is still in its infancy (Alenljung and Persson, 2008;
Ngo-The and Ruhe, 2005). A major challenge in this research (according
to Alenljung and Persson) lies in understanding the nature of RE decision
making and identifying its obstacles (Alenljung and Persson, 2008) and
several authors (Alenljung and Persson, 2008; Aurum and Wohlin, 2003,
2005a; Ngo-The and Ruhe, 2005) mention the need to: (1) identify decision
problems in the RE process; (2) perform empirical studies of RE decision
making; and (3) examine how non-technical issues affect or influence deci-
sion making. Communication gaps are an example of such non-technical
issues which have been reported to negatively affect the decision making
and contribute to defining an unrealistic scope (Bjarnason et al, 2011b).

There are two characteristics ofMDRE (Regnell and Brinkkemper, 2005)

228



2. RELATED WORK

which further aggravates RE decision making, namely a lack of actual cus-
tomers with which to negotiate requirements (Karlsson and Ryan, 1997;
Potts, 1995) and a continuous inflow of requirements from multiple chan-
nels (Karlsson et al, 2007a; Gorschek and Wohlin, 2006). As a result, rather
than negotiate with specific customers, the demands and requirements of
an anonymous consumermarket have to be ’invented’ (Potts, 1995) through
market research. Moreover, the success of the final product is primar-
ily validated by the market with the uncertainty (Regnell and Brinkkem-
per, 2005) of how well the ’invented’ requirements compare to the mar-
ket needs. Commonly, market research continuously issues more require-
ments (Regnell and Brinkkemper, 2005) than can be handled with available
resources. A state of congestion then occurs in theMDRE process (Karlsson
et al, 2007a) and the set of requirements to implement in the next project
has to be selected using prioritization techniques based on market predic-
tions and effort estimates (Carlshamre, 2002; Karlsson and Ryan, 1997; Jør-
gensen and Shepperd, 2007).

Scope management is considered as one of the core functions of soft-
ware release planning and a key activity for achieving economic benefits
in product line development (Schmid, 2002). Accurate release planning is
vital for launching products within the optimal market window. And, this
is a critical success factor for products in theMDRE domain (Sawyer, 2000).
Missing this window might cause both losses in sales and, additional cost
for prolonged development and delayed promotion campaigns. However,
making reliable release plans based on uncertain estimates (Karlsson et al,
2007a) and frequently with features with dependencies to other features
(Carlshamre et al, 2001) is a challenge in itself. In addition, a rapidly chang-
ing market situation may force a project to consider new market require-
ments at a late project stage. Release planning is then a compromise where
already committed features may need to be sacrificed at the expense of
wasted effort (Wnuk et al, 2009) of work already performed. The area of
release planning is well researched and Svahnberg et al reported on 24
strategic release planning models presented in academic papers intended
for market-driven software development (Svahnberg et al, 2010). Further-
more, Wohlin and Aurum investigated what is important when deciding
to include a software requirement in a project or release (Wohlin and Au-
rum, 2005). Despite this, the understanding of the challenges related to
scope management and their causes and effects is still low.

Scoping in agile development projects mainly involves three of the agile
RE practices identified by Ramesh et al (2010), namely extreme prioritization,
constant planning and iterative RE. High-level requirements are prioritized
and the features with the highest market value are developed first. This
approach ensures that if the project is delayed launch may still be possible
since the most business-critical requirements will already be developed.
Ramesh et al (2010) identified a number of benefits for companies applying
these agile RE practices, but also challenges and varying impact on project

229



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

risks. The identified benefits include an ability to adapt to changing prior-
itization of requirements, as well as, a clearer understanding of what the
customers want, thus reducing the need for major changes. On the other
hand, agile RE practices were found to include challenges in (1) correctly
estimating and scheduling for the full project scope (which continuously
changes), (2) a tendency to omit quality requirements and architectural is-
sues (with the risk of serious and costly problems over time), and (3) con-
stant re-prioritization of the requirements (with subsequent instability and
waste) (Ramesh et al, 2010).

3 The case company

The case company has around 5000 employees and develops embedded
systems for a global market using a product line approach (Pohl et al, 2005).
The projects in focus for this case study are technology investments into an
evolving common code base of a product line (a.k.a. platform) on which
multiple products are based. There are several consecutive releases of this
platform where each release is the basis for one or more products. The
products mainly reuse the platform’s functionality and qualities, and con-
tain very little product-specific software. A major platform release has a
lead time of approximately 2 years from start to launch, and is focused
on functionality growth and quality enhancements for a product portfolio.
For such projects typically around 60-80 new features are added, for which
approximately 700-1000 system requirements are produced. These require-
ments are then implemented by 20-25 different development teams with,
in total, around 40-80 developers per team assigned to different projects.
The requirements legacy database amounts to a very complex and large
set of requirements, at various abstraction levels, in the order of magni-
tude of 20,000 entities. This makes it an example of the VLSRE (very-large
scale RE) context (Regnell et al, 2008). Both the flow of new requirements
(added to and removed from the scope of platform projects) and the scop-
ing decisions associated with this ?ow may change frequently and rapidly.
This exposes the project management to a series of unplanned, and often
difficult, decisions where previous commitments have to be changed or
canceled.

3.1 Organisational set-up

Several organizational units within the company are involved in the de-
velopment. For this case study, the relevant units are: the requirements unit
that manages the scope and the requirements; the software unit that devel-
ops the software for the platform; and the product unit that develops prod-
ucts based on the platform releases. In addition, there is a usability design
unit responsible for designing the user interface. Within each unit there are

230



3. THE CASE COMPANY

several groups of specialists divided by technical area. These specialists are
responsible for the work in various stages of the development process. For
this study, the most essential groups are the requirements teams (RTs) (part
of the requirements unit) that, for a specific technical area, define the scope,
and elicit and specify system requirements, and the development teams
(DTs) (part of the software unit) that design, develop and maintain soft-
ware for the (previously) defined requirements. Each RT has a team leader
who manages the team. Another role belonging to the requirements unit
is the requirements architect who is responsible for managing the overall
scope, which includes coordinating the RTs. In the DTs there are several
roles, namely

• Development team leader who leads and plans the team’s work for
the implementation and maintenance phases;

• Development team requirements coordinator who leads the team’s
work during the requirements management and design phase, and
coordinates the requirements with the RTs;

• Developer who designs, develops and maintains the software;

• Tester who verifies the software.

The software unit also has a project management team consisting of
(among others): quality managers who set the target quality levels and fol-
low up on these, and software project managers who monitor and coordi-
nate the DTs and interact with the requirements architects. For the product
development unit in this study, we focus on the system testing task from
the viewpoint of the functionality and quality of the platform produced by
the software unit.

3.2 Phase-based process

The company used a stage-gate model. There were milestones (MS) for
controlling and monitoring the project progress. In particular, there were
four milestones for the requirements management and design (MS1-MS4)
and three milestones for the implementation and maintenance (MS5-MS7).
For each of these milestones, the project scope was updated and baselined.
The milestone criteria were as follows:

• MS1: At the beginning of each project, RT roadmap documents were
extracted to formulate a set of features for an upcoming platform
project. A feature in this case is a concept of grouping requirements
that constitute a new functional enhancement to the platform. At
this stage, features contained a description sufficient for enabling es-
timation of its market value and implementation effort, both of which
were obtained using a cost-value approach (Karlsson and Ryan, 1997).

231



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

These values were the basis for initial scoping inclusion for each tech-
nical areawhen the featureswere reviewed, prioritized and approved.
The initial scope was decided and baselined per RT, guided by a
project directive and based on initial resource estimates given by the
primary receiving (main) DT. The scope was then maintained in a
document called feature list that was updated eachweek after ameet-
ing of the change control board (CCB). The role of the CCB was to
decide upon adding or removing features according to changes that
occur.

• MS2: The features were refined to requirements and specified by the
RTs, and assigned to their main DTs, responsible for designing and
implementing the feature. The requirements were reviewed with the
main DTs and were then approved. Other (secondary) DTs that were
also affected by the features were identified. The DTs make an effort
estimate per feature for both main and secondary DT.

• MS3: The DTs had refined the system requirements and started de-
signing the system. The set of secondary DTs were refined along with
the effort estimates, and the scope was updated and baselined.

• MS4: The requirements refinement work and the system design were
finished, and implementation plans were produced. The final scope
was decided and agreed with the development resources, i.e. the
software unit.

• MS5: All requirements had been developed and delivered to the plat-
form.

• MS6: The software in the platform had been stabilized and prepared
for customer testing.

• MS7: Customer-reported issues had been handled and the software
updated. The software was ready to be released.

According to the company’s process guidelines, the majority of the scop-
ing work should have been done by MS2. The requirements were ex-
pressed using a domain-specific, natural language, and contained many
special terms that required contextual knowledge to be understood. In
the early phases, requirements contained a customer-oriented description
while later being refined to detailed implementation requirements.

3.3 Agile development process

In order to meet the challenges of managing high requirements volatility,
the case company was introducing a new development process at the time
of this study. The size and complexity of the software development, in-
cluding the usage of product lines, remained the same irrespective of the

232



3. THE CASE COMPANY

process used. The new process has been influenced by ideas and principles
from the agile development processes eXtreme programming (XP) (Beck,
1999) and Scrum (Schwaber and Beedle, 2002). The phase-based process
was replaced by a continuous development model with a toll-gate struc-
ture for the software releases of the software product line (to allow for
coordination with hardware and product projects, see P1 below). The re-
sponsibility for requirements management was transferred from the (pre-
vious) requirements unit, partly into the business unit and partly into the
software unit. The following agile RE practices were being introduced:

• One continuous scope and release-planning flow (P1). The scope for all
software releases is continuously planned andmanaged via one priority-
based list (comparable to a product backlog). The business unit gath-
ers and prioritizes features from a business perspective. All new
high-level requirements are continuously placed into this list and pri-
oritized by the business unit. The software unit estimates the effort
and potential delivery date for each feature based on priority and
available software resource capacity. Development is planned and
executed according to priority order. Planning and resource alloca-
tion is handled via one overall plan which contains all the resources
of the software unit. The scope of the platform releases are synchro-
nized with the product releases by gradual commitment to different
parts of the scope. Critical scope is requested to be committed for
specific product releases, while non-critical features are assigned to
product releases when they are implemented and ready to be inte-
grated into the platform.

• Cross-functional development teams (P2) that include a customer rep-
resentative assigned by the business unit (comparable to the agile
practice of customer proxy) have the full responsibility for defin-
ing detailed requirements, implementing and testing a feature (from
the common priority-based list). Each new feature is developed by
one cross-functional team specifically composed for that feature. The
different software engineering disciplines and phases (e.g. require-
ments, design and test) are performed in an integrated fashion and
within the same team. The team has themandate to decide on changes
within the value, effort and time frames assigned for the feature.

• Gradual and iterative detailing of requirements (P3). The requirements
are first defined at the high level (as features in the priority-based
list) and then iteratively refined in the development teams into more
detailed requirements as the design and implementation work pro-
gresses.

• Integrated requirements engineering (P4). The requirements engineer-
ing tasks are integratedwith the other development activities. The re-
quirements are detailed, agreed and documented during design and

233



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

developmentwithin the same cross-functional development team through
close interaction between the customer representative and other team
members, e.g. designers, developers and testers.

• User stories and acceptance criteria (P5) are used to formally document
the requirements agreed for development. User stories define user
goals and the acceptance criteria define detailed requirements to ful-
fill for a user story to be accepted as fully implemented. The accep-
tance criteria are to be covered by test cases.

This study mainly focuses on the situation prior to introducing the new
agile way of working, i.e. for projects working as described in Section 3.2.
The agile RE practices covered in this paper were defined in the company’s
internal development process at the time of the study. Practices P1 and P2
were being used in the projects, while P3 was partly implemented, and
P4 and P5 were in the process of being implemented. Thus, it was not
possible to investigate the full impact of the new agile RE practices at the
time of this study. Nevertheless, the study investigates how these (new)
practices are believed to affect the overscoping situation, i.e. which causes
and root causes may be impacted by the agile RE practices and, thus, lead
to reducing overscoping and its effects.

4 Research method

The study was initiated due to a larger transition taking place within the
case company and with the aim of understanding the differences between
the scoping processes of the phase-based process and the new agile devel-
opment process. Our previous research into scoping (Wnuk et al, 2009)
served as the basis for identifying research questions aimed at seeking a
deeper understanding of overscoping as a phenomenon. In order to obtain
detailed insight, an explanatory approach (Robson, 2002) was taken and
the study design was based on the specific company context and the au-
thors’ pre-understanding. These investigations can then be broadened in
future studies. Existing knowledge from literature was taken into account
in interpretation and validation of the results.

A single-company explanatory case study (Robson, 2002) was performed
using mainly a qualitative research approach complemented by a quanti-
tative method for some of the data gathering. Qualitative research is suit-
able for investigating a complex phenomenon (such as overscoping) in a
real-life context where it exists (Myers and Avison, 2002) (such as our case
company). In this study, practitioners’ perceptions of overscoping were
studied through interviews where the verbalized thoughts of individuals
with a range of different roles at the case company were captured(Myers
and Avison, 2002; Robson, 2002). An overview of the research method is
shown in Figure 4.1.

234



4. RESEARCH METHOD

Pre-study and
hypothesis formulation Interview study Validation 

questionnaire

Work experience at case company 9 practitioners with roles and 
experiences throughout life cycle

6 (other) practitioners

• 5 assumed causes (Section 4.1.1) 
• 5 agile RE practices (Section 3.3, [10])
• interview instrument ([69])

PHASE 1 PHASE 2 PHASE 3

INPUT

• 6 main causes (Section 5.1, [11]) 
• root causes (Section 5.2, [11])
• 6 effects (Section 5.3, [11]) 
• 3 agile RE practices (Section 5.4) 

+ 2 main causes,  root 
causes (Section 6.1)
+ 3 effects (Section 6.2)
+ 3 practices (Section 6.3)

OUTPUT

CASE STUDY

RESEARCH QUESTIONS on OVERSCOPING

RQ1: What causes overscoping?
RQ2: What are the effects?

For phase-based process

RQ3: How may agile RE practices
impact the causes & effects?

For agile development process

Previous research

Phase-based context

causes effects
Agile context

causes’ effects’

case company context

Figure 4.1: Overview of research method for case study.

The case study was performed in three phases, see Figure 4.1. In the
first phase, the industrial experience of one of the authors was used to for-
mulate a hypothesis concerning possible (assumed) causes of overscoping
and (assumed) effects whichmay result from overscoping. This hypothesis
was used as a starting point in creating the interview instrument (Bjarna-
son, 2012) for the interviews, which took place in the second phase of the
study. In the third phase, the interview results were presented to (another)
six practitioners from the same company and validated by using a ques-
tionnaire (see Section 6 for more details and (Bjarnason, 2012) for the val-
idation questionnaire). This was done to reduce the risk of inappropriate
(false) certainty of the correctness of the results (Robson, 2002).

4.1 Phase one: pre-study and hypothesis generation

The purpose of the first phase of the study was to formulate a hypothesis
on overscoping and prepare for the interviews. The experience of one of
the authors (who has worked at the case company, with experience in sev-
eral areas including coding, design, requirements engineering and process
development) was used to identify possible (assumed) causes and effect of
overscoping. In addition to these assumptions for the phase-based way of
working, this author also identified the agile RE practices being introduced
at the case company. These practices were assumed to impact one or more

235



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

of the issues believed to cause overscoping in the phase-based process. If
these assumptions were correct, applying the new practices should then re-
sult in reducing (or eliminating) the effects connected to those causes, and
thus reduce (or eliminate) overscoping. In order to avoid selecting a set of
assumptions biased by only one person, a series of brainstorming sessions
around the hypothesis were conducted within the group of researchers in-
volved in this study (i.e. the authors). The resulting (updated) hypothesis
was then used as the main input in creating an interview study instrument
(accessible online (Bjarnason, 2012)).

4.1.1 Formulated hypothesis

The hypothesis formulated for this study is that overscoping is caused by
a number of factors, and that by addressing one or more of these factors,
e.g. through agile RE practices, the phenomenon of overscoping may be
alleviated, or even eliminated. The following five factors were identified
as assumed causes for overscoping in phase one:

• continuous requirements inflow via multiple channels (C1) was assumed
to cause overscoping by the many inflows increasing the difficulty
of defining a realistic scope for multiple parallel projects. Require-
ments continuously arrive from the market, as well as, from internal
stakeholders. This inflow was managed by batching those requests
into one or two projects per year. It was a challenge to manage the
execution of multiple parallel projects, while handling requests for
new features and requirements, as well as, requests for changes to
the agreed project scope.

• no overview of software resource availability (C2) was assumed to cause
overscoping due to the challenge of balancing the size of the total
scope for several (parallel) development projects against the (same)
set of development resources. The resource allocation for the soft-
ware development unit was handled at the DT level, i.e. there was
no total overview of the load and available capacity of all the devel-
opment resources of the software unit.

• low DT involvement in early phases (C3) was assumed to contribute to
defining unrealistic and unclear requirements in the early phases,
that are later deemed too costly or even impossible to implement,
thus causing overscoping. The development teams were not very
involved in the early project phases (MS1-MS4) with providing cost
estimates and feedback during requirements writing.

• requirements not agreed with DT (C4) was assumed to cause overscop-
ing due to not ensuring that the suggested scope was feasible and un-
derstandable. The requirements specification was not always agreed
with the development teams at the handover point (MS2). Even if

236



4. RESEARCH METHOD

there was a formal review by DTs, we assumed that there was a low
level of commitment from DTs. Furthermore, this low level of agree-
ment was assumed to lead to low DT motivation to fulfil the require-
ments defined by the RTs.

• detailed requirements specification is produced upfront (C5) by the require-
ments teams by MS2 before the design starts was assumed to cause
overscoping by limiting the room for negotiating requirements that
could enable a more efficient design and realistic development plan.
Furthermore, time and cost overhead for managing such changes
was also assumed to contribute to overscoping.

4.2 Phase two: an interview study at the case company

In phase two, semi-structured interviews with a high degree of open dis-
cussion between the interviewer and the interviewee were held. The hy-
pothesis provided a framework that helped to discuss, explore and enrich
the understanding of this complex phenomenon. To avoid imposing this
hypothesis on the interviewees, the discussion both on overscoping in gen-
eral and on the detailed causes and effect was always started with an open
ended question. In addition, the interviewees were asked to talk freely
about the roles and phases she had experience from at the beginning of
the interviews. In order to separate between the situation with the phase-
based process and with the new agile RE practices, the impact of the new
practices was discussed specifically in a (separate) section at the end of the
interviews.

Our aim was to cover the whole process from requirements defini-
tion through development (design, implementation and testing) to the re-
sulting end product (quality assurance, product projects), mainly for the
phase-based process. This was achieved by selecting people with expe-
rience from all the relevant organizational units (see Section 3) to be in-
terviewed and thereby catch a range of different perspectives on the phe-
nomenon of overscoping. Nine people in total were selected to be inter-
viewed. Two of the interviewees with identical roles requested to have
their interviews together. The roles, organizational belongings, and rele-
vant experience of the interviewed persons within the case company for
the phase-based process can be found in Table 4.1. We have used a cod-
ing for the interviewees that also includes their organizational belonging.
For example, interviewees belonging to the requirements unit are tagged
with a letter R, belonging to product unit with a letter P and belonging to
software unit with a letter S.

The interviews were scheduled for 90 min each with the possibility to
reduce time or prolong it. All interviews were recorded and transcribed,
and the transcripts sent back to the interviewees for validation. For each in-
terview, the transcript was 7-10 pages long and contained in average 3900

237



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

Table 4.1: Interviewees roles (for phase-based process), organizational be-
longing and length of experience for each role within the company, see
Section 3.1.

Code Organizational
unit

Role (s) within company Years within
role

Ra Requirements RT leader 5
Rb Requirements RT leader 2
Rc Requirements Requirements architect 3
Pd Product System test manager 7
Se Software Tester 3
Sf Software Software project manager 2

DT leader 2
Developer 2

Sg Software Quality manager 3
Sh Software DT requirements coordinator 1

Developer 2
DT leader 1

Si Software DT requirements coordinator 7

words. Transcription speed varied from 3 to 7 times of recorded interview
time. The coding and analysis was done in MS Excel. The underlying
section structure of interview instrument, i.e. causes, effects and agile RE
practices, were numbered and used to categorize the views of the intervie-
wees. For each interview, the transcribed chunks of text were placedwithin
the relevant sections and, if so needed, copied to multiple sections. Rela-
tionships between different categories, as well as, the level of agreement on
causes, effects and agile RE practices were noted in specific columns. The
viewpoints of the two practitioners interviewed together (interviewees Ra
and Rb) were separated into different columns in order to allow reporting
their individual responses.

4.3 Phase three: validation of results via questionnaire

To further strengthen the validity of the results from the interviews a set
of six (additional) practitioners at the case company was selected in phase
three, see Table 4.2. To ensure that these six practitioners understood the re-
sults correctly and in a uniform way, the interview results were presented
to them. During the meeting the participants could ask for clarifications
and comment on the results, especially when they disagreed or had other
different or additional viewpoints. In order to gather their views on the
results in a uniform and non-public way, the participants were asked to fill
out a questionnaire (available online at (Bjarnason, 2012)) stating to which

238



5. INTERVIEW RESULTS

Table 4.2: Questionnaire respondents: roles and organizational belonging
(for phase-based process), and length of experience within company (see
Section 3.1) for descriptions of organizational units and roles).

Organizational
unit

Role(s) Years within
company

Software Software project manager, DT
leader

4

Software Tester 7
Software DT requirements coordinator,

DT leader
5

Requirements Requirements architect 5
Requirements RT leader 13
Product System test manager 15

degree they agreed to the results and if additional relevant items had been
missed. Due to limited availability of the participants a total of three such
sessions were held. Each session was scheduled for 90 min with the possi-
bility to extend or decrease the time as needed. The results from the ques-
tionnaire can be found in Section 6.

5 Interview results

The causes and effects of overscoping derived from the interviews per-
formed in phase two of the study, see Figure 4.1, are outlined in Figure 4.2
and described in the following sections. Section 5.1 covers the main causes
for overscoping, while the root causes are reported in Section 5.2 and the
effects in Section 5.3. The findings from the interviews concerning how the
agile RE practices may address overscoping are described in Section 5.4.
The outcome of the validation questionnaire (phase 3) on these results is
reported in Section 6.

5.1 Causes of overscoping (RQ1)

The viewpoint of each interviewee concerning the causes of overscoping
was categorized andmatched against the hypothesis regarding the assumed
causes of overscoping (C1-C5, see Section 4.1.1). In addition, five of the
eight interviewees were found to describe a sixth main cause for overscop-
ing, namely C6 unclear vision of overall goal. A lack of (clearly communi-
cated) strategy and overall goals and business directions for software de-
velopment led to unclarities concerning the intended direction of both soft-
ware roadmaps and product strategies, as well as, unclear business prior-

239



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

ity of project scope. The interviewees described how this cause (C6) led to
scope being proposed primarily from a technology aspect, rather than from
a business perspective, and without an (agreed) unified priority. Instead,
most of the scope of a project was claimed to be critical and non-negotiable.

The interviewee results around themain causes of overscoping are shown
in Table 4.3. The opinions of the interviewees have been classified in the
following way:

• Experienced: the cause (both its occurrence and its impact on over-
scoping) is experienced

• Agreed: either the cause (occurrence and impact) was not directly
mentioned, but derived or agreed after direct question, or when in-
terviewee has no direct experience, but had observed it or heard
about it from others.

• Partly agreed: Experienced or partly Agreed.

• Disagreed: does not agree to the cause, either its occurrence, or that it
caused overscoping.

• Not mentioned: even though within expected experience for role.

• NA: not within the expected experience for the role (according to the
process).

All interviewees had Experienced or Agreed to overscoping as a chal-
lenge, and a majority had Experienced or Agreed to causes 1-3. No intervie-
wees Disagreed to any of the causes, though causes 4 and 5 both had less
than a majority of Experienced or Agreed interviewees. Causes 4-5 were Not
mentioned by all, while cause 6, which was derived from 5 of the intervie-
wees, was Not mentioned by the others.

The entries marked NA (Not Applicable) indicate that the interviewee
in her role was not expected to have experience of that cause. The system
test manager (Pd) and the quality assurance manager (Sg) were classified
as NA for C2, C3 and C4 since they merely observed the requirements flow
from their management-level positions and were not directly involved in
the early phases of the projects. In addition, Sg was also classified as NA
for C5 due to lack of contact with the SRS. Furthermore, the software tester
(Se), who had no insight into project planning, was categorized as NA for
the causes C1 and C2. For all assumed causes there were some counts of
Partly agreed, namely:

• continuous requirements inflow via multiple channels (C1). The qual-
ity manager (Sg) mentioned the continuous inflow of requirement
changes after setting the scope as causing overscoping, but no root
causes prior to this milestone, and is therefore classified as Partly
agreed.

240



5. INTERVIEW RESULTS

O
ve
rs
co
pi
ng

as
a

ch
al
le
ng

e

C
1

C
on

ti
nu

ou
s

re
q.

in
flo

w

C
2
N
o

ov
er
vi
ew

of
so
ft
w
.

re
so
ur
ce
s

C
3
Lo

w
D
T

In
vo

lv
m
.i
n

ea
rl
y
ph

as
es

C
4
R
eq
s.
no

t
ag
re
ed

w
it
h

D
Ts

C
5
D
et
ai
le
d

re
qs
.

sp
ec
ifi
ca
ti
on

pr
od

uc
ed

up
fr
on

t

C
6
U
nc
le
ar

vi
si
on

of
ov

er
al
lg

oa
l

Requirements

Software

Product

Requirements

Software

Product

Requirements

Software

Product

Requirements

Software

Product

Requirements

Software

Product

Requirements

Software

Product

Requirements

Software

Product

Ex
pe
ri
en
ce
d

2
5

1
1

3
1

1
2

3
1

1
1

2
3

2
A
gr
ee
d

1
2

2
1

1
1

1
Pa

rt
ly

ag
re
ed

1
1

2
2

1

D
is
ag
re
ed

N
ot

m
en
-

ti
on

ed
2

1
2

3
1

N
A

1
2

1
1

1
1

1
1

Ta
bl
e
4.
3:
Fo

re
ac
h
id
en
ti
fie
d
m
ai
n
ca
us
es

of
ov

er
sc
op

in
g,
th
e
nu

m
be
ro

fi
nt
er
vi
ew

ee
s
pe
rr
es
po

ns
e
ca
te
go

ry
(s
ee

Se
ct
io
n
5.
1)

an
d
or
ga
ni
za
ti
on

al
un

it
(R
eq
s,
et
c,
se
e
Se
ct
io
n
3.
1)
.

241



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

• no overview of software resource availability (C2). One of the DT require-
ments coordinators (Si) is noted as Partly agreed to this cause, due to
believing that a better overview of available resources would not al-
leviate the overscoping to any greater extent. In contrast, another in-
terviewee (Sf) saw this as a strong cause for overscoping; ’There was
no control of what people were working with. There were different
DT leaders who just sent out [tasks]’.

• low DT involvement in early phases (C3). Both DT requirements coordi-
nators (Sh, Si) were categorized as Partly agree since the involvement
from the rest of the DT including producing cost estimates was low,
even though they personally had experienced good cooperation with
the RT leaders during MS1-MS2. This lack of involvement was seen
by the DT tester (Se) as leading to an unrealistically large scope be-
ing specified, "‘The full view of requirements would be improved by
including input from more roles, and a more realistic scope could be
identified earlier on."’

• requirements not agreed with DT (C4). The DT requirements coordi-
nators (Sh, Si) believed that the requirements were understood and
agreed with the DT at MS2, though the DT did not commit to im-
plementing them at that point. One of them (Sh) mentioned that the
system requirements specification was primarily agreed with the DT
requirements coordinators and not with developers and testers in the
DT.

• detailed requirements specification produced upfront (C5). One of the RT
leaders (Rb) had an agile way of working and did not produce a de-
tailed requirements specification upfront, but instead regularly and
directly interacted with the DT. This increased insight into the DT en-
abled a more flexible discussion around scope and detailed require-
ments, led to overscoping being experienced as a more manageable
challenge by Rb. The other RT leader (Ra, interviewed together with
Rb) did not mention C5 as causing overscoping, but agreed to Rb’s
conclusions andwas noted as Partly agreed. Ra had the opposite expe-
rience, i.e. of producing and relying on a requirements specification,
and then not staying in touch with the DT during the later phases of
development (after MS2) who then developed software that was usu-
ally different fromwhat was specified in the SRS. One of the DT inter-
viewees (Sf) believed that the (wasted) effort of producing and agree-
ing to detailed requirements upfront (for features that were later de-
scoped) increased the overscoping since it hindered those resources
from working on viable features. Another interviewee (Sh) said: ’At
this point [MS2] we [DT] approved a lot of things, because we liked
what they [RT] wrote here and we really wanted that functionality
then we [DT] started to over commit.’

242



5. INTERVIEW RESULTS

5.2 Root cause analysis (RQ1)

To provide a deeper understanding the interviewees were asked to de-
scribe what may be triggering overscoping, i.e. the root causes of over-
scoping. These root causes have been grouped according to the main cause
(C1-C6, outlined in Sections 4.1 and 5.1) that they affect. A full picture
of the cause-effects relationships for overscoping identified through this
study is depicted in Figure 4.2. The results around root causes from both
the interviews and from the questionnaire are also summarized in Table
4.4.

• root causes of C1 (continuous requirements inflow via multiple channels). A
number of requirement sources besides the regular requirement flow
(defined by the RTs) were mentioned as contributing to the continu-
ous inflow. These include: requirements produced by defining many
different product variants in the product line (RC1a); and, many late
new market requirements and changes incurred by the long project
lead times (RC1b) compared to rate of requirements change. Further-
more, communication gaps (RC1c) were mentioned as causing addi-
tional requirements inflow throughout the project life cycle. These
consist of communication gaps between the requirements unit and
the software unit (RC1ci) which resulted in the software unit pre-
ferring to work according to their own software-internal roadmap
containing a large amount of requirements not agreed with the re-
quirements unit. Communication gaps between technical areas, both
for RTs and for DTs, (RC1cii) led to indirect requirements between
DTs being discovered after the initial scope selection at MS2, which
greatly increased the amount of implementation required. The im-
pact of these indirect requirements was especially large for DTs re-
sponsible for service-layer functionality like display frameworks and
communication protocols. Furthermore, communication gaps between
usability design and the RTs (RC1ciii) resulted in additional func-
tional requirements appearing in usability design specification, some-
times in conflict with RT requirements. And, finally, due to lack of
communication between the software quality managers and the re-
quirements unit (RC1civ), requirements on quality aspects were not
defined and prioritized together with the RT requirements, but man-
aged separately in a later phase.

• root causes of C2 (no overview of software resource availability). The
lack of overview of available software development resources was
believed to be a consequence of communication gaps within the soft-
ware unit and between the DTs (RC2a). The organizational structures
and the high scope pressure were seen to result in each DT focus-
ing on their own areas rather than striving for cooperation and good
communication with other DTs. One interviewee described that en-

243



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

R
C

4a

[S
e, S

h
, S

i]

O
verscop

in
g

C
1: C

on
tin

u
ou

s 
req

 in
flow

C
4: R

eq
s n

ot 
agreed

 w
ith

 D
T

s
C

3: L
ow

 D
T

 
in

volvem
en

t in
early p

h
ases

C
6: U

n
clear vision

of overall goal

R
C

1b
 L

on
g lead

 
tim

es [R
c]

C
2: N

o overview
 of 

softw
are resou

rce
availab

ility

R
C

2a C
om

m
 gap

s
w

ith
in

 softw
 

u
n

it[S
f, S

h
]

R
C

3b
 L

ow
 com

-
p

eten
ce in

 estim
a-

tin
g cost [R

b
, S

h
]

R
C

3a L
ack

 of 
D

T
 resou

rces [R
c]

R
C

4b
 C

om
m

 gap
s

i) R
eq

s –
softw

 u
n

its
[R

c, S
i]

ii) R
T

 –
D

T
 [R

c, S
e]

iii) D
ev –

testers [S
e]

R
C

3d
 C

om
m

u
n

ication
 gap

s
i) L

ate req
s in

fo [S
i]

ii) L
ack

 of resp
ect for d

ev 
costs [S

e, S
f] 

R
C

1a L
arge n

o of 
p

rod
u

ct varian
ts

[R
c, S

f]

R
C

1c C
om

m
u

n
ication

 gap
s

i) R
eq

s u
n

it –
softw

 u
n

it
[R

a, R
b

, S
f]

ii) D
T

 -
D

T
, R

T
 –

R
T

 
[S

f, S
h

]
iii) R

T
s -

u
sab

ility [S
i]

iv) R
T

s –
softw

are q
u

ality 
m

an
agem

en
t [S

g]

R
C

6d
 C

om
m

u
n

ication
 gap

s
i) b

etw
een

 R
T

s [S
h

]
ii) b

etw
een

 D
T

s [S
h

]
iii) R

eq
s –

softw
are u

n
its [R

a, R
b

, S
f]

E
4 C

u
stom

er 
exp

ectation
s n

ot
alw

ays m
et [S

f]

E
1a W

asted
 effort

[R
a, R

b
, R

c, 
S

e, S
f, S

h
, S

i]

E
1b

 D
ecreased

 
m

otivation
 [R

a, R
b

, 
R

c, S
e, S

f]

E
2 Q

u
ality issu

es 
[R

c, P
d

, S
e, 

S
f, S

g, S
h

]

C
5: D

etailed
 

req
 sp

ec 
p

rod
u

ced
u

p
fron

t

R
C

3c L
ow

 d
ev 

cap
acity [R

a, R
b

]

E
3 D

elays 
[S

e, S
f, S

g, S
i]

R
C

6b
 T

ech
n

ology 
focu

s [R
a, R

b
, S

h
]

R
C

6c W
eak

p
rio of scop

e
[R

c, S
i]

R
C

6a U
n

clear b
u

sin
ess 

strategy f S
W

[R
a, R

b
]

+
R

C
1d

 C
u

stom
er

req
s ch

an
ges

+
R

C
1e P

ortfolio
rep

lan
n

in
g

+
R

C
3e W

eak
 m

an
agem

en
t

+
R

C
3f P

eop
le tu

rn
over

+
R

C
3g M

u
lti-task

in
g

+
R

C
4c U

n
clear, am

b
igu

ou
s

req
u

irem
en

ts
+

R
C

4d
 L

ow
 u

n
d

erstan
d

in
g

of scop
e selection

+
C

8: S
cop

e &
 d

ead
lin

e
d

ictated

+
C

7: W
eak

 p
rocess

ad
h

eran
ce

E
1 M

an
y req

 
ch

an
ges [all]

+
E

7 O
vertim

e
+

E
8 P

rod
u

ct p
lan

s
ch

an
ged

/can
celled

+
E

9 L
ow

 p
rio on

ad
m

in
 task

s

E
6 C

h
allen

ge
to k

eep
 S

R
S

u
p

d
ated

[R
a, R

b
, P

d
, 

S
g, S

i]

E
5 C

om
m

u
n

ication
 

gap
s [R

c, S
f, S

g, S
i]

Figure
4.2:O

verview
ofallfound

causes
(C
),rootcauses

(R
C
)and

effects
(E)ofoverscoping.Item

s
derived

from
question-

naire
noted

w
ith

+
and

dashed
lines.Interview

ee
code

(see
Section

4.2)noted
w
ithin

brackets.

244



5. INTERVIEW RESULTS

abling DTs to coordinate their plans had the effect of improving the
scoping situation by increasing the delivery rate and efficiency, ’We
tried to solve the overscoping by enabling the DTs to co-plan and de-
liver incrementally. This resulted in more deliveries and increased
efficiency.’ (Sf)

• root causes of C3 (Low DT involvement in early phases). Several inter-
viewees described that software resources were rarely available in
early project phases (RC3a) due to development and maintenance
work for previous projects. Rc said: ’by MS2, but it was hard to get
[DT] resources. That probably was the problem.’ In addition, weak
and incorrect cost estimations (RC3b) were mentioned as leading to
including too much into the project scope. In contrast, low devel-
opment capacity of the software unit (RC3c) caused by bad architec-
ture was believed by the two RT leaders to be the main reason for
over-scoping. Furthermore, gaps in the communication (RC3d) be-
tween the requirements unit and the software unit were mentioned
as causing low DT involvement. For example, interviewees men-
tioned that early DT involvement was often postponed due to a lack
of understanding within the software unit for the importance of this
work. However, the opposite was also mentioned, namely that the
DTs received requirements information too late (RC3di) which then
resulted in extending the project scope without realistic plans. Sim-
ilarly, the cost estimates for both development and testing were not
always respected (RC3dii). In contrast, close cooperation between
the RTs and the DTs were experienced (by Rc) to lead to an early
uncovering of problems, thereby enabling definition of more stable
requirements that were then successfully implemented.

• root causes of C4 (requirements not agreed with DTs). Low DT involve-
ment in the early phases (C3, RC4a) was seen as leading to weak
agreement and commitment to the requirements, by all three inter-
viewees with experience from planning DT work (Se, Sh, Si). The
interviewees connected the level of requirements agreement with the
level of communication around requirements (RC4b), i.e. RTs and
DTs that communicated well also tended to have a mutual under-
standing and agreement of the requirements. Due to variations in
communication between teams, the view on C4 varied between in-
terviewees (see Section 5.1). Even so, one interviewee (Sh) who had
experienced good cooperation with the RT mentioned that the dif-
ferent organizational belongings (RC4bi) caused timing issues due to
different priorities for different units. In addition, communication
gaps between RTs and DTs (RC4bii) including no contact between
testers and RT leaders were caused by physical and organizational
distances and resulted in weak DT agreement on the requirements.
Weak communication on requirements and design between develop-

245



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

ers and testers (RC4biii) was also mentioned (by Se) as causing weak
requirements agreement.

• root causes of C5 (detailed requirements specification produced upfront).
The phase-based process defined that a requirements specification
should be produced by MS2, therefore no further root causes have
been identified for this cause.

• root causes of C6 (unclear vision of overall goal). The RT leaders (Ra and
Rb) described that the lack of clear business strategy (RC6a) and vi-
sion that could guide them in defining a roadmap resulted in propos-
ing a project scope from a pure technology standpoint (RC6b). A
weak and unified business priority (RC6c) of the proposed scope (al-
most everything was ’critical’) was described (by Si) as pushing the
DTs to commit to unrealistic project plans. In addition, Rc mentioned
that the lack of unified priority hindered the project management
from effectively addressing the overscoping. Furthermore, several
communication gaps (RC6d) were seen to contribute to this cause.
Weak communication both between RTs (RC6di) and between DTs
(RC6dii) were described by Rc as resulting in weak scope coordina-
tion between functional areas, as well as, conflicts and lack of clarity
concerning the overall goal. Finally, both RT leaders described that
communication gaps and low common understanding between the
requirements unit and the software unit (RC6diii) of the overall goal
resulted in the project scope being decided to a large extent by the
DTs, and not (as the process stated) by the RTs.

5.3 Effects of overscoping (RQ2)

The interviews uncovered the following six main effects of over-scoping
(marked as E1 to E6, see Figure 4.2):

• many requirement changes after the project scope is set (E1). All intervie-
wees had experienced that overscoping caused requirement changes
to take place after the project scope was set (at MS2). As the projects
proceeded and the overload was uncovered large amounts of fea-
tures were removed from scope (descoped). The phenomena was
so common that the phrases ’overscoping’ and ’descoping’ have be-
come part of company vocabulary. This descoping of already started
features was awaste (E1a) of both RT andDT effort and led to frustra-
tion and decreased motivation (E1b) to work with new requirements.
As interviewee Sh said: ’There are many things that you as a tester or
developer have spent time on that never resulted in anything. And
that isn’t very fun. There is a lot of overtime that has been wasted.’
However, the many requirement changes were experienced by Pd as

246



5. INTERVIEW RESULTS

Mentioned as
causes or root
causes by nbr. of
interviewees (9 in
total)

Number of ques-
tionnaire re-
sponses (6 in
total)

Ex
pe
ri
en
ce
d

A
gr
ee

Pa
rt
y
ag
re
e

D
is
ag
re
e

D
o
no

tk
no

w

Overscoping (as a challenge) 9 6
C1: Continuous reqs. inflow via multiple channels 8 4 2
(a) Large number of product variants 2 3 1 2
(b) Long lead times 1 4 2
(c) Communication gaps 6 3 1 1 1
(i) Between reqs and software unit 3 3 2 1
(ii) Between RT-RT and DT-DT 2 3 2 1
(iii) Between RT and usability design 1 2 1 1 2
(iv) Between RT and software quality managers 1 2 4
(+d) Customer requirements changes (many and late) 3
(+e) Product portfolio re-planning 1
C2: No overview of software resource availability 6 2 3 1
(a) Communication gaps within software unit 2 1 2 1 1 1
C3: Low development team involvement in early
phases 7 1 2 2 1

(a) Lack of DT resources for pre-development work 1 2 2 2
(b) Low competence in estimating cost 2 2 1 3
(c) Low development capacity 2 1 1 2 1 1
(d) Communication gaps 3
(i) Late requirements information to DT 1 2 2 1 1
(ii) Lack of respect or understanding of development
cost

2 2 3 1
(+e) Weak leadership including ineffective communica-
tion

1
(+f) Change of people during the project 1
(+g) Multi-tasking 1
C4: Requirements not agreed with development teams 5 2 2 2
(a) Low DT involvement in early phases (C3) 3 2 2 1 1
(b) Communication gaps 3 1 2 2 1
(i) Between requirements and software units 2 1 2 1 2
(ii) Between RT and DT 2 1 1 2 1 1
(iii) Between developers and testers 1 1 1 1 2 1
(+c) Unclear and ambiguous requirements 3
(+d) Low understanding of why particular scope is se-
lected

1
C5: Detailed reqs specification produced upfront 5 1 3 1 1
C6: Unclear vision of overall goal 5 4 1 1
(a) Unclear business strategy for software development 2 3 2 1
(b) Technology focus when scope set 3 3 2 1
(c) Weak priority of scope 2 3 2 1
(d) Communication gaps 2 3 1
(i) Between RTs 1 1 3 2
(ii) Between DTs 1 2 2 2
(iii) Between requirements and software units 3 1 3 1 1
+C7 Weak process adherence 1
+C8 Overall scope and deadline dictated from manage-
ment

1

Table 4.4: Summary of all identified causes and root causes of overscoping:
Number of responses for interviewees (see Section 5 for details) and for
Questionnaire responses per level of agreement (see Section 6 for details).
Additional items from questionnaire responses are marked with +.

247



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

having only minor impact on the system testing. They merely ad-
justed the test plans, and rarely wasted any effort due to this effect.

• quality issues (E2). All interviewed practitioners involved after MS4
(when development started, Rc, Pd, Se, Sf, Sg, Sh) mentioned that
software quality was negatively affected by over-scoping both due to
the high workload and due to the many requirement changes. The
software quality manager Sg expressed, ’If you get too much scope,
you get quality problems later on and you haven’t got the energy to
deal with them.’ Similarly, interviewee Pd said: ’When you have a
lot going on at the same time, everything isn’t finished at the same
time and you get a product with lower quality.’ Furthermore, the
lack of respect for development costs (C3dii) in the earlier phases
wasmentioned by the software tester (Se) to contribute to insufficient
testing and subsequent quality issues.

• delays (E3). The overscoping and subsequent overloading of the DTs
was described by several practitioners as resulting in delayed deliv-
eries being the norm rather than the exception. In addition, over-
scoped DTs were often forced to commit to customer-critical requests
and changes which in turn resulted in even more delays and quality
issues (E2). One DT interviewee (Sf) stated that ’our teamwas always
loaded to 100% at MS4, which was too much since there were always
customer requests later on that we had to handle. That meant that we
were forced to deliver functionality with lower quality or late.’ The
same situation was described by the quality manager (Sg) who said:
’Even if we decided on a scope for MS4, there were extremely many
changes underway, so we were never ready by MS5, as we had said,
but were delayed.’

• customer expectations are not always met (E4). Overscoping was men-
tioned by a few interviewees as resulting in sometimes failing to
meet customer expectations. For example, customers sometimes file
change requests for features that had previously been removed due
to overscoping. In addition, overscoping caused by requiring a large
number of products (RC1a) with different display sizes and formats
was experienced by interviewee Sf as resulting in releasing products
with faulty software, e.g. misplaced icons.

• communication gaps (E5). Overscoping and overloading an organiza-
tion was described as leading to several communication gaps; be-
tween the requirements and software units; within the software unit
itself, between DTs (Sg, Si) and between DTs and software project
managers (Sf); and between the software and the product unit. For
example, the many descoped features (E1) and wasted effort (E1a)
resulted in distrust between the requirements unit and the software

248



5. INTERVIEW RESULTS

unit, so much so that the software unit defined their own internal
roadmap without coordinating this with the requirements unit. Fur-
thermore, invalid error reports filed by the system testers based on
an unreliable SRS (caused by E1-E6) caused an increase both in work
load and in frustration at the software unit and, consequently friction
and widened communication gaps between these units.

• challenge to keep the SRS updated (E6): The situation caused by over-
scoping, with a high workload and many late requirement changes
(E1), increased the challenge of keeping the SRS updated. The prac-
titioners mentioned that in an overscoping situation the task of up-
dating the SRS was given low priority (partly caused by E1b). Fur-
thermore, the amount of required updates both for changed and de-
scoped requirements was increased (Ra, Rb, Pd, Sg, Si) by producing
the requirements upfront (C5) with a low level of DT agreement (C4).
The RT leaders (Ra, Rb) had also experienced that many requirement-
related changes were made during development without informing
the RTs (or the system testers), many of which might have been a
result of insufficient DT involvement in the early phases (C3).

5.4 Impact of agile RE practices (RQ3)

The general opinion of the interviewees on the situation after introducing
the agile RE practices (see Section 3.3) is that even though some overscop-
ing is still experienced, it is a more manageable challenge than with the
previous phase-based process. For example, there is less descoping and
most of the features worked on by the software unit now continue un-
til completion (Si). Interviewee Sg said: “We still have overscoping in all
projects. But, it is more controlled now and easier to remove things with-
out having done too much work.” Many of the interviewees stated that in
theory the agile RE practices address overscoping, but that these practices
also incur a number of new challenges. The following practices were men-
tioned by the interviewees as impacting some of the causes and/or root
causes of overscoping:

• one continuous scope and release-planning flow (P1). This practice (which
was implemented at the time of the interviews) was seen to address
the root cause weak prioritization of scope (RC6c, mentioned by Rc,
Pd, Sg, Sh) and the causes continuous requirements inflow via mul-
tiple channels (C1, mentioned by Se, Sf) and no overview of software
resource availability (C2, mentioned by Sf, Sg), by enforcing that all
scope and development resources are managed through a uniformly
prioritised list.

• cross-functional development teams (P2). This practice (which was im-
plemented at the time of the interviews) was seen to address sev-

249



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

eral communication gaps, and, thus, impact causes C1-C4 by clos-
ing the gaps (identified as root causes) between RTs and DTs and
between different functional areas. This practice was also believed
to impact C5 (detailed requirements specification produced upfront)
since detailing of requirements is now handled within the develop-
ment teams together with the customer representative. Interviewee
Sf said: ’It is an advantage that they [the team] sit together and can
work undisturbed, and there is no us-and-them, but it is us. And
when they work with requirements the whole group is involved and
handshakes them.’

• gradual and iterative detailing of requirements (P3). This practice (which
was partly implemented at the time of the interviews) wasmentioned
as directly impacting the cause C5 (detailed SRS produced upfront).
Furthermore, this practice was also seen by Sf and Sg to reduce both
the lead time for each high-level requirement (RC1b) and the amount
of changes after project scope is set (E1) and, thus also reduce the
amount of wasted effort (E1a, also mentioned by Ra, Rb).

6 Validation questionnaire on interview results

Overscopingwas further investigated through the validation questionnaires
(Bjarnason, 2012), see Table 4.4. Each of the six respondents noted her level
of agreement by using the following notation:

• Experienced: I have experienced this (item and connection) to be valid.

• Agree: I agree to this, but have not experienced it personally.

• Partly agree: I agree to part, but not all, of this.

• Disagree: I do not agree.

• Do not know: I have no knowledge of this item or its impact.

6.1 Causes and root causes (RQ1)

A majority of the questionnaire respondents confirmed (i.e. Experienced
or Agreed to) all main causes as contributing to overscoping, except C3
(low DT involvement) for which there was also one Disagree response.
Causes C2, C3, C5 and C6 each had one count of Disagree from respon-
dents with experience from the requirements unit. Two additional main
causes were given by two respondents, namely weak processes adherence
(+C7) and dictation of scope and deadlines from management (+C9). Fur-
thermore, some additional root causes were given for C1, C3 and C4. For
C3, two alternative root causes were given, namely turn-over of DT mem-
bers as the project progressed (RC3f) and assigning the same resources to

250



6. VALIDATION QUESTIONNAIRE ON INTERVIEW RESULTS

Total
impact

Softw Softw Softw Reqs Reqs Product

C1: Continuous reqs in-
flow via multiple channels

275 20 20 15 50 100 70

C2: No overview of soft-
ware resource availability

60 10 20 20 10

C3: Low DT involvement
in early phases

80 10 50 20

C4: Requirements not
agreed with DTs

10 5 5

C5: Detailed reqs specifi-
cation produced upfront

15 5 5 5

C6: Unclear vision of
overall goal

140 60 40 30 10

+C7: Weak process adher-
ence
+C8: Overall scope and
deadline dictated from top

20 20

Table 4.5: The total number of points reflecting the impact of each cause
on overscoping. Each questionnaire respondent distributed 100 points. Ef-
fects of overscoping (RQ2). The columns show the number of points per
responder (organisational belonging given in header, see Section 3.1.

multiple parallel projects (RC3g). For C4 (requirements not agreed with
DT) three respondents stated that this was caused by unclear and ambigu-
ous requirements (RC4c), while one respondents suggested that DTs often
lacked insight into why certain features and requirements were important,
which is related to C6 (unclear vision of overall goal). All responses from
the validation questionnaire on causes and root causes can be found in Ta-
ble 4.4.

The impact of each main cause on overscoping was gauged by asking
the questionnaire respondents to distribute 100 points over all causes ac-
cording to the extent of their impact (see Table 4.5) C1 got the highest score
in total and all six respondents, thereby indicating that the continuous re-
quirements inflow was a main cause of overscoping. The second highest
total score was given to C6 (unclear vision of overall goal), which all the
participants from the software unit graded with 30-60, while the other par-
ticipants graded this with 0 or 30. Causes C4, C5, +C6 and +C7 were seen
as having a minor or no impact on the overscoping situation.

6.2 Effect of overscoping (RQ2)

In large, the questionnaire respondents had experienced or agreed to all the
effects of overscoping identified from the interviews. The respondent from

251



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

the product unit had no view on E5 or E6, while the requirements architect
partly agreed E5. In addition, the respondents mentioned the following
effects of overscoping: overtime (+E7); changed and sometimes canceled
product plans (+E8); low prioritization of administrative tasks (+E9). The
full questionnaire response on effects is shown in Table 4.6.

In addition to stating the level of agreement to the identified effects
of overscoping, the respondents were asked to grade their impact. The
following notation was used:

• Critical: Company or customer level.

• Major: Project or unit level.

• Medium: Team level.

• Minor: Individual level.

• None: No impact.

All the effects identified from the interviews were seen as having an im-
pact. All effects except E5 (communication gaps) were seen as having ma-
jor or critical impact by a majority of the participants. There were two
counts of minor impact: one for E6 (keeping SRS updated) and one for +E7
(overtime).

6.3 Impact of agile RE practices (RQ3)

The questionnaire respondents mostly agreed to the three identified ag-
ile RE practices as impacting the challenge of overscoping, either through
their own experience or by believing the practice should work in theory.
Furthermore, some additional practices werementioned as impacting over-
scoping: (+P4) clearer company vision (i.e. directly addressing C6), (+P5)
open source development (limiting C1 by restricting what the customer
can reasonably expect when large parts of the software are outside of com-
pany control) and (+P6) incremental deliveries (shorter cycles facilitate scope
size control for each cycle). Table 4.7 contains the questionnaire responses
on the impact of the agile RE practices on overscoping.

Finally, the respondents had all experienced, agreed or partly agreed
that overscoping was still a challenge for the case company. The new agile
process and practices are seen to, at least partly, address the situation and
provided ways to better manage and control the extent of overscoping and
its effects. The practitioners’ responses concerning the current situation are
shown in Table 4.8.

252



6. VALIDATION QUESTIONNAIRE ON INTERVIEW RESULTS

M
en
ti
on

ed
by

nb
r.
of

in
te
rv
ie
w
ee
s
(9

in
to
-

ta
l)

Q
ue
st
io
nn

ai
re

re
sp
on

se
s
(6
in

to
ta
l)

A
gr
ee
m
en
t

Im
pa

ct

Experienced

Agree

Partlyagree

Disagree

Don’tknow

Critical

Major

Medium

Minor

None

E1
:M

an
y
re
q.

ch
an
ge
s
af
te
r
sc
op

e
is
se
t

9
5

1
4

2
(a
)W

as
te
d
ef
fo
rt

7
5

1
3

3
(b
)D

ec
re
as
ed

m
ot
iv
at
io
n

5
4

2
3

2
1

E2
:Q

ua
lit
y
is
su
es

6
6

5
1

E3
:D

el
ay
s

4
6

5
1

E4
:C

us
to
m
er

ex
pe
ct
at
io
ns

no
ta
lw

ay
s
m
et

1
4

2
5

1
E5

:C
om

m
un

ic
at
io
n
ga
ps

4
2

1
1

1
2

1
3

E6
:K

ee
p
SR

S
up

da
te
d

5
1

4
1

5
1

+E
7:
O
ve
rt
im

e
3

1
1

1
+E

8:
C
ha
ng

ed
an
d
ca
nc
el
ed

pr
od

uc
tp

la
ns

1
1

+E
9:
A
dm

in
is
tr
at
iv
e
ta
sk
s
no

ta
lw

ay
s
pe
rf
or
m
ed

1
1

Ta
bl
e
4.
6:

N
um

be
r
of

qu
es
ti
on

na
ir
e
re
sp
on

se
s
on

th
e
ef
fe
ct
s
of

ov
er
sc
op

in
g
pe
r
le
ve
lo

f
ag
re
em

en
t
(n
ot
at
io
n
de
sc
ri
be
d
in

Se
ct
io
n
6)
an
d
pe
r
im

pa
ct
ca
te
go

ry
(n
ot
at
io
n
de
sc
ri
be
d
iS
ec
ti
on

6.
2)
.A

dd
it
io
na
li
te
m
s
de
ri
ve
d
fr
om

qu
es
ti
on

na
ir
e
m
ar
ke
d

w
it
h
+.

253



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

Ex
pe
ri
en
ce
d

A
gr
ee

(i
n
th
eo
ry
)

Pa
rt
ly

ag
re
e

D
is
ag
re
e

D
o
no

tk
no

w

P1: One continuous scope and
release-planning flow

2 4

P2: Cross-functional develop-
ment teams

3 2 1

P3: Gradual and iterative de-
tailing of requirements

2 2 2

+P4: Company vision 1
+P5: Open source develop-
ment

1

+P6: Incremental deliveries 1

Table 4.7: Number of questionnaire responses on the impact of agile RE
practices on overscoping per level of agreement notation described in Sec-
tion 6). Additional practices identified through questionnaire responses
are marked with +.

Ex
pe
ri
en
ce
d

A
gr
ee

(i
n
th
eo
ry
)

Pa
rt
ly

ag
re
e

D
is
ag
re
e

D
o
no

tk
no

w

Overscoping is still a chal-
lenge

3 1 2

There is less overscoping now 1 1 3 1
Overscoping is more manage-
able now

1 3 1 1

Table 4.8: Number of questionnaire responses per agreement category (de-
scribed in Section 6) on the current situation at the case companywith agile
RE practices, as compared to when using phase-based process.

254



7. INTERPRETATION AND DISCUSSION

7 Interpretation and discussion

The results of this study corroborate that overscoping is a complex and se-
rious risk for software project management (Boehm, 1989; DeMarco and
Lister, 2003; Legodi and Barry, 2010) both for phase-based and for agile
development processes. In addition, the results show that communica-
tion issues have a major impact on overscoping. This complements the
work by Sangwan et al and Konrad et al (2008) who mentioned that weak
communication can cause project failures in large-scale development and
global software engineering (Sangwan et al, 2006). Moreover, our results
extend the lists of effects of weak coordination proposed by Sangwan et
al (2006) (long delays, leave teams idle and cause quality issues) by adding
overscoping. Further research is needed to fully identify and address the
factors involved. The results are discussed and related to other research
in further detail, per research question, in Sections 7.1 (RQ1), 7.2 (RQ2)
and 7.3 (RQ3). Finally, the limitations of this study and threats to validity
of the results are discussed in Section 7.4.

7.1 Causes of overscoping (RQ1)

Our results indicate that overscoping is caused by a number of causes and
root causes. These causes mainly originate from the nature of the MDRE
context in which the company operates, but are also due to issues con-
cerning organizational culture and structures, and communication. This
was further highlighted by interviewees describing the additional cause C6
(unclear vision of overall goal) and two questionnaire respondents men-
tioning additional causes connected to lack of respect for the decision- and
development process, i.e. C7 and C8. In contrast, practitioners with ex-
perience of good cooperation and well-communicating teams described
overscoping as a less serious and more manageable challenge. This may
explain all the Disagree questionnaire responses but one (i.e. C5).

We interpret the results around the six causes of overscoping identified
through the interviews (see Section 5.1 and Figure 4.2) as follows:

• continuous requirements inflow from multiple channels (C1). We interpret
the homogeneity of the interview and questionnaire results (see Ta-
bles 4.3, 4.4 and 4.5) to mean that a large and uncontrollable inflow of
requirements has the potential to cause over-scoping when not man-
aged and balanced against the amount of available capacity. This
cause was also been identified by Regnell and Brinkkemper (2005)
and Karlsson et al (2007a) as one of the challenges of MDRE. In ad-
dition to corroborating this challenge, our work also identifies that
this continuous inflow of requirements can cause overscoping. The
importance and seriousness of this factor are indicated by this cause
scoring the highest total impact factor in the questionnaire, see Ta-

255



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

ble 4.5. The extent to which this cause affects companies that op-
erate in the bespoke requirements engineering context (Regnell and
Brinkkemper, 2005) requires further research.
Our study also reveals that the inlow of requirements can be further
increased by scope creep at the software management level through
a software-internal roadmap (RC1ci, see Section 5.2). In effect, this
hindered resources from being available for managing new customer
requirements. Similar results have been reported by Konrad and
Gall (2008) who found that scope creep can result in problems with
meeting customer expectations, i.e. effect E4 (see Section 5.3). Kon-
rad et al (2008) propose addressing scope creep by increased under-
standing and traceability of customer requirements, and by creating
an effective hierarchical CCB structure. The impact of these methods
on overscoping remains to be evaluated.

• no overview of software resource availability (C2). The majority of our
responders (six of nine interviewees and five of six questionnaire
respondents) had experienced or agreed to the lack of overview of
available resources being a cause of overscoping. However, the ques-
tionnaire results suggest that the impact of this cause is not as critical
as cause C1. This result is surprising, when considering the impor-
tance of management of the daily workload including coordination
of tasks and activities reported by, e.g. Philips et al (2012). The con-
trasting opinions of low development capacity (RC3c, held by RT
leaders) and low respect for development costs (RCdii, held by DT
roles) is interesting. This difference can be interpreted as a low un-
derstanding of each other’s viewpoint around cost and an indica-
tion that this view-point is dependent on role (related to Jorgensen
and Shepperd (2007)). If the development capacity really is low is
a different issue. Finally, this cause specifically includes the lack of
overview, or awareness of the total load on the resources. To the best
of our knowledge, this issue has not been empirically investigated.
Rather software cost estimation research (Jørgensen and Shepperd,
2007) mainly focuses on effort estimation and on optimizing resource
assignment (Lixin, 2008).

• low development team involvement in early phases (C3). The results in-
dicate that low development involvement in the requirements phase
can cause overscoping (mentioned by 6 out of 9 interviewees and 5
out of 6 questionnaire respondents did not disagree to this). This
confirms previous work that points out the need of early develop-
ment involvement in requirements engineering, e.g. required by in-
terdependencies between product management and software devel-
opment (Nuseibeh, 2001). Glinz et al also mentioned that lack of
communication between project management and development at
requirements hand-off may lead to unsatisfactory results (Glinz et al,

256



7. INTERPRETATION AND DISCUSSION

2002). Similarly, Karlsson et al (2007a) reported that communica-
tion gaps between marketing (requirements unit for our case com-
pany) and development, can result in insufficient effort estimates
(i.e. RC3b) and in committing to unrealistically large features with-
out considering the technical and scheduling implications (Karlsson
et al, 2007a).
Our results corroborate these results in that low involvement and
weak communication in early phases may lead to problems later on,
including overscoping. These communication issues may also exac-
erbate the problem of getting accurate and reliable effort estimates
(RC3b). Furthermore, the fact that one questionnaire respondent ex-
pressed experiencing good communication and cooperation between
requirements and development teams may also explain the one Dis-
agree response for this cause. On the other hand, a surprising result
from the validation questionnaire is that this cause (C3) was seen to
influence overscoping less than cause C6 (unclear vision of overall
goal) both in total (among all respondents) and by 2 of the 3 software
respondents. These results indicate that there may be additional (un-
covered) factors that influence the impact this cause has on overscop-
ing.
Finally, several methods have been proposed for addressing cause
C3, e.g. negotiation of implementation proposals (Fricker et al, 2007),
model connectors for transforming requirements to architecture (Med-
vidovic et al, 2003), cooperative requirements capturing (Macaulay,
1993) and involving customers in the requirements management pro-
cess (Kabbedijk et al, 2009). Goal-oriented reasoning can also provide
constructive guidelines for architects in their design tasks (van Lam-
sweerde, 2003). If and to which degree the mentioned methods can
alleviate overscoping by impacting this cause remains a topic for fur-
ther research.

• requirements not agreed with development team (C4). The results pro-
vide empirical evidence that weak agreement on requirements be-
tween requirements and software units can cause overscoping (all 6
questionnaire responders agreed to cause C4 and five interviewees
mentioned C4 as a cause of overscoping). A significant root cause for
this cause was found to be communication gaps, mainly between the
requirements-related roles and the development and testing roles.
This confirms the viewpoint of Hall et al (2002) that most requirement
problems are actually organizational issues. In addition, this con-
firms the importance of seamless integration of different processes in
collaborative work (Ebert and De Man, 2002). The impact of insuf-
ficient communication on software engineering has been reported as
a general issue within requirements engineering and product man-
agement (Bjarnason et al, 2011b; Fricker et al, 2007; Hall et al, 2002;

257



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

Kabbedijk et al, 2009; Karlsson et al, 2007a). Surprisingly, C4 scored
the lowest impact among all the causes and only two questionnaire
responders (both from the software unit) rated this cause as having
any (low) impact factor on overscoping. In contrast, cause C6 (weak
vision of overall goal) was rated as having the largest impact on over-
scoping.

• detailed requirements specification produced upfront (C5). Our results in-
dicate that too much detailed documentation produced upfront may
cause overscoping (mentioned by five interviewees and experienced,
agreed or partly agreed to by five questionnaire respondents, see sec-
tion 5.1). This complements other studies into documentation in soft-
ware engineering projects. For example, Emam and Madhavji (1995)
mentioned that in organizations which require more control the pres-
sure to produce much detail is also greater. Lethbridge reported that,
for software engineers, there is often too much documentation for
software systems, frequently poorly written and out of date (Leth-
bridge et al, 2003). Furthermore, Sawyer et al (1999) mention that
premature freezing of requirements may cause scope creep and com-
munication problems (both of which are identified as root causes of
overscoping in our study) and suggest evolutionary prototyping as
a remedy. Other remedies suggested for addressing excessive docu-
mentation include reuse of requirements specifications (Faulk, 2001),
as well as, simply creating less documentation (Aurum and Martin,
1999). The effectiveness of these methods for the risk of overscoping
remains to be investigated.
The differing views on this cause between respondents may be ex-
plained by their roles and relationship to RE. All the disagreeing
questionnaire respondents for this cause worked with requirements
related roles. These roles are more likely to consider detailed require-
ments specifications as positive and good, rather than an issue. How-
ever, these roles have less insight into the later phases when devel-
opment takes place and the effects of overscoping are experienced.
Three of the respondents with experience from later development
phases had experienced C5 as causing overscoping. Furthermore,
Berry et al mentioned that when time for elicitation is short, i.e. there
is a lack of upfront documentation (or lack of C5), the requirements
usually end up as an enhancement or become descoped since all of
the client’s requests can not be delivered (Berry et al, 2010). Con-
sidering this, we conclude that both under specifying, as in Berry et
al (2010), and over specifying, as in our study, can cause overscoping
and later descoping, and that it remains to be investigated how to
strike a good balance.

• unclear vision of overall goal (C6). Our study identifies that a lack of
clearly communicated goals and strategy for software development

258



7. INTERPRETATION AND DISCUSSION

may cause defining the project scope primarily from a technology
perspective, rather than with a business focus, thereby contribut-
ing to overscoping. Overall this cause was graded as having the
second largest impact on overscoping, despite one questionnaire re-
spondent (an RT leader) disagreeing to this cause. Our results sup-
port the findings from related papers (Aurum and Wohlin, 2005a;
Selby and Cusumano, 1998; DeMarco and Lister, 2003; Khurum et al,
2007; Neumann-Alkier, 1997; Rosca et al, 1997) that stress the im-
portance of selecting requirements aligned with the overall business
goals and discarding others as early as possible. In addition, failure
of stakeholders to concur on project goals was found by DeMarco
and Lister to pose the biggest risk for a project (DeMarco and Lister,
2003).
Amethod for early requirements triage based onmanagement strate-
gies was proposed byKhurum et al (2007). Aurum andWohlin (2005a)
have proposed a framework for aligning requirements with busi-
ness objectives. Rosca et al (1997) mention that the most demanding
characteristic of business is the likelihood of change which can not
be fully controlled. This can be managed when business objectives
are clear to the software developers, thus enabling them to manage
a system requiring modifications while meeting the business objec-
tives (Selby and Cusumano, 1998). Finally, Karlsson et al (2007a)
mentioned the lack of common goals and visions as a challenge in
achieving good cooperation, quoting their responders: ’If everyone
has the same goal and vision, then everyone works in the right direc-
tion.’

• weak process adherence (+C7) and scope and deadline dictated by manage-
ment (+C8). These two causes were mentioned in the questionnaires,
though none of them were seen as having any major impact on over-
scoping. Karlsson et al (2007a) found that weak process adherence
may be caused both by high process complexity, as well as, lack of
time for process implementation. The latter could be a consequence
of overscoping. The direction of causal relationship between over-
scoping and process adherence remains to be investigated.

7.2 The effects of overscoping (RQ2)

The results indicate that overscoping may lead to a number of effects (or
consequences), many of which are judged to be serious and potentially
very costly for the company. Several of the identified effects may be in line
with held beliefs about what overloading a project with too much work
may lead to. The aim of this study is to investigate if such beliefs can be
supported by empirical evidence or not, and if more surprising phenom-
ena arise in relation to a specific, real-world overscoping situation.

259



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

• many changes after the project scope is set (E1). The results show that
overscoping leads to a large number of scope changes (experienced
by all responders and impact graded as critical or major by all six
questionnaire responders). This confirms evidence provided byHarker
et al (1993) that requirements are not static and, thus, are hard to cap-
ture or classify. In addition, requirements volatility is mentioned as
one of the challenges in MDRE by Karlsson et al (2007a) and identi-
fied by Ramesh et al (2010) as one of the 14 assumptions underlying
agile software development. Furthermore, origins of requirements
volatility have been listed (Harker et al, 1993). Despite this aware-
ness, causes for requirements volatility have not been empirically ex-
plored. Our results highlight overscoping as one possible cause of
late requirement changes. Furthermore, our results confirm that it is
challenging to manage requirement changes.

• quality issues (E2). The results indicate this as an important effect of
overscoping (experienced and agreed for both interviews and ques-
tionnaires, and graded as having critical or major impact). This con-
firms that the quality of requirements engineering determines the
software quality, as reported, e.g. by Aurum and Wohlin (2005b).
In addition, our results highlight overscoping as a potential reason
for quality issues.

• delays (E3). This study shows (with a high degree of alignment be-
tween interviewees and questionnaire responses) that delays can be
an effect of overscoping. Within MDRE, delays in launching prod-
ucts can be very costly and result in loss of market shares (Sawyer
et al, 1999; Sawyer, 2000; Regnell and Brinkkemper, 2005; Karlsson
et al, 2007a). Therefore, the insight that overscoping may have this
effect is important evidence that indicates that overscoping is a (po-
tentially) serious risk.

• customer expectations are not always met (E4). Our results indicate that
overscoping can have the effect of failing to meet customer expecta-
tions. This could be explained by an overloaded project having no
time or capacity neither to analyse or implement new requirements,
nor to validate if market or customer needs could have changed. Fur-
thermore, Karlsson et al (2007a) reported failure to meet customer
needs as one of the risks of developing products based on a technol-
ogy focus (root cause RC6b). Another crucial part of producing soft-
ware products that will satisfy the customers, as pointed out by Au-
rum and Wohlin (2005b), is working with RE throughout the project
life cycle (as opposed to upfront requirements detailing, C5). The
results of this study highlight the importance of selecting a feasible
scope as one factor to consider when attempting to better understand
and capture the customers’ needs.

260



7. INTERPRETATION AND DISCUSSION

• communication gaps (E5). Our results indicate that overscoping may
cause increased communication gaps. (Roughly half of our intervie-
wees and questionnaire respondents mentioned and agreed to this
effect.) This may be explained by the tendency to deflect by blam-
ing others when under pressure, rather than cooperate to solve prob-
lems together. Furthermore, interviewees described that the many
changes resulting from overscoping (E1) were badly communicated
to the product unit and resulted in false error reports being filed on
changed, but not updated requirements. This in turn, caused irrita-
tion among the development teams and further increased the com-
munica tion gaps. Similarly, Karlsson et al (2007a) reported that con-
stant inflow of requirements (cause C1) caused decision conflicts be-
tween marketing and development roles.

• challenge to keep SRS updated (E6). The majority of the respondents
confirmed that overscoping increases the challenge to keep the SRS
updated. When the SRS is detailed upfront (C5), the combination
of the two (overscoping) effects E1 (many scope changes) and E1b
(decreased motivation) lead to an increased need, but a lower moti-
vation to update the SRS. This complements previous work, which
reports requirements volatility as a common challenge for software
projects (Harker et al, 1993; Hood et al, 2008; Jönsson and Lindvall,
2005; Wiegers, 2003) and that the view of RE as concerning a static set
of requirements is inappropriate (Hall et al, 2002; Harker et al, 1993).
In addition, Berry et al report that time and resources are never suf-
ficient to keep the documentation updated and that scope creep oc-
curs when programmers code while the documentation keeps chang-
ing (Berry et al, 2010). Furthermore, our study highlights that the
challenge of keeping the SRS updated is increased as an effect of over-
scoping. Harker et al (1993) proposed to address this challenge by
defining a minimum critical specification combined with incremen-
tal deliveries (i.e. +P6) and thereby gradually providing more value.
Further research is needed to investigate if the methods proposed to
address the challenge of updating the requirements documentation
could also minimize this effect for overscoping.

• overtime (+E7), changed/cancelled product plans (+E8), low priority for ad-
ministrative tasks (+E9). These effects were mentioned in the valida-
tion questionnaires and each got one count of critical impact. Further
investigations are needed to validate their relationship to overscop-
ing.

7.3 How agile RE practices may impact overscoping (RQ3)

Our study identifies that three of the agile RE practices being introduced at
the case companymay impact several of the causes and root causes of over-

261



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

scoping. In addition, threemore practices were suggested by questionnaire
respondents as addressing overscoping. The details of how the identified
agile RE practices may impact overscoping (mentioned root causes can be
seen in Figure 4.2) are discussed below. We interpret the results as an in-
dication that overscoping is still a challenge for the case company, though
more manageable with the (partly implemented) agile RE practices. Fur-
ther investigations are needed to fully understand the situation in the agile
context.

• one continuous scope and release planning flow (P1) is experienced by
the responders to directly impact cause C2 (no overview of software
resource availability) by enabling transparency and insight into the
full project scope and into the current workload of the software unit.
The increased visibility of the load and available resource capacity
to both business and software unit may bridge several communica-
tion gaps identified as root cause of overscoping, i.e. RC1c, RC3d
and RC4b. This practice covers the agile RE practices of require-
ments prioritization and constant re-planning for the high-level re-
quirements (Ramesh et al, 2010). Our results confirm the findings of
Dybå and Dingsøyr that managers of agile companies are more satis-
fiedwith the way they plan their projects than are plan-based compa-
nies (Dybå and Dingsøyr, 2008). Furthermore, our study also corrob-
orates the findings that agile prioritization of the scope in combina-
tion with a stage-gate model at the feature level can avoid delaying
critical features and also provides early feedback on features (Karl-
ström and Runeson, 2005). However, achieving correct high-level
cost and schedule estimation has been identified as a challenge also
for agile project (Ramesh et al, 2010), which may be one reason why
overscoping remains an issue for the case company.

• Cross-functional development teams (P2) are indicated by our results
as improving several of the communication gaps identified by our
study as important root causes to overscoping (i.e. RC1c, RC2a, RC3d,
RC4b, RC6d). This case company practice is equivalent to the agile
RE practice of preferring face-to-face requirements communication
over written documentation (Beck et al, 2012) in combination with
agile prioritization and constant re-planning at the detailed require-
ments level (Ramesh et al, 2010). At this detailed requirements level,
cost and schedule estimations in an agile fashion (by only allow-
ing additions when simultaneously removing something less priori-
tized) have been found to be efficient (Ramesh et al, 2010; Karlström
and Runeson, 2005) and eliminate the ’requirements cramming’ prob-
lem (Karlström and Runeson, 2005), which is equivalent to overscop-
ing. Other studies have found that communication within devel-
opment teams is improved by agile practices, but that communi-
cation towards other (dependent) teams remains a challenge (Karl-

262



7. INTERPRETATION AND DISCUSSION

ström and Runeson, 2005; Pikkarainen et al, 2008). This challenge
is addressed with P2 by including competence covering all the in-
volved functional areas within the same team (thus, impacting root
causes RCicii, RC2a, RC4b and RC6dii). Furthermore, the agile RE
practice of including a customer representative in the development
teams is summarized by Dybå and Dingsøyr (2008) as improving
the communication been customer and engineers, while filling this
role can be stressful and challenging (Karlström and Runeson, 2005;
Ramesh et al, 2010).

• Gradual and iterative requirements detailing (P3) is seen (by our inter-
viewees) to decrease the total lead time for development of a feature
(root cause RC1b) by delaying the detailing of requirements until
they are actually needed for design and development. This in turn
reduces the amount of requirement changes within the (shorter) time
frame for the feature development, which in a market with high re-
quirements volatility is a significant improvement. It may also re-
duce the communication gaps that occur due to the timing aspect
of detailing requirements before design and implementation starts,
i.e. root causes RC3d, RC4a, RC4b. The case company practice P3 is
equivalent to the agile practice of iterative RE (Ramesh et al, 2010).

7.4 Threats to validity and limitations

As for every study there are limitations that should be discussed and ad-
dressed. These threats to validity and steps taken to mitigate them are
reported here based on guidelines provided by Robson (2002) for flexi-
ble design studies. Another important aspect for the quality of a flexible
design research is the investigator (Robson, 2002), and for this study all
researchers involved have previous experience in conducting empirical re-
search, both interview studies and surveys.

7.4.1 Description validity

Misinterpretation (Robson, 2002) of the interviewees poses the main threat
to description validity. This threat was addressed in several ways. The
interviews were recorded and transcribed. To enhance reliability of the
transcriptions, the person taking notes during the interviews also tran-
scribed them. In addition, this person has worked for the case company
for several years and is well versed in company culture and language.
Also, data triangulation was applied to the transcriptions by another re-
searcher performing an independent transcription and coding of two ran-
domly selected interviews. Furthermore, the interviewees checked both
the transcriptions and the results of the study for errors and misinterpre-
tations. Finally, data triangulation was applied to the interview results by

263



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

collecting additional viewpoints from six (other) practitioners through a
questionnaire (Robson, 2002).

7.4.2 Interpretation validity

For this study, the main threat to valid interpretation has been the risk of
imposing the hypothesis (formulated in phase one) onto the interviewees.
To address this threat, open interview questions were always posed before
asking specific questions based on the hypothesis. Furthermore, sponta-
neous descriptions of causes (without prompting) have been reported (as
Experienced) separately from responses to follow-up questions on specific
causes (as Agreed), see Section 5.1 and Table 4.3.

For phase three, the threat to valid description was addressed by the
researchers jointly designing the questionnaire and the session held in con-
nection to it. To ensure that all questionnaire responders correctly and
uniformly understood the interview results, the results were presented
to the participants. They could then ask for clarifications before filling
out the questionnaire. The fact that questionnaire responders were con-
fronted with a frame- work of results remains an open threat to interpreta-
tion validity. On the other hand, both interviewees and questionnaire re-
spondents were explicitly encouraged to disagree and mention additional
causes, effects and practices, which they also did. One of the main limi-
tations of the study is the limited number of respondents. Although rep-
resentatives from each of the covered units of the case company were in-
volved in both interviews and validation questionnaire, the number of per-
sons is relatively small and more factors may be identified by including
additional viewpoints.

7.4.3 Theory validity

The main threat to theory validity for this study is the risk of missing ad-
ditional or alternative factors. One source of this threat is the limited set of
practitioners fromwhich data has been gathered. Another potential source
is the risk of observer biases limiting the study to the researcher’s pre-
knowledge of the company. This was a risk mainly in phase one and was
addressed by involving the other researchers in discussing and reviewing
the study design and the hypothesis which shaped the interview instru-
ment. The fact that an additional main cause (i.e. C6) was identified as
a result of the interviews shows that this bias was successfully addressed.
However, identification of additional results in phase 3 may indicate that
saturation and the full exploration of the problem under investigation is
not yet reached. As the goal of this work is exploratory our aim is not to
present or achieve a complete coverage of the problem under investigation.

The involvement of the researcher with work experience from the case
company has played a vital role in the study. This has en- sured that the in-

264



8. CONCLUSIONS AND FURTHER WORK

vestigated problem is authentic and that the re- sults are derived though an
interpretation of the data based on a deep understanding of the case and its
context. However, the results are limited to the case company and there is
a risk that other possible causes of overscoping experienced at other com-
panies were not identified. This also applies to the set of agile RE practices,
which are limited to the ones that were currently known and partly imple-
mented at the case company at the time of the study.

Internal generalisability was addressed by sampling interviewees and
questionnaire respondents from different parts of the company thereby se-
lecting roles and responsibilities involved throughout the development life
cycle. Even so, it was not possible to include representatives from sales and
marketing (they were unavailable at the time of the study). However, the
requirements team leaders provided some insight into these aspects based
on their experience from contacts with customers and with sales and mar-
keting roles.

Considering external generalisability, the results should be interpreted
with the case company context in mind. External validity is addressed by
using analytical generalization which enables drawing conclusions with-
out statistical analysis and, under certain conditions, relating them also to
other cases (Robson, 2002; Runeson et al, 2012). Within the scope of this
paper, analytical generalization is argued by applying the making a case
strategy ( (Robson, 2002), p. 107) by analysing related work and reporting
similarities, differences and disagreements to our results (see Section 7).
This analysis builds a supporting argument towards external validity of
our study by seeking data which is not confirming a pre-assumed theory.
In addition, follow-up studies in other domains can be conducted to utilize
the direct demonstration strategy to further address the threat to external
validity (Robson, 2002).

8 Conclusions and further work

Decision making is at the heart of requirements engineering (RE) (Au-
rum and Wohlin, 2003) and within market-driven requirements engineer-
ing (MDRE) release planning is one of the most important and challeng-
ing tasks (Karlsson et al, 2007a,b; Regnell and Brinkkemper, 2005; Sawyer
et al, 1999). Decisions concerning what to develop, and when, are inher-
ently related to achieving customer satisfaction. Even though release plan-
ning (Karlsson and Ryan, 1997; Karlsson et al, 2007b; Regnell and Brinkkem-
per, 2005) is well researched, RE decision making is acknowledged as chal-
lenging (Alenljung and Persson, 2008; Aurum and Wohlin, 2003; Ngo-The
and Ruhe, 2005) and scope creep is ranked as a serious project risk (Carter
et al, 2001; Crockford, 1980; Iacovou and Dexter, 2004), other aspects of
scope management have been less explored (van de Weerd et al, 2006).
Furthermore, techniques for prioritizing requirements (Karlsson and Ryan,

265



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

1997; Karlsson et al, 2007b) often focus on planning the scope of a project as
a discrete activity, or one in a series of releases (Ngo-The and Ruhe, 2005).
Our previous work reported that scoping in an MDRE context is a contin-
uous activity that may last throughout the entire project lifecycle (Wnuk
et al, 2009). If not successfully managed, and more requirements are in-
cluded into the project scope than can be handled with available resources
the result is overscoping, i.e. the project ’bites off more than it can chew’.

Our study provides a detailed picture of factors involved in overscop-
ing and confirms that scoping is a challenging part of requirements en-
gineering and one of the risks in project management (Boehm, 1989; De-
Marco and Lister, 2003; Legodi and Barry, 2010). Our results indicate that
overscoping is mainly caused by the fast-movingmarket-driven domain in
which the case company operates, and how this inflow of requirements is
managed. In the early project phases, low involvement from the development-
near roles in combination with weak awareness of overall goals may result
in an unrealistically large project scope. Our study indicates that over-
scoping can lead to a number of negative effects, including quality issues,
delays and failure to meet customer expectations. Delays and quality prob-
lems are expensive, not just considering the cost of fixing the quality issues,
but also in loss of market shares and brand value (Regnell and Brinkkem-
per, 2005). Furthermore, we found indications that a situation of overscop-
ing may cause even more overscoping, i.e. an organization may end up in
a vicious cycle when overscoping ties up development resources which are
then not available for participating in early project phases. Furthermore,
overscoping leads to increased communication gaps, which in turn are root
causes of overscoping.

Companies, such as our case company, that develop embedded soft-
ware for a business domain with a high market pressure need an organiza-
tional set-up and process suited to efficiently managing frequent changes
in a cost effective way. Development projects need to respond quickly to
changes, while at the same time handling the complexity of developing
software in a large-scale setting. Agile processes are claimed to be better
adapted to managing change than phase-based ones. As one interviewee
stated: ’The waterfall approach is good from a preparation perspective,
if you can then stick to what is planned. But, since we live in a world
that changes a lot it doesn’t work after all.’ Our study indicates, that de-
spite introducing agile RE practices, overscoping is still an issue for the
case company, although more manageable. We conclude that the improve-
ments may be explained by the agile RE practices of continuous prioritiza-
tion of the project scope, in combination with performing cost and sched-
ule estimation, and gradual requirements detailing, in close collaboration
within cross-functional teams, thereby closing a number of communica-
tion gaps. However, agile RE practices also pose challenges (Ramesh et al,
2010), e.g. communication between teams (Karlström and Runeson, 2005;
Pikkarainen et al, 2008), difficulty in cost estimation (Ramesh et al, 2010).

266



8. CONCLUSIONS AND FURTHER WORK

This, in combination with a fast-moving, market-driven domain may ex-
plain why overscoping remains a challenge also with the agile develop-
ment process.

The causes and effects unveiled through this study (summarized in Fig-
ure 4.2) can be used as a basis for identifying potential issues to address
in order to avoid or alleviate an overscoping situation. For example, the
root cause of low competence in cost estimations may be addressed by in-
troducing techniques for improving cost estimation, which should lead to
more realistic plans. Finally, supported by our findings of potentially seri-
ous effects of overscoping, we conclude that this phenomenon can be ama-
jor risk of requirements engineering and project management, complemen-
tary to the risk of scope creep mentioned by De Marco and Lister (2003).

Acknowledgments

We would like to thank all anonymous interviewees and questionnaire re-
spondents for their invaluable contribution to this project. We would also
like to thank Dr. Dietmar Pfahl for reviewing an early version of this paper.
The project is partly funded by the Swedish Foundation for Strategic Re-
search and VINNOVA (The Swedish Governmental Agency for Innovation
Systems) within the EASE and UPITER Projects.

267



PAPER IV: ARE YOU BITING OFF MORE THAN YOU CAN CHEW? A CASE
STUDY ON CAUSES AND EFFECTS OF OVERSCOPING IN LARGE–SCALE
SOFTWARE ENGINEERING

268



REFERENCES

Bibliography

Abramovici M, Sieg O (2002) Status development trends of product life-
cycle management systems. In: Proceedings of International Conference
Integrated Product and Process Development, pp 55–70

Alenljung B, Persson A (2008) Portraying the practice of decision-making
in requirements engineering: a case of large scale bespoke development.
Requirements Eng 13(4):257–279

Aurum A, Martin E (1999) Managing both individual and collective par-
ticipation in software requirements elicitation process. In: Proceedings
of the14th International Symposium on Computer and Information Sci-
ences, Turkey, (ISCIS’99), pp 124–131

Aurum A, Wohlin C (2003) The fundamental nature of requirements en-
gineering activities as a decision-making process. Information and Soft-
ware Technology 45(14):945–954

Aurum A, Wohlin C (2005a) Aligning requirements with business objec-
tives: a framework for requirements engineering decisions. In: Proceed-
ings of the Workshop on Requirements Engineering Decision Support,
REDECS’05

Aurum A, Wohlin C (2005b) Requirements engineering: Setting the con-
text. In: Aurum A, Wohlin C (eds) Engineering and Managing Software
Requirements, Springer Berlin Heidelberg, pp 1–15

Beck K (1999) Extreme Programming Explained. Addison-Wesley

Beck K, Beedle M, Bennekum A, Cockburn A, Cunningham W, Fowler M,
Grenning J, Highsmith J, Hunt A, Jeffries R, Kern J, Marick B, Martin R,
Mellor S, Schwaber K, Sutherland J, Thomas D (2012) The agile mani-
festo. ����������	
����
��������

Berry D, Czarnecki K, Antkiewicz M, AbdElRazik M (2010) Requirements
determination is unstoppable: An experience report. In: Proceedings
of the 18th IEEE International Requirements Engineering Conference
(RE’10), pp 311 –316

Bjarnason E (2012) Case study material (interview instrument, question-
naire, etc) for the before and after (bna) study. ��������
������	����
�
�
�
�����
��
���
����������
������

Bjarnason E, Wnuk K, Regnell B (2010) Overscoping: Reasons and conse-
quences; a case study on decision making in software product manage-
ment. In: Proceedings of the Fourth International Workshop on Software
Product Management (IWSPM’2010), pp 30 –39

269



REFERENCES

Bjarnason E, Wnuk K, Regnell B (2011a) A case study on benefits and side-
effects of agile practices in large-scale requirements engineering. In: Pro-
ceedings of the 1stWorkshop onAgile Requirements Engineering, ACM,
New York, NY, USA, AREW ’11, pp 3:1–3:5

Bjarnason E, Wnuk K, Regnell B (2011b) Requirements are slipping
through the gaps; a case study on causes amp; effects of communication
gaps in large-scale software development. In: Proceedings of the 19th
IEEE International Requirements Engineering Conference (RE’2011), pp
37 –46

Boehm B (1989) Software risk management. Tutorial notes, IEEE Computer
Society Press

Carlshamre P (2002) A usability perspective on requirements engineering –
frommethodology to product development. PhD thesis, Linköping Uni-
versity, Sweden

Carlshamre P, Sandahl K, Lindvall M, Regnell B, Natt och Dag J (2001) An
industrial survey of requirements interdependencies in software prod-
uct release planning. In: Proceedings of the Fifth IEEE International
Symposium on Requirements Engineering (RE 2001), pp 84–91

Carter R, Antón AI, Dagnino A, Williams L (2001) Evolving beyond re-
quirements creep: A risk-based evolutionary prototyping model. In:
Proceedings of the 5th IEEE International Symposium on Requirements
Engineering (RE’01, pp 94–101

Crockford N (1980) An introduction to risk management. Woodhead-
Faulkner

DeBaud J, Schmid K (1999) A systematic approach to derive the scope of
software product lines. In: Proceedings of the 21st International Confer-
ence on Software Engineering (ICSE 1999), pp 34–43

DeMarco T, Lister T (2003) Risk management during requirements. Soft-
ware, IEEE 20(5):99 – 101

Dybå T, Dingsøyr T (2008) Empirical studies of agile software develop-
ment: A systematic review. Inf Softw Technol 50(9-10):833–859

Ebert C, De Man J (2002) e-r & d effectively managing process diversity.
Ann Softw Eng 14(1-4):73–91

El Emam K, Madhavji N (1995) A field study of requirements engineer-
ing practices in information systems development. In: Proceedings of
the Second IEEE International Symposium on Requirements Engineer-
ing RE’95, pp 68 – 80

270



REFERENCES

Faulk S (2001) Product-line requirements specification (prs): An approach
and case study. In: Proceedings of the Fifth IEEE International Sympo-
sium on Requirements Engineering, IEEE Computer Society, Washing-
ton, DC, USA, RE ’01, pp 48–

Fricker S, Gorschek T, Myllyperkiö P (2007) Handshaking between soft-
ware projects and stakeholders using implementation proposals. In: Pro-
ceedings of the 13th international working conference on Requirements
engineering: foundation for software quality, Springer-Verlag, Berlin,
Heidelberg, REFSQ’07, pp 144–159

Gemmer A (1997) Risk management: moving beyond process. Computer
30(5):33 –43

Glinz M, Berner S, Joos S (2002) Object-oriented modeling with adora. In-
formation Systems 27:425–444

Gorschek T, Wohlin C (2006) Requirements abstraction model. Require-
ments Engineering Journal 11:79–101

Hall T, Beecham S, Rainer A (2002) Requirements problems in twelve soft-
ware companies: an empirical analysis. IEEE Software 149(5):153 – 160

Harker S, Eason K, Dobson J (1993) The change and evolution of require-
ments as a challenge to the practice of software engineering. In: Pro-
ceedings of IEEE International Symposium on Requirements Engineer-
ing RE’93, pp 266 –272

Hood C, Wiedemann S, Fichtinger S, Pautz U (2008) Change management
interface. In: Requirements Management, Springer Berlin Heidelberg,
pp 175–191

Iacovou C, Dexter A (2004) Turning around runaway information technol-
ogy projects. Engineering Management Review, IEEE 32(4):97 –112

Jönsson P, Lindvall M (2005) Impact analysis. In: AurumA,Wohlin C (eds)
Engineering andManaging Software Requirements, Springer Berlin Hei-
delberg, pp 117–142

Jørgensen M, Shepperd M (2007) A systematic review of software develop-
ment cost estimation studies. IEEE Trans Softw Eng 33(1):33–53

Kabbedijk J, Brinkkemper S, Jansen S, van der Veldt B (2009) Customer
involvement in requirements management: Lessons from mass market
software development. In: Proceedings of the 17th IEEE International
Requirements Engineering Conference, (RE’09), pp 281 –286

Karlsson J, Ryan K (1997) A cost-value approach for prioritizing require-
ments. IEEE Software 14(5):67–74

271



REFERENCES

Karlsson L, Dahlstedt sG, Regnell B, Natt och Dag J, Persson A (2007a)
Requirements engineering challenges in market-driven software de-
velopment - an interview study with practitioners. Inf Softw Technol
49(6):588–604

Karlsson L, Thelin T, Regnell B, Berander P, Wohlin C (2007b) Pair-wise
comparisons versus planning game partitioning–experiments on re-
quirements prioritisation techniques. Empirical Softw Engg 12(1):3–33

Karlström D, Runeson P (2005) Combining agile methods with stage-gate
project management. Software, IEEE 22(3):43 – 49

Khurum M, Aslam K, Gorschek T (2007) A method for early requirements
triage and selection utilizing product strategies. In: Proceedings of the
14th Asia-Pacific Software Engineering Conference, IEEE Computer So-
ciety, Washington, DC, USA, APSEC ’07, pp 97–104

Konrad S, Gall M (2008) Requirements engineering in the development of
large-scale systems. In: Proceedings of the 16th International Require-
ments Engineering Conference (RE 2008), pp 217–222

Legodi I, Barry M (2010) The current challenges and status of risk man-
agement in enterprise data warehouse projects in south africa. In: Tech-
nology Management for Global Economic Growth (PICMET), 2010 Pro-
ceedings of PICMET ’10:, pp 1 –5

Lethbridge T, Singer J, Forward A (2003) How software engineers use doc-
umentation: the state of the practice. Software, IEEE 20(6):35 –39

Lixin Z (2008) A project human resource allocation method based on soft-
ware architecture and social network. In: Proceedings of the 4th Interna-
tional Conference on Wireless Communications, Networking and Mo-
bile Computing, 2008. WiCOM ’08., pp 1 –6

Macaulay L (1993) Requirements capture as a cooperative activity. In: Re-
quirements Engineering, 1993., Proceedings of the IEEE International
Symposium on, pp 174 –181

Medvidovic N, Grünbacher P, EgyedA, BoehmBW (2003) Bridgingmodels
across the software lifecycle. J Syst Softw 68(3):199–215

Myers M, Avison D (2002) Qualitative research in information systems

Neumann-Alkier L (1997) Think globally, act locally - does it follow the
rule in multinational corporations? In: ECIS’97, pp 541–552

Ngo-The A, Ruhe G (2005) Engineering and Managing Software Require-
ments, Springer, chap Decision Support in Requirements Engineering,
pp 267–286

272



REFERENCES

Nuseibeh B (2001) Weaving together requirements and architectures. Com-
puter 34(3):115 –119

Phillips J, Bothell T, Snead G (2012) The Project Management Scorecard.
Improving Human Performance Series, Taylor and Francis

Pikkarainen M, Haikara J, Salo O, Abrahamsson P, Still J (2008) The impact
of agile practices on communication in software development. Empirical
Softw Engg 13(3):303–337

Pohl K, Bockle G, van der Linden F (2005) Software Product Line Engineer-
ing: Foundations, Principles and Techniques. SpringerVerlag

Potts C (1995) Invented requirements and imagined customers: require-
ments engineering for off-the-shelf software. In: Proceedings of the Sec-
ond IEEE International Symposium on Requirements Engineering (RE
95), pp 128–130

Project Management Institute (2000) A Guide to the Project Management
Body of Knowledge (PMBOK Guide), 2000, Project Management Insti-
tute, Four Campus Boulevard, Newtown Square, PA 19073-3299, USA,
chap Chapter 5: Project Scope Management, pp 47–59

Ramesh B, Cao L, Baskerville R (2010) Agile requirements engineering
practices and challenges: an empirical study. Information Systems Jour-
nal 20(5):449–480

Regnell B, Brinkkemper S (2005) Engineering and Managing Software Re-
quirements, Springer, chap Market–Driven Requirements Engineering
for Software Products, pp 287–308

Regnell B, Berntsson Svensson R, Wnuk K (2008) Can we beat the com-
plexity of very large-scale requirements engineering? In: Lecture Notes
in Computer Science, vol 5025, pp 123-128

Robson C (2002) Real World Research. Blackwell Publishing

Rosca D, Greenspan S, Feblowitz M, Wild C (1997) A decision making
methodology in support of the business rules lifecycle. In: Proceedings
of the Third IEEE International Symposium on Requirements Engineer-
ing (RE’97), pp 236 –246

Runeson P, Host M, Rainer A, Regnell B (2012) Case Study Research in
Software Engineering: Guidelines and Examples. John Wiley & Sons

Sangwan R, Bass M, Mullick N, Paulish D, Kazmeier J (2006) Global Soft-
ware Development Handbook. Auerbach series on applied software en-
gineering, Taylor and Francis

273



REFERENCES

Sawyer P (2000) Packaged software: Challenges for re. In: Proceedings of
the Sixth International Workshop on Requirements Engineering: Foun-
dations of Software Quality (REFSQ 2000), pp 137–142

Sawyer P, Sommerville I, Kotonya G (1999) Improving market-driven re
processes. In: Proceedings of the International Conference on Product-
Focused Software Process Improvement (Profes ’99)

Schmid K (2002) A comprehensive product line scoping approach and its
validation. In: Proceedings of the 24th International Conference on Soft-
ware Engineering (ICSE 2002), pp 593–603

Schwaber K, Beedle M (2002) Agile software development with scrum. Se-
ries in agile software development, Prentice Hall

Selby RW, Cusumano MA (1998) Microsoft secrets. Simon and Schuster

Svahnberg M, Gorschek T, Feldt R, Torkar R, Saleem SB, Shafique MU
(2010) A systematic review on strategic release planning models. Inf
Softw Technol 52(3):237–248

van de Weerd I, Brinkkemper S, Nieuwenhuis R, Versendaal J, Bijlsma L
(2006) Towards a reference framework for software product manage-
ment. In: Proceedings of the 14th IEEE International Requirements En-
gineering Conference (RE 2006), pp 319–322

van Lamsweerde A (2003) From System Goals to Software Architecture. In:
Formal Methods for Software Architectures, pp 25–43

Wiegers K (2003) Software Requirements: Practical Techniques for Gather-
ing and Managing Requirements Throughout the Product Development
Cycle. Addison-Wesley

Wnuk K, Regnell B, Karlsson L (2009) What happened to our features?
visualization and understanding of scope change dynamics in a large-
scale industrial setting. In: Proceedings of the 17th IEEE International
Requirements Engineering Conference (RE 2009), pp 89–98

Wohlin C, Aurum A (2005) What is important when deciding to include
a software requirements in a project or release? In: Proceedings of
the International Symposium on Empirical Software Engineering (ISESE
2005), pp 246–255

274



Paper V

Factors Affecting Decision Outcome and Lead-time
in Large-Scale Requirements Engineering

Krzysztof Wnuk1, Jaap Kabbedijk2, Sjaak Brinkkemper2, Björn Regnell1
1Department of Computer Science,

Lund University, Sweden
���������	
���������
�����������
���
��

2Department of Information and Computing Sciences
Utrecht University

��
�����������
������� !����
��

under revision for
Software Quality Journal 2012

ABSTRACT

Lead-time is crucial for decision making in market-driven
requirements engineering. In order to identify what factors
influence the decision lead-time and outcome, we conducted
a retrospective case study at a large product software manu-
facturer and statistically analyzed seven possible relationships
among decision characteristics. Next, we further investigated
relationships among decision characteristics in a survey among
industry participants. The results show that the number of
products affected by a decision could increase the time needed
to take a decision. Results also show that when a change re-
quest originates from an important customer, the request is faster
accepted.





1. INTRODUCTION

1 Introduction

Requirements Engineering (RE) addresses the critical problem of designing
the right software for the customer (Aurum andWohlin, 2005). In Market–
Driven Requirements Engineering (MDRE), the content of the product has
to be aligned with the targeted market needs to create a profitable soft-
ware product (Regnell and Brinkkemper, 2005). For large MDRE projects,
with thousands of continuously arriving (Karlsson et al, 2007a) potential
requirements, deciding which requirements should be implemented is far
from trivial.

Large companies often use the software platform concept, also known
as Software Product Lines (SPL) (Pohl et al, 2005). SPL helps to decrease the
cost and to increase the ability to provide an individualized software prod-
uct. Moreover, SPL allow software development organizations to reuse a
common technology base to meet customers’ needs. However, the cost for
this greater degree of reuse and increased productivity is increased com-
plexity of coexisting product variants and amore complex decisionmaking
process.

The requirements selection process is a complex decision problem, bring-
ing up several challenges, e.g. shifting goals, time stress (Alenljung and
Persson, 2008) and uncertain estimates (Karlsson and Ryan, 1997) just to
name a few. To effectively improve RE decision–making, more effort should
be dedicated towards decision–making aspects identification (Alenljung
and Persson, 2008; Natt och Dag et al, 2005). In particular, it is important
to explore additional factors influencing both the time needed to make the
decision (also called the decision lead–time) as well as the outcome of the
decision process.

In this paper, a retrospective analysis of the decision making process in
a large–scale MDRE and SPL project is performed with the aim for iden-
tifying which characteristics of change requests, i.e. number of products,
release number, type of customer, may influence the decision lead–time
and the decision outcome. The decision lead–time is in this context de-
fined as time required to analyze the impact of a decision. The decision
outcome is in this context defined as a specific outcome of the decision
process, namely acceptance or rejection. For brevity, we use decision out-
come throughout the paper. The results from analyzing the decision–log
are further investigated in a survey among 50 industry respondents.

The main goals for the paper are threefold: (1) to explore possible fac-
tors that may influence decision lead–times, (2) to investigate the possible
factors that may influence decision outcomes and (3) to investigate if the
decision lead–time affects the decision outcome.

Partial results from this study have previously been published as work-
shop publications in (Kabbedijk et al, 2010). This paper extends our previ-
ous work by: (1) validating the results the decision log analysis in a survey,
(2) extending the analysis of the results regarding factors that affect the de-

277



PAPER V: FACTORS AFFECTING DECISION OUTCOME AND LEAD-TIME IN
LARGE-SCALE REQUIREMENTS ENGINEERING

cision lead-time and the relationship between the decision lead-time and
the decision outcome (3) extending the analysis of related work, (4) extend-
ing the interpretation of the results in the light of the related work.

The paper is structured as follows. Related work is discussed in Sec-
tion 2, followed by a description of the case company in Section 3. Our
research design and research questions are outlined in Section 4. Next, we
present the results of the statistical analysis of the decision logs and the
survey in Section 5. We conclude the paper and present the future work in
Section 6.

2 Related Work

Decisionmaking is an important aspect of requirements engineering (Alenljung
and Persson, 2008; Aurum andWohlin, 2003; Evans et al, 1997) and signifi-
cantly impacts requirementsmanagement. As stated byDeGregorio (1999),
requirements management is not possible without decision management.
Therefore, understanding of the nature of the decisions made in the RE
process is necessary for improving it (Aurum and Wohlin, 2003). Despite
an increasing awareness for supporting RE decision making, research in
this area is still “in its infancy” (Ngo-The and Ruhe, 2005).

The requirements engineering process is a decision rich activity for
which decisions can range from the organization level to the project level
(Aurum and Wohlin, 2003; Ngo-The and Ruhe, 2005). Moreover, since
RE decision making is a knowledge–intensive activity that is performed
in natural settings, it has to deal with the difficulties such as shifting, ill–
defined or competing goals and values (Klein et al, 1995). As a result, the
risk of making inappropriate decisions is high and the consequences of
made decisions can be serious. Furthermore, RE decisions are often semi–
structured or unstructured and made only once, which make the evalua-
tions of the decision outcomes difficult (Ngo-The and Ruhe, 2005). More-
over, Strigini (1996) stressed a lack of objective criteria for guiding making
decisions, e.g. based on statistics about past experience which results in
important decisions often depending on subjective judgments. Thus, em-
pirical investigation of the factors that affect decision outcomes is impor-
tant as it can contribute to more continuous, controllable and structured
requirements engineering decision making.

Several researchers have looked intomodeling decision–making in soft-
ware and requirements engineering. Ashrafi (1998) proposed a decision–
making model that addresses various software quality aspects. Rolland
et al (1995) proposed a decision making meta–model for requirements en-
gineering process that captures both how and why the requirements en-
gineering activities are performed. Wild et al (1994) modeled the soft-
ware development process as a set of problem solving activities (decisions).
Ruhe (2005) modeled release planning decisions by combining computa-

278



2. RELATED WORK

tional knowledge intelligence and experience of decision makers or by
using linear programming (Ruhe, 2009). van den Akker et al used inte-
gral linear programming to find an optimal set of requirements within
the given resource constraints that can maximize the revenue (van den
Akker et al, 2008). Li et al focused on time schedling aspect of release
planning (Li et al, 2010). Regnell and Kuchcinski used constraint pro-
gramming (Regnell and Kuchcinski, 2011) to model release planning de-
cision making while Egyed et al (2006) proposed using constraints pro-
gramming for reducing the number of possible software design decisions.
Karlsson (1997) promoted a cost–value approach to support requirements
prioritization which was later experimentally compared to other prioriti-
zation techniques (Karlsson et al, 2007b). Ruhe (2009) covered supporting
product release decisions on various levels by modeling the release plan-
ning criteria and constraints. However, the mentioned methods mainly
focus on the task of reducing the number of possible decision or assign-
ing features to releases according to given criteria, while this study focuses
on understanding the factors that may affect both decision lead–times and
outcomes.

Among the challenges in RE decision making Alenljung et al (2008)
listed: ill–structured problems, uncertain environments, shifting goals, ac-
tion and feedback loops, time stress, high stakes, multiple player situa-
tions and organizational goals and norms. Ngo-The and Ruhe (2005) ar-
gued that requirements decisions are hard because of the incompleteness
of the available information and any notion of strict optimality is not ap-
propriate in this context. Karlsson et al (2007a) listed release planning
based on uncertain estimates as one of the challenges in MDRE that is re-
lated to RE decision making. Another challenging aspect of decision mak-
ing; mentioned by Fogelstrom et al (2009); is finding the right balance be-
tween the commercial requirements selected over internal quality require-
ments, also mentioned by Karlsson et al (2007a). Furthermore, require-
ments prioritization (Karlsson and Ryan, 1997) was recognized as chal-
lenging because of, e.g. conflicting priorities between stakeholders (Be-
rander and Andrews, 2005) or the complex dependencies between require-
ments (Cleland-Huang et al, 2005). Finally, several researchers stressed the
need for empirical studies in RE decision making process to create a co-
herent body of knowledge in RE decision making and to improve require-
ments engineering (Alenljung and Persson, 2008; Aurum andWohlin, 2003;
Berander and Andrews, 2005).

Despite the above mentioned need for more empirical studies and sev-
eral reported studies that outline challenges in requirements engineering
decision making, the number of publications that empirically investigate
factors affecting decision making in requirements engineering is still low.
Among the reported studies, Wohlin and Aurum (2005) investigated the
criteria used in the requirements selection process for a project or release
and reported that business–oriented andmanagement–oriented criteria are

279



PAPER V: FACTORS AFFECTING DECISION OUTCOME AND LEAD-TIME IN
LARGE-SCALE REQUIREMENTS ENGINEERING

more important than technical concerns. Wnuk et al (2009) investigated the
reasons for excluding features from the project’s scope reporting that the
stakeholder business decision is the dominant reasons for feature exclu-
sions. Barney et al (2008) reported that the client and market base of the
software product are the dominant factors that affect the decision to im-
plement specific requirements. Moreover, Barney et al (2008) stressed that
factors such as maturity of the product, the marketplace in which it exists
and the available development tools and methods also influence the deci-
sion of whether or not include requirements in a software product. To the
best of our knowledge, no study had yet attempted to investigate factors
that affect both decision lead–times and decision outcomes.

While looking more generally at related work in decision making, Kha-
tri (2000) discussed the intuition’s role in decisionmaking whereasMesser-
schmitt and Szyperski (2004) discussed the “marketplace issues” that may
affect software project planning and decision making. Hogarth (1975) pro-
posed a relationship function between the decision time and the task com-
plexity. Saliu and Ruhe (2005) suggested that there is a relationship be-
tween decision outcomes and release planning. A similar relationship was
suggested by Bagnall (2001) but, as in Ruhe and Saliu (2005), the relation-
ship hasn’t been named. Zur and Breznitz (1981) suggested a relationship
between the time pressure, people’s experience and the risks of their choice
behaviors. Hallowell (1996) suggested a relationship among customer sat-
isfaction, loyalty and profitability. However, the mentioned relationships
haven’t been empirically investigated in a large-scale MDRE context and
especially in relation to decision lead–times and decision outcomes.

3 Case Company Description

The paper reports results from a content analysis (Lethbridge et al, 2005) of
the record of decisions made in an industrial project at the large company
using the SPL approach (Pohl et al, 2005). The company operates globally
selling embedded systems and has more than 4000 employees. The core
of the software part of embedded systems is called a platform and corre-
sponds to the common code base of the SPL (Pohl et al, 2005). There are
several consecutive releases of the platform in which each of them is a basis
for one or more products that reuse the platform’s functionality and qual-
ities. A major platform release has approximately a two year lead–time
from start to launch, and is focused on functionality growth and quality
enhancements for a product portfolio. Minor platform releases are usually
focused on the platform’s adaptations to the different products that will
be later launched. The stage–gate model with several increments (Cooper,
1990) is used by the company. The scope of the core release project is con-
stantly changing during this process, from the initial roadmap extraction
which is a basics for creating high level features to the final milestone of

280



3. CASE COMPANY DESCRIPTION

the requirements management process after which the development phase
starts.

The case company utilizes the concept of a feature as an entity for mak-
ing scoping decision. A feature is defined as a group of requirements that
constitute new functionality enhancements to the platform upon which
market value and implementation cost can be estimated. The project de-
cision makers consider both internally issued features and features from
external customers. Change requests to these features are performed con-
stantly by stakeholders from inside and outside the company. The change
control system is used in order to capture, track and assess the impact of
changes (Leffingwell and Widrig, 2003; Kitchenham et al, 1999). The scope
of each project is maintained in a document called the feature list, that is
updated each week after a meeting of the change control board (CCB). The
CCB exists of product and platform managers, complemented with other
project stakeholders to a total of 20 members. The role of the CCB is to
decide upon adding or removing features according to issued change re-
quests. The decision process of the CCB is illustrated in Figure 5.1.

The CCB decision process is depicted in Figure 5.1. The process is sim-
ilar to the processes described in the related literature (Leffingwell and
Widrig, 2003; Kitchenham et al, 1999; Jonsson and Lindvall, 2005). The
change requests are high level requests on feature level. After a change re-
quest is filed, its ambiguity and completeness are analyzed. This analysis is
based on the quality gateway model (Natt och Dag et al, 2001), also called
the “firewall” by Leffingwell and Widrig (2003). If the request is ambigu-
ous or incomplete, it is sent back to the submitter to ask for a clarification,
otherwise the request is put on the CCB agenda for performing the impact
analysis. The impact analysis is performed by the appropriate Technical
Groups that elicit and specify high–level requirements for a special tech-
nical area and Focus Groups that design and develop previously defined
functionality. In this way, the impact of a change on the cost and function-
ality of the system as well as on customers and other external stakeholders
is assessed (Leffingwell and Widrig, 2003). After the impact analysis, the
request is presented at the CCB meeting and the change request is decided
upon. When the analysis performed by a certain group is not clear enough,
extra information can be requested before the final decision is made. If the
request is accepted, the change is implemented, else the submitter gets a
rejection notification.

All change requests and decisions made about them (including their
rationale) are stored in the scope decision log of a project. In this sense, the
company follows the advice of Aurum and Wohlin that the rationale and
effects of RE decisions on software product should be tracked in order to
support and improve RE activities (Aurum and Wohlin, 2003)

An example of an entry in the decision log is shown in Table 5.1. For
reasons of confidentiality, we used fictive data. This decision log com-
prises a number of attributes like the change submitter and justification,

281



PAPER V: FACTORS AFFECTING DECISION OUTCOME AND LEAD-TIME IN
LARGE-SCALE REQUIREMENTS ENGINEERING

Figure 5.1: Change control board decision process

282



4. RESEARCH DESIGN

Table 5.1: Decision log entry example

ID 54

Change Request HD resolution for video

Decision Outcome Accepted

Comments This will enlarge our market share in this
sector

Description of proposed change Add HD resolution for recording

Justification Requested by a large provider

Proposition Area Video

Main affected Technical Group Video Group

Affected product All products with a camera

Affected key customer Customer X

Affected Functional Group HD Group

Submittal Date 09-02-09

RM tool ID 10F1

Decision Date 18-02-09

the date that the request has been submitted and decided upon, the prod-
ucts impacted by a change, the release of the platform project impacted by
a change, and the markets impacted by a change. The release of the plat-
form project impacted by a change attribute is used to request a certain
feature in an earlier release (the release number is low) or in a later release
(the release number i high). For brevity, we will call this attribute release
number throughout the paper. For this paper, we were granted access to
an extensive decision log. This log contained 1439 change requests for all
products planned to be released in 2008.

4 Research Design

Since the number of papers that investigate factors influencing RE deci-
sion making is low, see Section 2, our research was mainly exploratory and
conducted in order to: (1) identify the main decision characteristics and
(2) analyze the relationships between the identified characteristics. After
identifying the characteristics, we formulated research questions, see Sec-
tion 4.1 about relations within requirements engineering decision making
and hypotheses based on these questions, see Section 5. We run statistical
tests on empirical data to either accept or reject hypotheses and draw con-
clusions based on the test results. The results of the statistical analysis were
further validated in a survey and interpreted in relation to related studies.

283



PAPER V: FACTORS AFFECTING DECISION OUTCOME AND LEAD-TIME IN
LARGE-SCALE REQUIREMENTS ENGINEERING

4.1 Research questions

Three research questions are investigated in this paper and are outlined in
Table 5.2, complemented with aim and example answers for each question.
The questions were shaped and inspired by the related literature outlined
in Section 2. All three research questions are relationship questions (Easter-
brook et al, 2008). The questions are further decomposed into hypotheses
that were investigated using statistical tests, see Section 5.

Table 5.2: Research questions

Research ques-
tion

Aim Example answers

RQ1: Which de-
cision characteris-
tics affect the de-
cision lead–time?

To understand which
decision character-
istics i.e, number
of products, release
number, type of
customer have a sig-
nificant impact on the
decision lead–time

The number of products
involved in the decision
increases the decision
lead–time. Decisions that
are related to the current
release or consider our
largest customers have
shorter lead–times.

RQ2: Which de-
cision characteris-
tics affect the de-
cision outcome?

To understand the re-
lation between the de-
cision characteristics
and the acceptance or
rejection of a decision

The number of products
involved in the decision
decreases the probability
of accepting this decision.
Decisions that are related
to the current release or
issued by important cus-
tomers are usually ac-
cepted.

RQ3: Is the deci-
sion outcome re-
lated to the deci-
sion lead–time

To understand the re-
lation between the ac-
ceptance rate and the
decision lead–time

Decisions with longer
lead–time are more often
rejected

The first research question (RQ1) is inspired by Hogarth (1975), who
created a function on the relationship between the decision time and the
task complexity. Hogarth stated that the amount of time needed to make a
decision is an increasing function of the task complexity. After some point
the costs of errors due to the task complexity becomes lower than the cost
of time. This is the tilting point at which the amount of time becomes a
decreasing function of the task complexity. In this paper, we empirically
investigate the viewpoint of Hogart (1975) as well as we investigated fur-

284



4. RESEARCH DESIGN

ther factors that may influence the decision lead–time, e.g. the type of the
customer and the release number.

The second research question (RQ2) investigates the relationships be-
tween the decision characteristics and the decision outcome. This question
is partly based on the work of Saliu and Ruhe (2005) and the work of Bag-
nall et al (2001) suggesting a relationship between decision outcomes and
release planning. However, their work (Saliu and Ruhe, 2005; Bagnall et al,
2001) didn’t suggest any explicit relationship between setting the require-
ments release time and the decision outcome. Therefore, RQ2 focuses on
investigating if such relationships could be found.

Among other related studies, the paper by Hallowell (1996), suggested
a relationship among customer satisfaction, loyalty and profitability. Thus,
it is reasonable to assume a possible relationship between the fact that a
request is filed by an important customer and its decision outcome. Soft-
ware companies should keep their customers satisfied and thus they could
accept requests of these customers faster than internal requests.

Research question RQ2 is also based on the work of Hogarth (1975).
Since there is a tilting point in the relationship curve, there is a certain com-
plexity level after which the decision maker decides the errors costs due to
a wrong decision are lower than the costs of spending any more time on
making the decision. From this point it is logical to state a hypothesis that
negative decisions could be made and a relationship between the decision
outcome and the number of products affected by a decision could exist.

The last research question (RQ3) is based on the work of Zur (1981) and
our previous work (Wnuk et al, 2009). In our previous work (Wnuk et al,
2009), we reported that project management is more eager to accept fea-
tures in the beginning of a large project and exclude features towards the
end of the project due to time pressures and other unexpected difficulties.
In a related paper, Zur (1981) claims a relationship between the time pres-
sure people’s experience and the risks of their choice behavior. Thus, we
investigated in this study if longer lead–times impact decision outcomes.

4.2 Research methods

Case study and survey methods were selected for conducting this study.
Both methods are considered as relevant for software engineering research
(Easterbrook et al, 2008; Runeson and Höst, 2009). The details of the meth-
ods are outlined in the subsections that follow.

4.2.1 Case study

Case studies have been recognized as an appropriate method to under-
stand complex social phenomena (Yin, 2008) and highly recommended for
software engineering research (Runeson andHöst, 2009). We have used the
analysis of electronic databases of work performed technique (Lethbridge

285



PAPER V: FACTORS AFFECTING DECISION OUTCOME AND LEAD-TIME IN
LARGE-SCALE REQUIREMENTS ENGINEERING

et al, 2005) for data collection as it is a suitable technique for analyzing
large amounts of data. The researchers were granted access to an exten-
sive decision log of all products planned to be released in 2008 containing
1439 change requests. To address the risk of low control over the gathered
information quality, the data was validated with one practitioner from the
case company and analyzed by two authors of this paper to perform ob-
server triangulation. Based on the decision characteristics (see Section 3),

Figure 5.2: Number of decisions taking a certain lead-time

five variables were created for each decision.
1. Lead-Time: the duration between the moment a request was filed to the
moment the decision was made by the CCB. The lead–time is measured in
week days and not working days, so there could be a small difference in
days between two decisions who took the same number of working days
to be taken, due to weekends. Figure 5.2 gives an indication of how the
lead–time is distributed. About half of the decisions are made the same
day they are requested (686 decisions, 48%), but the 753 requests that are
left can take up to 143 days before a decision is made.
2. Number of Products Affected: a number between one and fourteen (the
total number of product for this software product line) indicating the num-
ber of different products for which the requirements would change if the
request was accepted. We consider this attribute as a proxy for decision

286



4. RESEARCH DESIGN

complexity.
3. Release Number: a variable strongly related to the release method used
within the case company. As described in Section 3, the product line plat-
form of the case company is released in a heartbeat rhythm of one base
release and four sequential releases. The release number variable indi-
cates the specific number of the release affected by the change request. The
higher the variable, the later the release is in the release heartbeat rhythm
of the case company.
4. Type of Customer: a nominal variable used to indicate whether a request
is filed by an important external customer or is a request coming from in-
side the company. External customers in this case are large partners of the
case company who also help to bring the developed products to the mar-
ket. Thus, we will refer to them as important external customers.
5. Decision Outcome: a variable of nominal level of measurement indicating
whether or not a change request is accepted by the CCB.

4.2.2 Survey

We conducted a survey among 50 respondents from industry to validate
the results from the case study as well as to strengthen the external validity
of the study. The survey respondents were mainly working for companies
producing product software using the SPL approach.

The questionnairewas created based on principles described byKitchen-
ham and Pfleeger (2002). The questionnaire contained a part dedicated
to identify the context and background of the respondents, followed by
a part focusing on their experiences considering possible relations in re-
quirements engineering decision making. The questions identifying the
respondents’ context and background are based on the facets identified by
Paech et al (2005).

The questions concerning the possible relationshipswithin requirements
engineering decision making were structured using a three-point Likert
scale for effectively measuring the experiences of the respondents (Jacoby
and Matell, 1971). We asked the respondents to state whether a certain
characteristic influenced the decision lead–time in a positive, neutral or
negative way. All relations examined based on the decision log were also
inquired in the questionnaire. For example, a question from the survey
was: “Please indicate how the number of products affected by the decision
influences the time needed to take the decision”. The answer categories
were: “This makes the time to decide shorter”, “No influence” or “This
makes the time to decide longer”. During the analysis, we rated the first
answer as a score of −1, the second answer as 0 and the last answer as
+1. This schema allowed to determine how strongly a certain decision
characteristic influenced the decision lead–time or outcome. The survey
questions can be accessed at (Wnuk, 2012) and in the Appendix.

287



PAPER V: FACTORS AFFECTING DECISION OUTCOME AND LEAD-TIME IN
LARGE-SCALE REQUIREMENTS ENGINEERING

4.3 Validity

We discuss the validity of research design and the results based on the
classification proposed by Yin (2008).

4.3.1 Construct Validity

It is important to use the right sources for measuring the theoretical con-
structs (Yin, 2008). If we, for example, want to measure the time needed to
take a decision, a reliable source is needed determine this amount of time.
We analysed the decision log that was actively used in the decision mak-
ing process at the case company. This decision log is an archival record,
which could be considered as stable, exact and quantitative. Whenever
decisions in the log were incomplete or ambiguous, we discussed them
with the responsible product manager to avoid making wrong interpreta-
tions. These discussions can be seen as interviews we had with the respon-
sible product manager. Both data collection methods are highly applicable
to software engineering case studies (Runeson and Höst, 2009). Wohlin
et al mentioned additional design threats to validity (Wohlin et al, 2000),
namely the mono-operation and mono-method bias threats. These threats
concern creating a bias while using respectively one case or method within
the research. We ensured the validity on these levels by discussing all re-
sults with a responsible product manager and the use of several statistical
and qualitative methods to analyse the data.

Construct validity of the survey part of the study is mainly concerned
with the way how questionnaire questions were phrased. To alleviate this
threat to construct validity, an independent senior researcher experienced
in the topic reviewed the questionnaire. Moreover, we conducted a pilot
study to measure the time required to conduct the survey and minimize
the risk of misunderstanding or misinterpreting the survey questions by
respondents. Further, the anonymity of questionnaire respondents was
guaranteed which minimize the evaluation apprehension threat. Finally,
the mono-operational bias threat is to partly alleviated as we managed to
collect 50 responses.

4.3.2 Internal Validity

Threats to internal validity concern the investigated causal relationship be-
tween studies factors (Yin, 2008). In this study, we have minimized threats
to internal validity by investigating as many possible factors that could
influence the decision lead–time and outcome as it was possible with the
given dataset. The identified relationshipswere confrontedwith the results
from the survey in which these relationships were further tested. Finally,
the potentially impacting additional confounding factors for the studied
relationships were discussed in all cases in which the results from the case
study and the survey were inconsistent (see Section 5).

288



5. RESULTS AND DISCUSSION

To avoid stating false inferences (Yin, 2008), we have based our results
on empirically derived data from a large company and confronted the re-
sults in a survey. Finally, we discuss the achieved results in Section 5,
where we provide several possible explanations and possibilities, espe-
cially when the results from the case study and the survey are inconsistent.

4.3.3 External Validity

The external validity is considered as a main threat to validity in case stud-
ies due to difficulties to generalize from a single company study (Yin, 2008)
even if the size of the data sample is large. To mitigate this threat, we have
designed and conducted a survey in order to validate the findings from
the case study. Since the majority of survey respondents worked in smaller
companies with a typical project generating not more than 100 requests, we
could further strengthen the generalizability of the results by comparing a
large context with smaller contexts.

4.3.4 Reliability

In order to ensure the reliability of a study, it is important to have cre-
ated a case study protocol and to maintained a case study database (Yin,
2008). In this way, the performed research could be retraced. We also stored
all artifacts from the case study, so conclusions based on the evidence can
be retraced as well. Further, we have published the survey questionnaire
questions on-line (Wnuk, 2012) and described the sample population in
Sections 4.2.2 and 5.2.1. However, we would like to stress that the data
given by respondents is not based on any objectivemeasurements and thus
its subjectivity may affect the interpretability of the results.

5 Results and Discussion

5.1 Test Selection

Selecting the appropriate test for analyzing the relationships is critical for
getting reliable and scientifically sound results to base the conclusions on (Ott
and Longnecker, 2008). The choice of the right statistical test is dependent
on three major factors, namely (Sheskin, 2004):

• The level of measurement of the variables

• The distribution of the data

• The hypotheses that will be tested

We analyzed five different decision characteristics, which were all trans-
lated to quantitative, analyzable variables.

289



PAPER V: FACTORS AFFECTING DECISION OUTCOME AND LEAD-TIME IN
LARGE-SCALE REQUIREMENTS ENGINEERING

(a) lead–time (b) Log10 lead–time

Figure 5.3: Lead–time Gaussian curve fit

In order to perform parametric tests, all ratio level data should be dis-
tributed normally (Field, 2009). Since the variable lead–time is the only
variable of ratio level of measurement, we ensured this variable complied
to the condition stated before. The variable lead–time apparently described
a log–normal distribution, so in order to be able to use this variable, the
log10-function of the variable was used for analysis. The detail of the trans-
formation are depicted in Figure 5.3. The D’Agostino-Pearson test (1973)
was used to see whether the log10-function of the variable lead–time de-
scribed a Gaussian curve, or was distributed differently. We tested the
following hypotheses (H0):

H0
0 : The sample is derived from a normally distributed population.

H0
1 : The sample is not derived from a normally distributed popula-

tion.

When testing the kurtosis and skewness (DeCarlo, 1997) of the distri-
bution, we found a result of χ2(1, N = 753) = 35.3, p < .01, which is below
the critical value of 67.4 as can be found in the χ2 distribution table. This
means we can not reject H0, so we can conclude that the log10-function
of the variable “lead–time” is distributed normally and we can use para-
metric tests on this variable. However, since the other analyzed variables
are either of ordinal or nominal level of measurement, we also used non-
parametric tests while analysing their influences and relationships.

5.2 Survey Data Analysis

The answers from the survey create variables of ordinal level of measure-
ment. According to Stevens et al (1946)median and percentile scores should

290



5. RESULTS AND DISCUSSION

be used as ways of assessing these types of survey results. In our case, cal-
culated medians are means and at least half of the sample has identified a
negative relationship. When themedian is positive, at least half of the sam-
ple in our study has identified a positive relationship, see Table 5.4 and a
frequency table can be used to further analyze the results.

5.2.1 Demographics

The survey was answered by 50 respondents. 32% of the respondents came
from The Netherlands, 14% from Sweden and 46% came from other coun-
tries, including US and UK. Software project (12%) and product manager
(48%) roles dominated among our respondents, followed by senior man-
agement (12%), consultants (12%) and developers (6%). Our respondents
reported, on average, 13 years of professional experience, with standard
deviation of about 6 years. Three respondents indicated having less than 5
years of experience: (1) one project manager from the USwhoworkedwith
off–the–shelf solutions in a small company reported having one year of ex-
perience, (2) one requirements engineer from The Netherlands working
with bespoke software with an average of 100 change requests per project
reported having 2 years of experience and (3) one product manager from
The Netherlands working with off–the–shelf product with an average of
10 requests per project reported having 4 years of experience.

Themajority of the respondents (68%)workedwith companies, inwhich
up to 100 persons were involved in the software engineering process. Fur-
ther, 52% of the respondents created mostly off–the–shelf software, fol-
lowed by bespoke software (28%). When looking at the number of change
requests per project, a typical project generates not more than around 100
requests for over 70% of the respondents. Finally, 64% of the respondents
reported using the SPL approach (Pohl et al, 2005).

5.3 Factors that affect the decision lead–time: RQ1

Table 5.4 shows a list of all hypotheses together with their survey result
medians (last column). Column “Level of Significance” supplies all test
results, together with their critical values for the analysis of the decision
log. The last column in Table 5.4 represents the median score for the survey
answers.

To investigate which decision characteristics have a significant impact
on the decision lead–time, we have tested three hypotheses (H1,H2 and
H3, see the subsections that follow) and confronted the results from the
hypotheses testing with the results from the survey, see Table 5.3.

291



PAPER V: FACTORS AFFECTING DECISION OUTCOME AND LEAD-TIME IN
LARGE-SCALE REQUIREMENTS ENGINEERING

Table 5.3: Survey results - the influence of decision characteristics on the
decision lead-time, research question RQ1 and survey question 8 (Wnuk,
2012).

This makes
the time
to decide
shorter

No influ-
ence

This makes
the time
to decide
longer

Rating
aver-
age/-
Median

How a high num-
ber of product
affects the decision
lead–time, H1

9.3% 9.3% 81.4% 0.72 / 1

The decision is late
in the release cycle
(high release num-
ber), H2

53.5% 30.2% 16.3% -0.37 /
-1

The decision is filled
by an important ex-
ternal customer, H3

62.8% 23.3% 14.0% -0.49 /
-1

5.3.1 The impact of the number of products that a decision effects on
the decision lead–time: H1

Based onHogarth et al who stated that the time needed to take a decision is
highly dependent on the task complexity (Hogarth, 1975), we suspect a re-
lationship between the number of products affected by a decision, e.g. the
decision complexity, and the decision lead–time. The hypothesis testing
this relationship (H1, see Table 5.4) can be stated as:

H1
0 : The correlation between the number of products affected by a

decision and the lead–time needed to take the decision is 0.

H1
1 : The correlation between the number of products affected by a

decision and the lead–time needed to take the decision is not 0.

We used the non–parametric Spearman’s Rank-Order Correlation Co-
efficient (Spearman, 1904) to assess the correlation size between a variable
of ratio level and of ordinal level of measurement. We found ρ(752) =
.222, p < .05 after performing the test, which is higher than the listed crit-
ical value of .197 at a two–tailed level of significance of .05. This means
we can reject hypothesis H1

0 and accept the hypothesis H1
1 that the corre-

lation between the number of affected products and the lead–time is not
0. Stated more general: when the number of products affected by a deci-
sion increases, the lead–time needed to take the decision increases as well.
Since the correlation coefficient is rather low, the number of products may
not be the only variable influencing the lead–time.

292



5. RESULTS AND DISCUSSION

Table 5.4: The results of the hypotheses testing on the data from the deci-
sion log together with the median score from the answers from the survey
(last column)

Hx Case Study Re-
sults

Level of Significance Median
from the
survey

H1 Significant ρ = .222 > .197 1
H2 Not significant ρ = .180 < .197 -1
H3 Not significant p = .558 > .05 -1
H4 Significant Z = .545 > .440 -1
H5 Significant Z = 2.566 > .440 -1
H6 Significant χ2 = 7.032 > 2.710 1
H7 Significant t(752) = 3.940, p = 0.01 0

Looking deeper, Figure 5.4 shows an increase of the average lead–time
related to the number of products affecting change requests for the case
company dataset. If we compare the average lead–time for 1 product with
the highest lead–time (for 7 products), the lead-time becomes about five
times longer. If we look at the lead–time for 1 product (least number) and
13 products (highest number), we can still see an increase of 130% in av-
erage lead–time. There appears to be no clear function to predict the time
needed to take a decisionwhen the number of products is known, but there
is a clear positive trend to be seen. Therefore, the rise is substantial.

The results of the survey show a positive relationship between the de-
cision lead–time and the number of products affected by the decision, see
second row in Table 5.3. 81.4% of the respondents confirmed that a high
number of products affected by the decision make the decision lead–time
longer. This result confirms the value of the median in the second row of
Table 5.4.

The concordance between the results from the decision log analysis and
the survey could be interpreted as an indication that more complex in-
vestigations take more time, which confirms the experiments reported by
Hogarth (1975) on requirements engineering decisionmaking. Further, our
results in relation to this factor complement our previous findings (Wnuk
et al, 2011) that for large projects change proposals investigations takemore
time than for smaller projects. Finally, the possible practical conclusion
from these results could be that if decisions have to be made quickly, their
complexity should be reduced, e.g. by splitting one bigger errand into two
or using other heuristics to reduce the complexity (Garcia-Retamero and
Hoffrage, 2006).

293



PAPER V: FACTORS AFFECTING DECISION OUTCOME AND LEAD-TIME IN
LARGE-SCALE REQUIREMENTS ENGINEERING

Figure 5.4: Mean lead–time per number of products affected

5.3.2 Effect of a certain release number on the decision lead–time: H2

To study the relationship between the release number of the product line
platform attribute of the change requests and the decision lead–time, we
have tested the following hypothesis (H2, see Table 5.4):

H2
0 : The correlation between the release number of the product line

platform attribute of the change requests and the lead–time needed
to take the decision is 0.

H2
1 : The correlation between the release number of the product line

platform attribute of the change requests and the lead–time needed
to take the decision is not 0.

We used Spearman’s Rank-Order Correlation Coefficient to test the corre-
lation between a variable of ordinal level (release number of the product
line platform) and a variable of ratio level (lead–time). The result of this
test is ρ(752) = .180, p < .05, what is below the critical value of ρ = .197
for an α = .05 two–tailed level of significance (see Table 5.4). This means
we can’t reject H0 and we can’t state that there is a statistically significant
correlation between the product line platform release number that changes
impact and the lead–time needed to take a decision on our dataset.

The results of the survey regarding this aspect, see the third row in Ta-
ble 5.3, show that 53.5% of the respondents suggested that decisions made

294



5. RESULTS AND DISCUSSION

late in the release cycle have a shorter lead–time. On the other hand, 30.2%
of the respondents indicated that this factor has no influence on the de-
cision lead–time and 16.3% of the respondents indicated that this factors
makes the time to decide longer. To summarize, the results from the sur-
vey seems to contradict with the results from the decision log statistical
analysis.

One possible interpretation of the discrepancy between the results from
the survey and statistical analysis of the decision log may be related to the
case company context factor. The lack of statistically significant relation-
ship should be interpreted in the light of the result regarding hypothesis
H1. Since more complex decisions have longer decision lead-times, see hy-
pothesis H1, this would suggest that decisions affecting late product line
platform releases at the case company have limited complexity. The pro-
cess used by the case company seems to confirm this assumption as the
early (major) releases are providing the main functionality of the product
line platform and thus more complex decisions should be made for these
early releases, see Section 3.

At the same time, the above assumption about the dominance of less
complex decisions that affect late product line platform releases could also
be interpreted as valid for the survey results. The demographics of the
survey respondents, see Table 5.2.1, suggest that the decisions investigated
by our survey respondents are less complex than decisions investigated in
the case company. This, in turn, may suggest that the lead-time for later
software product line releases decreases. Another possible factor affect-
ing the survey results may be the type software projects that the majority
of the survey respondents are involved in. In bespoke software projects
the scope of the project is often set or implied as a contract and only mi-
nor adaptations or changes are allowed (Regnell and Brinkkemper, 2005).
Thus, the decision lead-time may decrease even for later software product
line releases.

5.3.3 Effect of Important Customers on the decision lead–time: H3

To test the effect of the type of customer that issues a request on the deci-
sion lead–time, we categorized the decisions in the decision log into two
categories. The first category are decisions that are requested from some-
where within the company (1003 decisions, 69,7%, were categorized into
this category), while the second category are decisions that are requested
by important extrenal customers of the case company (436 decisions, see
also Section 4.2.1). The following hypothesis was formulated in this case
(H3, see Table 5.4):

H3
0 : The average lead–time needed to take a decision is not different

when an important customer issues a request.

H3
1 : The average lead–time to take a decision is different when an

295



PAPER V: FACTORS AFFECTING DECISION OUTCOME AND LEAD-TIME IN
LARGE-SCALE REQUIREMENTS ENGINEERING

important customer issues a request.

The t–test (Wohlin et al, 2000) results (t(752) = .586, p = .558, see the sixth
row in Table 5.4) does not allow us to reject H5

0 . Therefore, we can state that
based on our data there is no significant difference between the lead–time
needed to take decision when the decision is requested by an important
customer.

One possible explanation could be the fact the all decision follow the
same decision process at the case company so it doesn’t matter which cus-
tomer issued a change request. Another possible explanation may be that
31.3% of the analyzed requests were issued by important external cus-
tomers which may have influenced the results. Finally, another possible
intepretation of this result may be that the case company does not pay
enough attention to the requests of important customers and thus their
lead-time is not shorter. If that is the case, introducing prioritization of
change requests may be a possible workaround.

The result of the survey (see Table 5.3) shows a negative relationship
(requests issued by important customers have shorter lead-times), in con-
trast to the statistical analysis indicating no relationship, see fourth row in
Table 5.4. Moreover, 62.8% of the respondents reported that time to make
the decision is shorter when the decision is filled in by an important cus-
tomer while 23.3% of the respondents reported that this factor has no in-
fluence on decision lead–time.

The discrepancy between the results from the decision log analysis and
the survey needs further investigation. In related work, Taylor et al (2011)
reported that the prioritization process is often favoring requirements from
large customers and that this “greedy heuristic” produce good results when
the customer base is small. At the same time, their preliminary results sug-
gest no biases towards larger customers (Taylor et al, 2011), which confirms
our results also conducted in a large–scale setting. However, the study
by Taylor focused on the decision outcome rather than the decision lead–
time. The possible summary conclusion from the results could be that,
for smaller projects, the decision lead–time could be impacted by the type
(size) of the customers issuing the requirements, while for larger contexts
this relationship doesn’t hold.

5.4 Factors that affect the decision outcome: RQ2

In order to investigate which decision characteristics have a significant im-
pact on the decision outcome, we have tested three hypotheses, H4,H5 and
H6, see the subsections that follow, and confronted the results from the
hypotheses testing with the results from the survey, see Tables 5.4 and 5.5.

296



5. RESULTS AND DISCUSSION

Table 5.5: Survey results - the influence of decision characteristics on the
decision outcome, research question RQ2 and survey question 9 (Wnuk,
2012)

)

This in-
crease the
probability
of rejection

No influ-
ence

This de-
crease the
probability
of rejection

Rating
aver-
age /
Median

There is a high num-
ber of products af-
fected by the deci-
sion, H4

54.8% 33.3% 11.9% -0.43 /
-1

The decision is late
in the release cycle,
H5

71.4% 26.2% 2.4% -0.69 /
-1

The decision is filled
by an important cus-
tomer, H6

9.5 % 7.1% 83.3%
(35%)

0.74 / -
1

The decision took a
long time to make,
H7

26.2% 57.1% 16.7% -0.10 /
-1

5.4.1 The impact of the number of products that a decision affects on
the decision outcome: H4

To test the relationship between the decision outcome and the number of
products affected by the decision (referred as H4 in Table 5.4), we have
formed the following hypothesis:

H4
0 : The number of products affected by a decision is not different for

the different decision outcomes.

H4
1 : The number of products affected by a decision is different for the

different decision outcomes.

We used the Kolmogorov-Smirnov test for two independent samples
(Smirnov, 1939) to test the relationship between an ordinal level variable
and a nominal level variable. We found a result of Z = .545, p < 0.01,
which is higher than the reported critical value listed for Kolmogorov-
Smirnov’s Z at this level of significance. This means we can reject H4

0
and accept our alternative hypothesis. Thus, we can conclude that there
is a high likelihood the two groups are derived from different populations.
More precisely, we can say that the data indicates that rejected decisions
have a lower number of products they affect.

A significant relationship was also discovered between the number of
products affected by a decision and the decision lead–time, see Section 5.3.1.

297



PAPER V: FACTORS AFFECTING DECISION OUTCOME AND LEAD-TIME IN
LARGE-SCALE REQUIREMENTS ENGINEERING

Thus we can state with a high certainty that there is a relationship between
the decision complexity, the decision outcome and time needed to take
a decision in the case company, as suggested in the literature (Hogarth,
1975). Our results complement related research (Saliu and Ruhe, 2005; Bag-
nall et al, 2001) that also suggested a possible relationship between release
planning and decision quality.

The survey results, see the first row in Table 5.5, disprove the statistical
analysis of the decision log since 54.8% of the respondents answered that a
high number of products affected by the decision increases the probability
of rejection. This contradicting result could be caused by the fact that in
the case study dataset more rejected than accepted decisions affected only
one product. In other words, the case company seems to be more eager
to reject than accept small change requests. This may have economical
basis if we assume that change requests affecting only one product weakly
contribute to revenue generation. In this case, it appears to be more logical
to reject those change requests and focus onmore complex change requests
are potentialy more promissing additional revenue contributors.

Another possible explanation for the conflicting results between the de-
cision log analysis and the survey could be the fact that the majority of the
survey respondents (68%) worked with companies up to 100 persons in-
volved in a project and a typical project with not more than around 100
requests. This may suggest that the complexity, understood as the num-
ber of products involved in the decision, does not influence the rejection of
issued requests for larger projects, but it could for smaller projects. Also,
with a low number of around 100 requests per a typical (bespoke) project,
project management may need to focus on investigating and possibly ac-
cepting all change requests from the customers.

Since most of the survey respondents worked with software product
line approach (64%) hence some respondents admitted to work with be-
spoke and off–the–shelf software, this may suggest that in those contexts
complex investigations are more likely to be rejected than accepted. How-
ever, this assumption needs to be further investigated for significance. In
related work, Wnuk et al (2009) reported five main reasons for excluding a
feature candidate from the scope of the project but not analyzed the com-
plexity of these feature candidates. Our results suggest that the complexity
is an additional factor that should be further investigated.

5.4.2 Effects of a certain release number on the decision outcome: H5

As a second relationship investigated for RQ2, we tested if the product line
platform release number attribute impacts the decision outcome. We stated
the following hypothesis (referred as H5 in Table 5.4) and confronted the
results with the results from the survey, see the third row in Table 5.5:

H5
0 : The release number a decision affects is not different for the dif-

ferent decision outcomes.

298



5. RESULTS AND DISCUSSION

H5
1 : The release number a decision affects is different for the different

decision outcomes.

We used the Kolmogorov-Smirnov test for two independent samples,
which resulted in a score of Z = 2.566, p < 0.01 (see Table 5.4). This result
is above the documented critical value of Kolmogorov-Smirnov’s Z, what
means we can reject H5

0 and accept the alternative hypothesis H5
1 . Thus, we

can state that the changes of accepting a request are higher if that request
affects a release late in the release cycle.

The results from the survey show an opposite relation, see the third
row in Table 5.5. 71.4% of the respondents indicated that requests affecting
products with higher release numbers (planned to be released late in the re-
lease cycle) aremore likely to be rejected. We suspect this contrast in results
between the survey and the case study could be caused by the fact that the
case company is simply getting more requests for late releases (65.5% of all
requests). Another possible explanation may be that customers could use
the products released in the beginning of the release cycle as a potential
source of requests for future releases. This could explain the contrasting
results between the decision log analysis and the survey. Moreover, since
late platform releases are focusing on smaller adaptations of the platform,
this may also impact the results.

The fact that the respondents mainly worked with smaller projects than
investigated at the case company could also be the cause of the discrepancy
of the statistical analysis and survey results. To summarize, the results
from the case study and from the survey suggest that the release that de-
cisions concern could be an additional factor that influences decision out-
comes and this result complements published related work (Wohlin and
Aurum, 2005; Wnuk et al, 2009; Barney et al, 2008; Ruhe and Saliu, 2005).
However, the discrepancy between the case study and the survey results
suggest that the direction of the relationship may not always be the same.

5.4.3 Effect of Important Customers on the decision outcome: H6

For the last factor that could affect decision outcome, we have tested if
there was any effect on the decision outcome caused by the type of the
customer that issues a change request. In order to test this relationship, we
performed a χ2 test for r ∗ c tables.

Our hypothesis (H6 in Table 5.4) is:

H6
0 : The frequencies in the contingency table between the decision

outcome and involvement of important customers do not differ from
the normal expected frequencies.

H6
1 : The frequencies in the contingency table between the decision

outcome and involvement of important customers differ from the
normal expected frequencies.

299



PAPER V: FACTORS AFFECTING DECISION OUTCOME AND LEAD-TIME IN
LARGE-SCALE REQUIREMENTS ENGINEERING

The result of this test is with χ2(1, N = 1439) = 7.032, p < .01 above the
listed critical value. This means we can reject H6

0 and accept our alternative
hypothesis. Since the value of χ2 is rather low, we can state that the change
receives a positive decision outcome when it is requested by an important
customer. Looking deeper, we identified that 11%more decisions originate
from external customers than internal customers.

The majority of the survey respondents (83.3%, see row 3 in Table 5.5)
indicated that the importance of the customer that issues the request de-
creases the probability of rejection, in other words increases the probabil-
ity of acceptance. Since the value of χ2 test above is rather low this may
indicate that the fact that requests from important external customers were
more likely accepted at the case company could be a company specific phe-
nomenon, or related to the project size as the survey respondents most
likely worked with projects with fewer than 100 requests.

In a related study, Taylor et al (2011) suggested that larger customers
more likely get their requirements accepted, but the paper lacks statisti-
cal analysis of the mentioned correlation. Moreover, our results from the
statistical analysis regarding the influence of the importance of the cus-
tomer on the decision lead–time H2 and the decision outcome H5 are not
consistent, which could suggest additional uncovered factors. Ruhe and
Saliu (2005) suggested that the release decisions are made by “contract-
ing the main stakeholders and manually balancing their interests and pref-
erences” which we interpret as accepting more features from important
(main) stakeholders. Finally, our results confirm the viewpoint of Bagnall
et al (2001), who suggested that requirements from “favored customers”
will be viewed as more important than other requirement and thus those
requirements will be more often accepted.

5.5 Effect of lead–time on the decision outcome - RQ3

The last relationship we examined is whether the lead–time influences the
decision outcome. To test this relation, we stated the following hypothesis
(stated as H7 in Table 5.4):

H7
0 : The average lead–time needed to make a decision does not differ

per decision outcome.

H7
1 : The average lead–time to make a decision does differ per deci-

sion outcome.

After categorizing decisions to accepted and rejected decisions, we cal-
culated their average lead–times. The average lead–time for accepted and
rejected decisions is respectively μ = 1.12 and μ = .98. The t–test result
(t(752) = 3.940, p < 0.01, see the last row in Table 5.4) indicated a sig-
nificant differences between the average lead–time for both decision out-
comes. This means we can accept H7

1 and reject the null–hypothesis H7
0 .

300



6. CONCLUSIONS

Based on these results, we can state that the average lead–time needed
to reject a decision is statistically significantly longer than the lead–time
needed to accept a decision.

When looking at the survey results presented in the last row in Ta-
ble 5.5, we see that 57.1% of the respondents indicated that the time to
make the decision does not influence the decision outcome. The statistical
analysis of the survey results for this question showed a neutral relation-
ship (median equals to 0, see last row in Table 5.4) which prevents us from
drawing stong conclusions. However, it is worth noticing that 26.2% of the
respondents agreed with the statistically significant result of the decision
log analysis.

There could be several possible causes of the discrepancy between the
decision log analysis results and the survey results in regards to this as-
pect. One possible explanation could be the size of the projects analyzed
in the case study and by the survey respondents. Since the questionnaire
respondents mainly worked with projects that generate not more than 100
requests and with smaller companies, we suspect that the complexity of
the issued changes in those contexts is smaller than in the case of the case
company investigated. As a results, those assumingly less complex deci-
sions could be proceeded faster by our questionnaire respondents than by
the practitioners from the case company, as suggested by Hogarth (1975).
Thus, the survey respondents might have not been able to experience as
long decision lead–times as the case company practitioners and thus for
them this factors does not influence the decision outcome.

Moreover, since the case company operates in the MDRE context, the
time pressure to investigate and decide upon incoming requirements is
high. Excessive deposition of decisions may cause serious consequences
for the success of software projects in theMDRE context as time–to–market
is critical (Regnell and Brinkkemper, 2005). For long investigations, deci-
sion makers could simply be forced to reject the proposal due to a missed
market–window opportunity and this could be one of the possible expla-
nation of the statistically significant result. This interpretation could be
supported by the fact thatmore than 1/4 of the survey respondentsworked
with bespoke software projects. Furthermore, as visualized by Wnuk et
al (2009), accepting new features to the project scope is much easier than
reducing the scope which is often performed during the entire time of the
project.

6 Conclusions

Although RE decisionmaking has been studies in a number of publications
(Alenljung and Persson, 2008; Aurum and Wohlin, 2003; Evans et al, 1997;
Ngo-The and Ruhe, 2005; Fogelstrom et al, 2009; Berander and Andrews,
2005; Wohlin and Aurum, 2005; Barney et al, 2008; Rolland et al, 1995),

301



PAPER V: FACTORS AFFECTING DECISION OUTCOME AND LEAD-TIME IN
LARGE-SCALE REQUIREMENTS ENGINEERING

little empirical evidence exists that explicitly and exhaustively investigates
the relationships between the change requests attribute and the decision
lead–times and outcomes.

In this paper, we report on an investigation of decision making in re-
quirements engineering. We analyzed 1439 change requests looking for
statistically significant relationships between the decision making factors
i.e., number of products, release number, type of customer and decision
lead–times and outcomes. The results from this analysis were confronted
with the results from a survey among 50 practitioners from several coun-
tries involved in decision making processes. The results from the study
could be summarized in the following points:

• The lead–time tomake a decision increaseswhenmore products (con-
sidered as a proxy for the decision complexity) are affected by this de-
cision - this result was confirmed both in the statistical analysis and
in the survey. Since the relationship is rather clear, decision makers
should be aware that too complex decisions may take a long time
(hypothesis H1).

• The statistical analysis showed that if a request affects a lot of prod-
ucts, it has a higher change of being accepted (hypothesis H4). The
respondents of the survey stated that requests that affect a lot of prod-
ucts have a higher change of being rejected. This may seem counter-
intuitive, but this is probable caused by the fact that request that af-
fect a lot of products are often requests related to the platform and
thus are important.

• There is no significant relationship between the release of the prod-
uct line that a change request impacts and the decision lead–time
according to the results from the statistical analysis of the decision
log. At the same time, the majority of the respondents in the survey
suggested that decisions made late in the release cycle have shorter
lead–times (hypothesis H2).

• Change requests affecting late releases have a significantly higher
probability of acceptance according to the statistical analysis of the
decision log (hypothesis H5). This result seems to be more character-
istic for large contexts as the results from the survey, in which most
respondents worked with projects with fewer than 100 decisions, in-
dicate the opposite relationship with a higher probability of rejecting
these requests.

• The lead–time for decisions is shorter when the change requests are
issued by important customers, according to the respondents (hy-
pothesis H3). The statistical analysis of the decision log disproved
this suggestion. Therefore, no clear relationship was identified for
this factor.

302



6. CONCLUSIONS

• Change requests issued by important customers are more likely to be
accepted, (hypothesis H6) according to the statistical analysis of the
decision log. This relationship was confirmed by a clear majority of
survey respondents (83.3%).

• The lead–time to reject a decision is significantly longer than to ac-
cept a decision (research question RQ3), according to the statistical
analysis of the decision log. At the same time, the results from the
survey suggests that there is no relationship between the lead–time
and the decision outcome.

Our results clearly indicate that the number of products affected by a
decision increases the decision lead–time (research question RQ1). This re-
sult has a practical importance for requirements engineering decision mak-
ers. As more complex decision take more time, it may be wise to decrease
their complexity for faster decisions. This could be particularly useful in
MDREwhere time to market pressure is inevitable (Regnell and Brinkkem-
per, 2005). Our study reports that lead–times could become up to 400%
longer if a complex decision affects multiple products.

Our results also confirm that the importance of the customer who is-
sues a decision log increases the probability of acceptance (research ques-
tion RQ2). These requests have an 11% higher change to be accepted than
other requests. Product management processes could be adapted when
being aware of the supported relationships. For example, the change pro-
cess of Figure 5.1 can be refined by asking for additional details from more
important customers in order to reduce the lead–time.

Regarding the relationship between the decision lead–time and the de-
cision outcome (research question RQ3), we report based on the analysis of
the deicision log that the average lead–time needed to reject a decision is
statistically significantly longer than the lead–time needed to accept a deci-
sion. This result couldn’t been confirmed by the survey respondents. Deci-
sion makers could use this conclusion when planning for effective pruning
of possible decisions for a project. At the same time, this relationship seems
to hold for larger projects, as the results from the survey suggests that there
is no relationship between the lead–time and the decision outcome.

Related to the differences observed between the statistical analysis re-
sults and the survey results, we report that there are premises that less com-
plex decisions are more often rejected in large projects but not in smaller
projects. Moreover, for smaller project the decisions affecting products
planned to be released late in the release cycle are more likely to be re-
jected than for larger projects. At the same time, the majority of the survey
respondent reported that time to make a decision is shorter when this de-
cision is filled by an important customer, while for the large case company
this relationship doesn’t seem to hold.

Future research is planned to go more in depth on the possible rela-
tionships among requirements engineering decision making characteris-

303



PAPER V: FACTORS AFFECTING DECISION OUTCOME AND LEAD-TIME IN
LARGE-SCALE REQUIREMENTS ENGINEERING

tics. Two relationships could be proven and quantified by us, but the other
five relationships need further research in order to further explore them.
Within the two relationships proven by us, more research is needed as
well. For instance, it would be helpful and desirable if a function could
be formulated to estimate the lead–time or the chance on a certain decision
outcome.

Finally, other decision characteristics, such as the number of stakehold-
ers involved of the number of dependencies between software compo-
nents, could also be of relevance for the decision lead–time or outcome.
Due to lack of data, these characteristics have not yet been taken into ac-
count in this research, but could be considered in the scope for future re-
search.

Acknowledgment

The authors would like to thank Thomas Olsson and Prof. Per Runeson
for their suggestions in this research project. The authors would like to
thank Dr. David Callele for excellent language comments. We also thank
the survey respondents. This work was supported by VINNOVA within
the UPITER project.

304



6. CONCLUSIONS

APPENDIX: QUESTIONNAIRE QUESTIONS

INTRODUTION

This is a short survey about decision making in requirements engineering.
When managing requirements, often the decision has to be made whether
or not to accept a certain requirement request. These possible requirements
all have different characteristics such as the number of products they affect
or the fact that they are requested by an important customer.

The purpose of this survey is to asses which characteristics of submit-
ted requirements change requests may influence the decision outcome and
the decision lead-time. We already performed a quantitative analysis on
the decision logs of a large software products company and we want to
validate our results using experiences from other companies.

After your participation in the survey we will get back to you with the
analyzed results of the survey and you will also get access to the results
of the quantitative analysis of decision logs. Thanks in advance for your
cooperation!

BACKGROUND

In order to compare your answers with our quantitative analysis results,
we need to know some things about you, your company and your project
context.

Question 1: What region are you most active in?
( ) The Netherlands
( ) Belgium
( ) Germany
( ) Sweden
( ) Worldwide
( ) Other (please specify)

Question 2: What is your current role within the company?
( ) Project Manager
( ) Product Manager
( ) Quality Expert
( ) Developer
( ) Senior Management
( ) Consultant
( ) Other (please specify)

Question 3: How many years of professional experience do you have
in software engineering?

305



PAPER V: FACTORS AFFECTING DECISION OUTCOME AND LEAD-TIME IN
LARGE-SCALE REQUIREMENTS ENGINEERING

Question 4: How many people are involved in the software engineer-
ing process in your company? Please consider all employees, including,
but not limited to developers, testers and management.
( ) < 10
( ) 10 - 100
( ) 101 - 500
( ) 501 - 1000
( ) > 1000

Question 5: What kind of relationship does your company have with
its customers?
( ) We create mostly custom bespoke software
( ) We create mostly off-the-shelf software
( ) Other (please specify)

Question 6: How many requirement requests does a project in your com-
pany have on average?
( ) Around 10
( ) Around 100
( ) Around 1.000
( ) Around 10.000
( ) Other (please specify)

Question 7: Does your company apply a software product line approach?
(Does your company release a collection of similar software products
from a shared set of software assets?)
( ) Yes
( ) No
( ) Other (please specify)

RATINGS

Please answer the questions below according to your own experiences.
Please indicate how the following decision characteristics influence the
time needed to take the decision.

Question 8. Please indicate how the following decision characteris-
tics influence the time needed to take the decision

Question 9. Please indicate how the following decision characteris-
tics influence the decision outcome.

306



6. CONCLUSIONS

Table 5.6: Question 8. Please indicate how the following decision charac-
teristics influence the time needed to take the decision.

This makes the
time to decide
shorter

No influ-
ence

This makes the
time to decide
longer

There are a high
number of prod-
ucts affected by
the decision

( ) ( ) ( )

The decision is
late in the release
cycle

( ) ( ) ( )

The decision is
filed by an impor-
tant customer

( ) ( ) ( )

Table 5.7: Question 9. Please indicate how the following decision charac-
teristics influence the decision outcome.

This increase the
probability of re-
jection

No influ-
ence

This decrease the
probability of re-
jection

There are a high
number of prod-
ucts affected by
the decision

( ) ( ) ( )

The decision is
late in the release
cycle

( ) ( ) ( )

The decision is
filed by an impor-
tant customer

( ) ( ) ( )

The decision took
a long time to
make

( ) ( ) ( )

307



PAPER V: FACTORS AFFECTING DECISION OUTCOME AND LEAD-TIME IN
LARGE-SCALE REQUIREMENTS ENGINEERING

308



REFERENCES

Bibliography

Alenljung B, Persson A (2008) Portraying the practice of decision-making
in requirements engineering: a case of large scale bespoke development.
Requirements Engineering 13(4):257–279

Ashrafi N (1998) Decision making framework for software total quality
management. International Journal of Technology Management 16(4-
6):532 – 543

Aurum A, Wohlin C (2003) The fundamental nature of requirements en-
gineering activities as a decision-making process. Information and Soft-
ware Technology 45(14):945–954

Aurum A, Wohlin C (2005) Engineering and managing software require-
ments. Springer Verlag

Bagnall A, Rayward-Smith V, Whittley I (2001) The next release problem.
Information and Software Technology 43(14):883 – 890

Barney S, Aurum A, Wohlin C (2008) A product management challenge:
Creating software product value through requirements selection. Journal
of Systems Architecture - Embedded Systems Design 54(6):576–593

Berander P, Andrews A (2005) Requirements prioritization. In: Aurum
A, Wohlin C (eds) Engineering and Managing Software Requirements,
Springer Berlin Heidelberg, pp 69–94

Cleland-Huang J, Settimi R, BenKhadra O, Berezhanskaya E, Christina
S (2005) Goal-centric traceability for managing non-functional require-
ments. In: Proceedings of the 27th international conference on Software
engineering, ACM, New York, NY, USA, ICSE ’05, pp 362–371

Cooper R (1990) Stage-gate systems: a new tool for managing new prod-
ucts. Business Horizons 33(3):44–54

D’Agostino R, Pearson E (1973) Tests for departure from normality. empir-
ical results for the distributions of b2and

√
b1. Biometrika 60(3):613

DeCarlo L (1997) On the meaning and use of kurtosis. Psychological Meth-
ods 2(3):292–307

DeGregorio G (1999) Enterprise-wide requirements and decision manage-
ment. Proceedings of 9th International Symposium of the International
Council on System Engineering

Easterbrook S, Singer J, Storey MA, Damian D (2008) Selecting empirical
methods for software engineering research. In: Shull F, Singer J, Sjøberg
D (eds) Guide to Advanced Empirical Software Engineering, Springer
London, pp 285–311

309



REFERENCES

Egyed A, Wile D (2006) Support for Managing Design-Time Decisions.
IEEE Transactions on Software Engineering 32(5):299–314

Evans R, Park S, Alberts H (1997) Decisions not requirements decision-
centered engineering of computer-based systems. In: The 1997 IEEE
Conference and Workshop on Engineering of Computer-Based Systems,
pp 435–442

Field A (2009) Discovering statistics using SPSS. Sage Publications Ltd

Fogelstrom N, Barney S, Aurum A, Hederstierna A (2009) When product
managers gamble with requirements: attitudes to value and risk. Berlin,
Germany, pp 1 – 15

Garcia-Retamero R, Hoffrage U (2006) How causal knowledge simplifies
decision-making. Minds and Machines 16(3):365 – 80

Hallowell R (1996) The relationships of customer satisfaction, customer
loyalty, and profitability: an empirical study. International Journal of
Service Industry Management 7(4):27–42

Hogarth R (1975) Decision time as a function of task complexity. Utility,
probability, and human decision making: selected proceedings of an in-
terdisciplinary research conference, Rome, 3-6 September, 1973 pp 321–
338

Jacoby J, Matell M (1971) Three-point Likert scales are good enough. Jour-
nal of Marketing Research 8(4):495–500

Jonsson P, Lindvall M (2005) Impact analysis. In: AurumA,Wohlin C (eds)
Engineering andManaging Software Requirements, Springer Berlin Hei-
delberg, pp 117–142

Kabbedijk J, Wnuk K, Regnell B, Brinkkemper S (2010) What decision char-
acteristics influence decision making in market-driven large-scale soft-
ware product line development? In: Proceedings of the Product Line
Requirements Engineering and Quality Workshop at the 16th REFSQ
Conference, Duisburg, Germany, p 42–53

Karlsson J, Ryan K (1997) A cost-value approach for prioritizing require-
ments. IEEE Software 14(5):67–74

Karlsson L, Dahlstedt A, Regnell B, Natt och Dag J, Persson A
(2007a) Requirements engineering challenges in market-driven software
development–An interview study with practitioners. Information and
Software technology 49(6):588–604

Karlsson L, T T, Regnell B, Berander P, Wohlin C (2007b) Pair-wise compar-
isons versus planning game partitioning-experiments on requirements
prioritisation techniques. Empirical Software Engineering 13(3):3–33

310



REFERENCES

Khatri N (2000) The Role of Intuition in Strategic DecisionMaking. Human
Relations 53(1):57–86

Kitchenham B, Pfleeger S (2002) Principles of survey research part 2: de-
signing a survey. ACM SIGSOFT Software Engineering Notes 27(1):18–
20

Kitchenham BA, Travassos GH, von Mayrhauser A, Niessink F, Schnei-
dewind NF, Singer J, Takada S, Vehvilainen R, Yang H (1999) Towards
an ontology of software maintenance. Journal of Software Maintenance
11(6):365–389

Klein G, Orasanu J, Calderwood R, Zsambok C (eds) (1995) Decision mak-
ing in action: Models and methods. New Jersey: Norwood

Leffingwell D, Widrig D (2003) Managing Software Requirements: A Use
Case Approach, 2nd edn. Pearson Education

Lethbridge TC, Sim SE, Singer J (2005) Studying software engineers: Data
collection techniques for software field studies. Empirical Softw Engg
10:311–341

Li C, van den Akker M, Brinkkemper S, Diepen G (2010) An integrated
approach for requirement selection and scheduling in software release
planning. Requirements Engineering 15(4):375 – 96

Messerschmitt D (2004) Marketplace issues in software planning and de-
sign. IEEE Software 21(3):62–70

Natt och Dag J, Regnell B, Carlshamre P, Andersson M, Karlsson J (2001)
Evaluating automated support for requirements similarity analysis in
market-driven development. Proceeding of the 7th International Work-
shop on Requirements Engineering: Foundation for Software Quality
(REFSQ’01)

Natt och Dag J, Regnell B, V Gervasi SB (2005) A Linguistic-Engineering
Approach to Large-Scale Requirements Management. IEEE Software
3:32–39

Ngo-The A, Ruhe G (2005) Decision support in requirements engineering.
In: Aurum A, Wohlin C (eds) Engineering and Managing Software Re-
quirements, Springer Berlin Heidelberg, pp 267–286

Ott L, LongneckerM (2008) An introduction to statistical methods and data
analysis. Duxbury Pr

Paech B, Koenig T, Borner L, AurumA (2005) An Analysis of Empirical Re-
quirements Engineering Survey Data. Engineering and Managing Soft-
ware Requirements pp 427–452

311



REFERENCES

Pohl K, Böckle G, Van Der Linden F (2005) Software Product Line Engi-
neering: Foundations, Principles, and Techniques. Springer-Verlag New
York Inc

Regnell B, Brinkkemper S (2005) Market-driven requirements engineer-
ing for software products. Engineering and managing software require-
ments pp 287–308

Regnell B, Kuchcinski K (2011) Exploring software product management
decision problems with constraint solving - opportunities for prioriti-
zation and release planning. In: Proceedings of the Fifth International
Workshop on Software Product Management (IWSPM 2011), pp 47 –56

Rolland C, Souveyet C, Moreno M (1995) An approach for defining ways-
of-working

Ruhe G (2009) Product Release Planning: Methods, Tools and Applica-
tions. Auerbach Publications

Ruhe G, Saliu M (2005) The Art and Science of Software Release Planning.
IEEE Software 22(6):47–53

Runeson P, Höst M (2009) Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering
14(2):131–164

Saliu O, Ruhe G (2005) Supporting software release planning decisions for
evolving systems. Proceedings of the 29th Annual IEEE/NASA Software
Engineering Workshop pp 14–26

Sheskin D (2004) Handbook of parametric and nonparametric statistical
procedures. Chapman and Hall

Smirnov N (1939) On the estimation of the discrepancy between empirical
curves of distribution for two independent samples. Bulletin Mathemat-
ics Univiversity Moscow 2:3–14

Spearman C (1904) General intelligence: Objectively determined and mea-
sured. The American Journal of Psychology 15(2):201–292

Stevens S (1946) On the theory of scales of measurement. Science
103(2684):677–680

Strigini L (1996) Limiting the Dangers of Intuitive Decision Making. IEEE
Software 13(1):101–103

Taylor C, Miransky A, Madhavji N (2011) Request-implementation ratio as
an indicator for requirements prioritisation imbalance. Trento, Italy, pp
3 – 6

312



REFERENCES

van den Akker M, Brinkkemper S, Diepen G, Versendaal J (2008) Software
product release planning through optimization and what-if analysis. In-
formation and Software Technology 50(1-2):101 – 11

Wild C, Maly K, Zhang C, Roberts C, Rosca D, Taylor T (1994) Software en-
gineering life cycle support-decision based systems development. New
York, NY, USA, vol vol.2, pp 781 – 4

Wnuk K (2012) The survey questions can be accessed at. �����

�����	
������������	�����	���
��������������������� ��

���!	���	���������

Wnuk K, Regnell B, Karlsson L (2009) What happened to our features?
visualization and understanding of scope change dynamics in a large-
scale industrial setting. In: Proceedings of the 17th IEEE International
Requirements Engineering Conference (RE 2009), pp 89–98

Wnuk K, Regnell B, Berenbach B (2011) Scaling up requirements engi-
neering - exploring the challenges of increasing size and complexity in
market-driven software development. In: Proceedings of the 17th inter-
national working conference on Requirements engineering: foundation
for software quality, Springer-Verlag, Berlin, Heidelberg, REFSQ’11, pp
54–59

Wohlin C, Aurum A (2005) What is important when deciding to include
a software requirements in a project or release? In: Proceedings of
the International Symposium on Empirical Software Engineering (ISESE
2005), pp 246–255

Wohlin C, Höst M, Runeson P, Ohlsson M, Regnell B, Wesslén A (2000)
Experimentation in software engineering: an introduction. Kluwer Aca-
demic Pub

Yin R (2008) Case study research: Design and methods. Sage Publications,
Inc

Zur H, Breznitz S (1981) The effect of time pressure on risky choice behav-
ior. Acta Psychologica 47(2):89–104

313



REFERENCES

314



Paper VI

Scope Tracking and Visualization for Very
Large-Scale Requirements Engineering

Krzysztof Wnuk1, David Callele2, Tony Gorschek3, Even-André Karlsson4

and Björn Regnell1
1Department of Computer Science,

Lund University, Sweden
���������	
���������
�����������
���
��
2 TRLabs, Saskatoon, Saskatchewan, Canada ,

���������������
��
3School of Computing Software Engineering Research Lab,

Blekinge Institute of Technology,
SE-371 79 Karlskrona, Sweden

����
������������
��
4Add a Lot, Sweden,

���� �����
����������������
��

submitted to the
Transactions on Software Engineering journal 2012

ABSTRACT

Requirements scope management is an important part of
software engineering. Deciding the optimal scope that fulfills
the needs of the most important stakeholders is challenging
due to a plethora of aspects may impact decisions. In rapidly
changing softwaremarkets, frequently changing needs of stake-
holders force decision makers to continuously adjust the scope
of their projects. How to support decision makers facing many
changes occurring in large software projects? This paper presents
a visual technique designed to give a quick and effective overview
over requirements scoping process for large and very-large projects.
The technique providesmultiple-views and it can visualize var-
ious information based on given filtering criteria. Furthermore,
the paper analyzes the decision making patterns based on a
large dataset from industry. The results are evaluated during
interviews with practitioners.





1. INTRODUCTION

1 Introduction

The probability of project success is directly correlated with the quality of
the scoping exercise; for some, the scope of a software project defines its
success or failure (Iacovou and Dexter, 2004). Overscoping, scope-creep
and requirements scrap are other aspects of scoping that may have nega-
tive impacts upon software projects (Bjarnason et al, 2012). Optimizing
and maintaining scope while addressing the changing needs of key cus-
tomers are critical for successful development projects.

Large software projects operating in a Market-Driven Requirements
Engineering (MDRE) context (Regnell and Brinkkemper, 2005) experience
many scope changes during both requirements and development phases
(Wnuk et al, 2009). These changes need to be analyzed, decisions made, ac-
tions taken and documentation maintained. When the number of changes
is large, and the complexity of the impact analysis is significant, under-
standing the consequences of changes is challenging. Current require-
ments tools offer only partial solutions to this challenge.

In this paper, we present a technique for visualizing scope changes in
large software projects, successfully applied to datasets from projects with
thousands of features. The implementation supports visualizing large fea-
ture sets, as well as sorting, filtering and interactive zooming. The tech-
nique was evaluated on a very large industry dataset then evaluated by
and refined with the assistance of several industry practitioners.

This paper is structured as follows: Section 2 presents background and
related work, Section 3 presents the case study company description while
Section 4 presents researchmethodology. The visual technique is presented
in Section 5 while Section 6 presents and discusses the identified decision
patterns. In Section 7 we conclude the paper.

2 Background and Related Work

Market-Driven Requirements Engineering (MDRE) (Regnell and Brinkkem-
per, 2005) is defined as the process of managing requirements for soft-
ware products that are offered to an open marked. Producing software
for the open market differs from developing bespoke software in several
ways. Among the most important characteristics, Regnell and Brinkkem-
per (2005) identified: (1) release planning focused on time-to-market and
return-on-investment, (2) large volume of potential requirements and (3)
consequences of RE decisions are suffered only by the company respon-
sible for the decisions. The presence of a constant stream of incoming re-
quirements, asynchronous to the development cycle, combined with mar-
ket pressures from competitors’ products, increases the difficulty and im-
portance of effective decision making in MDRE.

Several studies reported a variety of challenges inMDRE contexts (Reg-

317



PAPER VI: SCOPE TRACKING AND VISUALIZATION FOR VERY
LARGE-SCALE REQUIREMENTS ENGINEERING

nell and Brinkkemper, 2005; Karlsson et al, 2002; Lubars et al, 1993; Gorschek
and Wohlin, 2006; Höst et al, 2001; Carlshamre et al, 2001). Among the re-
ported decision making challenges in MDRE, Karlsson et al (2002) identi-
fied managing the communication gap between marketing staff and devel-
opment as significant. Managing the constant flow of requirements, and
the number of requirements, were also identified (Karlsson et al, 2002)
as threats that could cause requirements process overloading (Höst et al,
2001; Regnell and Brinkkemper, 2005), and overscoping (Bjarnason et al,
2012). The absence of actual customers with which to negotiate require-
ments (Potts, 1995) and the many different forms and abstraction levels of
incoming requirements (Gorschek and Wohlin, 2006) also complicate the
decisionmaking process. Given that requirements are (typically) highly in-
terrelated (Carlshamre et al, 2001), selecting a requirement requires check-
ing its dependencies and can even necessitate including dependent re-
quirements. Identifying an appropriate balance between market pull and
technology push (Regnell and Brinkkemper, 2005) in the context of release
planning based on uncertain estimates (Karlsson and Ryan, 1997; Karlsson
et al, 2002; Ruhe and Saliu, 2005) is a challenging task.

Decision making occupies a central place in requirements engineer-
ing (Aurum and Wohlin, 2003) and is considered inevitable when man-
aging requirements (DeGregorio, 1999). The decisions in requirements en-
gineering process can range from the organizational down to the project
level (Aurum and Wohlin, 2003; Ngo-The and Ruhe, 2005) and making
these decisions is considered knowledge-intensive (Klein et al, 1995). Sev-
eral studies identified challenges in requirements engineering decisionmak-
ing including incompleteness of available information (Ngo-The and Ruhe,
2005), shifting, ill-defined or competing goals (Alenljung and Persson, 2008),
finding the right balance between the commercial requirements over inter-
nal quality requirements (Karlsson and Ryan, 1997; Fogelström et al, 2009),
conflicting priorities between stakeholders (Karlsson and Ryan, 1997), de-
pendencies between requirements (Carlshamre et al, 2001), and the identi-
fication of business goals when performing release planning (Ngo-The and
Ruhe, 2005). Further challenging aspects include the fact that decisions in
requirements engineering are often semi-structured or unstructured (Ngo-
The and Ruhe, 2005) and the fact that often decisions need to be changed
or altered (Wnuk et al, 2009). Finally, as requirements decision making
area is still in its initiation (Ngo-The and Ruhe, 2005), more research need
to be conducted, e.g. in identifying objective criteria for guiding decision
makers that could be based on past experiences (Strigini, 1996).

Requirements prioritization, selecting the most valuable requirements
for implementation, is challenging for many reasons including conflicting
stakeholder priorities (Karlsson and Ryan, 1997), dependencies between
requirements (Carlshamre et al, 2001), different requirement abstraction
levels rendering comparison difficult (Gorschek and Wohlin, 2006) and
limited requirements prioritization method scalability (Lehtola and Kaup-

318



2. BACKGROUND AND RELATED WORK

pinen, 2006). Techniques such as cost-value analysis (Karlsson and Ryan,
1997), dividing requirements into three different piles (Beck and Andres,
2004) can be employed. Scoping decisions based on requirements priori-
tization are often changed or altered due to a number of factors such as
stakeholder business decision or lack of resources (Wnuk et al, 2009). Fur-
ther research into management of the decision making process, including
real-time feedback on ongoing projects, is recommended (Basili and Rom-
bach, 1988).

The release planning process makes software available to users of an
evolving software product (Ruhe, 2009) in planned stages (van der Hoek
et al, 1997), extending the prioritization process to include temporal as-
pects such as the assignment of individual requirements to specific re-
leases. Several methods for supporting release planning were proposed,
e.g. the EVOLVE method (Greer and Ruhe, 2004), EVOLVE* - balancing
release time, effort and value (Ruhe and Ngo, 2004), a method based on
what-if analysis (van den Akker et al, 2008), a method based on combin-
ing cost-value analysis with requirements interdependencies (Carlshamre,
2002), a method based on fixed release dates that allocates requirements
to a "must" element and a "wish" element (Regnell et al, 1998). Incremen-
tal methods for release planning (Denne and Cleland-Huang, 2004) are
a principal element of agile software development processes. Finally, ap-
proaches for release planning based on integer linear programming (van
Den Akker et al, 2005) or constraint programming (Regnell and Kuchcin-
ski, 2011) were also proposed.

Despite the large number of proposed methods for release planning,
Svahnberg et al (2010) reported on 24 strategic release planning models
presented in academic papers investigating market-driven software devel-
opment, the activity remains challenging. Jantunen et al (2011) identified
three main challenges of software release planning: (1) requirements pri-
oritization, (2) resolving requirements interdependencies and (3) continu-
ously changing problem definitions and viewpoints. The number of factors
possible affecting priorities of requirements in software product companies
is high (Lehtola andKauppinen, 2006) including the volume of information
that must be considered when performing release planning (Ruhe, 2009)
and uncertainties about the sources and quality of this information (Ruhe,
2009). This work addresses aspects of these issues by providing visualiza-
tion techniques that support the release planning process.

Requirements scoping is considered a core function in software release
planning (Schmid, 2002), particularly in the context of software product
lines (Schmid, 2002; Kishi et al, 2002; Savolainen et al, 2007). The soft-
ware product line literature contains work on the identification aspect of
scoping (Schmid, 2002; Savolainen et al, 2007) while our previous work
has shown that scoping is a continuous activity, an activity where over-
scoping (Bjarnason et al, 2012) and scope reductions are frequent phe-
nomena (Wnuk et al, 2009). Scoping is also prominent in the project and

319



PAPER VI: SCOPE TRACKING AND VISUALIZATION FOR VERY
LARGE-SCALE REQUIREMENTS ENGINEERING

product management literature (Institute, 2000; Iacovou and Dexter, 2004;
Legodi and Barry, 2010).

Regarding related work on scoping in project and product manage-
ment, several studies focused on a phenomenon of scope creep defined as
uncontrolled expansion of initially decided scope (Carter et al, 2001; Hall
et al, 2002; DeMarco and Lister, 2003; Iacovou and Dexter, 2004; Kulk and
Verhoef, 2008). Scope creep could be cased by sales stuff agreeing to de-
liver unrealistically large features without checking the scheduling impli-
cations first (Hall et al, 2002) or by stakeholders unable to concur on project
goals (DeMarco and Lister, 2003) and have serious negative consequences
on project, including project failure (Iacovou and Dexter, 2004). To miti-
gate negative effects of scope creep, Carter et al (2001) suggested combin-
ing evolutionary prototyping and risk-mitigation strategy. Another related
phenomenon is requirements scrap which is defined as a situation when the
scope of a project both increases but also decreases (Kulk and Verhoef,
2008). Whether increase of the project scope is simply scope creep, de-
crease of the scope could be a result of shrinking budgets or running out
of schedule (Kulk and Verhoef, 2008). In our recent study about overscop-
ing, defined as setting a scope that requires more resources than are avail-
able (Bjarnason et al, 2012), we identified and empirically investigated six
main causes of overscoping and we confirmed that overscoping can have
serious negative effects, including: many changes after the project scope
is set, quality issues, wasted effort and customer expectations not always
met (Bjarnason et al, 2012). The visualizations presented in this paper help
to address both scope creep and scope scrap challenges by providing a ro-
bust overview over scoping decisions.

Visualizing information improves comprehension, particularlywithmulti-
dimensional data sets (Tufte, 1990) such as the requirements engineering
decision making tasks considered by Gotel et al (2007). Visual notation
supplemented by accompanying text according to dual channel theory (Moody,
2009) have been shown to improve comprehension even further.

Given that customers of software products are often non-technical peo-
ple (Avison and Fitzgerald, 1998) and that requirements engineering is
a communication intensive phase of software development, it is surpris-
ing that only a small number of studies focus on visualization in require-
ments engineering (Gotel et al, 2007). Visualizations appear to be princi-
pally used in later phases of the development lifecycle (Gotel et al, 2007),
e.g. for creating visual representations of the code (Ball and Eick, 1996),
to support test data selection (Leon et al, 2000) and to summarize bug
reports (D’Ambros et al, 2007). Several researchers focused on visualiz-
ing open source software development projects, proposing visual tech-
niques for: code clone analysis (Livieri et al, 2007), project communica-
tion (Oezbek et al, 2010), software evolution (Hanakawa, 2007) and analy-
sis of developer social networks (Jermakovics et al, 2011).

Three principle applications for visualization were identified in related

320



2. BACKGROUND AND RELATED WORK

work in requirements engineering (Gotel et al, 2007). The first application
is to visualize structure and relationships between requirements, e.g. using
graph-based visualization (Austin et al, 2006). The second application is to
support requirements elicitation by visualizing soft goals (Sen and Jain,
2007) or creating a ’Rich Picture’ of the system to be developed (Check-
land, 1981). The third application of requirements visualization is mod-
eling. Several visual modeling techniques were proposed, e.g. UML di-
agrams (UML, 2010), the i* framework (Yu, 1997) and the KAOS frame-
work (van Lamsweerde and Letier, 2004). Gotel et al (2007) postulated the
need for more techniques to visualize requirements using metaphors to
improve communication. The small number of studies that focus on pro-
viding visual assistance for decision makers in requirements engineering
may suggest that requirements engineering field has yet to realize the ben-
efits that could be delivered by information visualization techniques (Gotel
et al, 2007).

Regnell et al (2008) proposed a requirements engineering classification
scheme based on the number of requirements and dependencies between
them, claiming that most research papers seek to validate a proposed re-
quirements engineering method or tool in small and medium scale con-
texts. This approach contrasts with work by Berenbach who reports a com-
monmisconception about requirements engineering is the expectation that
processes that work for a small number of requirements will scale (Beren-
bach et al, 2009). There is evidence that scalable requirements engineer-
ing tools and methods should be implemented before the company and
the number of requirements begin to grow rapidly (Berenbach et al, 2009;
Wnuk et al, 2011) but the body of published work addressing large and
very-large requirements engineering contexts is small.

Among the related work that reports a technique or solution suitable
for large-scale software engineering contexts, Carman et al (1995) proposed
a framework for software reliability while Garg (1989) presented an infor-
mation management model for large automotive projects. Among the re-
lated work that reports empirical evidence from large-scale contexts, Kon-
rad and Gall (2008) reported lessons learned from large-scale requirements
engineering projects - mentioning scope change and creep as one of the
main challenges. Bergman et al (2002) investigated the political nature of
requirements engineering for large systems while Ebert (2004) presented a
technique for pragmatically dealing with non-functional requirements in
large systems. Boehm (2006) identified increasingly rapid change as one of
the future challenges for software engineering processes, Herbsleb (2007)
called for more research to improve management of global development
efforts while Northrop et al (2006) explored challenges of Ultra-Large-Scale
systems. Across this body of related work, little research was reported for
supporting large-scale requirements decision making by using visualiza-
tion techniques.

321



PAPER VI: SCOPE TRACKING AND VISUALIZATION FOR VERY
LARGE-SCALE REQUIREMENTS ENGINEERING

3 Case Study Description

 Strategy 

Product Product2 Product3 ProductN 

…..
Features 

F1 

F7

F4

F

F6
F3 

F2 

F

 Features are 
 implemented  

I1 
I7

I4

I9

I6
I3 

I2

I8

Requirements 
 user stories 

 test cases 

Unit of analysis 

Figure 6.1: The company’s context.

The case study was conducted at a large company that uses integrated
and incremental developmentmodel to deliver embedded software system
product lines (Schmid, 2002) for the global market. The company has re-
cently transitioned to an agile-inspired methodology inspired by ideas and
principles from eXtreme programming (XP) (Beck and Andres, 2004) and
Scrum (Schwaber and Beedle, 2002). The continuous development model,
with frequent product releases, replaces a phase-based process.

As a part of the process transitions, the company has adopted the fol-
lowing practices: (1) one continuous scope and release planning flow, (2)
cross-functional development teams, (3) gradual and iterative detailing of
requirements, (4) integrated requirements engineering and (5) user stories.
The company emphasizes user stories (Cohn, 2004) for capturing user in-
tentions and emphasizes user story acceptance criteria to ensure that user
stories are correctly implemented. Requirement details are now iteratively

322



3. CASE STUDY DESCRIPTION

refined and all requirements relatedwork is delivered by a cross-functional
development team containing developers, business analysts, requirements
engineering and software architects.

The company’s context is depicted in Figure 6.1. The corporate strategy
describes the long term (two to three year) goals and strategies, similar to
the concept of roadmaps described by Regnell and Brinkkember (2005).
The company releases about 50 products on yearly basis with product def-
initions derived from the strategies and containing up to 100 new features.
Some products are only small adaptations of previous products while other
products contain significantly more innovation represented by (up to) 100
new features. Features are elaborated as user stories and requirements then
implemented using test-driven development.

M0 M1 M2 DO AE ES EC AI I 

W D NF 

Figure 6.2: An example history of changes for three features. The first fea-
ture, marked with dashed lines was successfully implemented. The sec-
ond feature marked with solid arrows was withdrawn. The third feature
marked with dashed-dotted arrows was discarded. The states are marked
as follows: NF - New Feature, DS - Definition Started, DO - Definition On-
going, AE - Awaiting Execution, ES - Execution Started, EC - Execution
Completed, W - Withdrawn, D- Discarded. The states marked gray are the
terminal states used in the analysis in Section 6

Feature management is performed using the state-machine shown in
Figure 6.2. Each newly created feature begins in an administrative state
called New feature then enters the process at state M0. M0 validates that this
newly created feature has a sponsor, sufficient business justification and is
in line with the associated product strategy. Upon success, the feature is
promoted to M1. Sets of features in M1 are prioritized, across all prod-
uct lines, by scope owners using a one-dimensional prioritization method
based on business value. The prioritized list is later used by the develop-
ment teams to guide implementation and integration scheduling. A fea-
ture may be returned to the M0 state if further definition or refinement is
required.

After prioritization, features are promoted to M2. Development re-
sources are consulted and implementation schedules are defined within

323



PAPER VI: SCOPE TRACKING AND VISUALIZATION FOR VERY
LARGE-SCALE REQUIREMENTS ENGINEERING

a continuous delivery pipeline tool that controls resource and delivery
scheduling. Due to resource constraints, it is unusual for feature priori-
ties to be modified at this stage due to overbooked development resources
or other reasons that impact the delivery date. Generally, the higher the
feature priority, the faster it should be implemented and delivered.

Features then pass through several development-related states, includ-
ing: Definition Started, Definition Ongoing, Awaiting Execution, Execution Started
and Execution Completed. A feature can exit this sequence at any time, tran-
sitioning to one of the following states: Withdrawn, Discarded or Already
Supported.

Records of all state changes, including their timestamp and reason, are
stored in a corporate database. This development history, combined with
feature attributes such as product line or stakeholder, was used as the data
source for the visualizations presented in this paper. In the three examples
depicted in Figure 6.2, we note that two features were sent back to the ’pre-
vious’ state. This behavior is not prohibited by the process but it negatively
impacts overall development efficiency. While the visualization depicted
in Figure 6.2 can support the analysis of a small number of features, it
is not suitable for the simultaneous analysis of hundreds or thousands of
features.

4 Research methodology

In this section, we present the research methodology, the research ques-
tions, and the data collection methods used in the study.

4.1 Research questions

Two research questions investigated in this study are outlined in Table 6.1,
complemented by aim. The first research question is focusing on different
aspects related to efficiency and scalability of the visualized techniques.
This question is detailed in four research subquestions. Research questions
RQ1a, RQ1b, RQ1c and RQ1d focus on improvement to the Feature Sur-
vival Chart+ technique introduced in our previous work. Research ques-
tion RQ2 investigated visual techniques for decision patterns.

4.2 Research design and methods used

The research reported in this paper has been conducted using an engi-
neering approach (also called pragmatism stance (Easterbrook et al, 2007))
which focusesmainly on obtaining practical knowledge as a valuable source
of information. We opted for using a flexible research design and de-
rive theories regarding scope visualization from interviews with practi-
tioners (Robson, 2002). We selected a case study research strategy since

324



4. RESEARCH METHODOLOGY

Table 6.1: Research questions.

Research question Aim
RQ1: How useful is FSC+ as de-
cision support for enabling scope
management in very-large agile-
inspired context?

To investigate how to visualize
scope changes in very-large agile-
inspired context.

RQ1a: What should be visualized
on the Y-axis of the FSC+?

To investigate what should be
represented on the Y-axis.

RQ1b: How visualize the tem-
poral aspect on the X-axis of the
FSC+?

To understand how to visualize
time on the X-axis.

RQ1c: How the FSC+ should be
sorted?

To investigate the most efficient
ways of sorting.

RQ1d: What should be filtered
when creating the FSC+?

To identify the optimal way of fil-
tering the information to be visu-
alized by the FSC.

RQ2: How do requirements de-
cision patterns facilitate require-
ments process analysis?

To investigate possible ways of
visualizing decision patters.

RQ 2a: How the analysis of deci-
sion patterns can help in under-
standing the requirements scop-
ing process?

To investigate possible ways to
analyze decision patterns.

RQ2b: How can visualization of
decision patterns can be used to
facilitate process improvement?

To investigate possible ways of
visualizing decision patters.

325



PAPER VI: SCOPE TRACKING AND VISUALIZATION FOR VERY
LARGE-SCALE REQUIREMENTS ENGINEERING

it is reported as suitable for software engineering research (Runeson and
Höst, 2009) and considered as well suited for requirements engineering re-
search (Wieringa and Heerkens, 2007). Finally, case studies could be used
to investigate phenomena in their natural contexts (Yin, 2003).

The study was conducted in an action research mode (Robson, 2002).
Action research which focuses on investigating real and relevant problems
and improve studied context. Our goals were not only to understand the
scope process at the case company but also to make improvement propos-
als resulting from applying the proposed visualization and analysis tech-
niques directly on the studied case company. In this way, we can receive
both (1) an improvement of a practice of some kind and (2) and improved
understanding of the studied problem (Wieringa and Heerkens, 2007).

Two methods for collecting empirical data were used in this study. In
the first phase of the study, we used content analysis to analyze the data
related to features scoping at the case company. This technique is well
suited for collecting large volumes of data (Singer et al, 2007). Further,
content analysis is an unobtrusive technique where the act of measuring
doesn’t change the actual values measured (Robson, 2002). Finally, the
information collected during content analysis is in a written form which
allows automatic analysis and tool support.

In the second part of the study, we used interviews to collect empiri-
cal data. Interviews are a straightforward and inquisitive way of collect-
ing opinions and other information (Singer et al, 2007). Despite its time
consuming nature, interviews allow asking following up questions, inter-
preting the tone of the participants’ voice and intonations. Furthermore,
interviews improve the control over the quality of information gathered
during the first part of the study (Singer et al, 2007).

In this study, semi-structured interviews (Robson, 2002) with a high
degree of discussion were conducted. We used a set of predetermined
question, but the order how asking them could be changed upon the in-
terviewer’s perception of what seems to be the most appropriate. Finally,
interviews allowed us to discuss the results from the content analysis as
well as interpret and validate our findings together with practitioners from
the company.

Planning/Selection. Several brainstorming sessions were held. During
the sessions, researchers discussed and adjusted the goals of the research
with the needs of the practitioners. The requirements scoping process and
the data generated by the process were also discussed during themeetings.
Further, the decisions which data should be extracted and investigated in
this study were made.

When deciding which practitioners to interview, we used a combina-
tion of convenience sampling and variation sampling (Patton, 2002). The
roles of participants were selectedwith respect to the interview instrument.
One practitioner at the case company acted as a ’gate keeper’ ensuring that
the selected participants are representative and suitable data points in the

326



4. RESEARCH METHODOLOGY

study.
Data collection. Researchers were granted access to a database where

the history of feature scope changes is stored. Several scripts that extract
the history of features were developed and executed. The extracted dataset
contained a detailed history of 8728 features . The extracted data was eval-
uatedwith one practitioner from the case company to ensure its correctness
and usefulness for further analysis.

The history was then analyzed using a tool developed in Java. The ini-
tial analysis included parsing and calculating lead-times between various
scope states. After the history of each feature was read and analyzed the
tool created detailed reports in an Excel format. Finally, the tool visualized
the scope changes with given criteria, depicted in Figures 6.3, 6.4 and 6.5.

The interview sessions were scheduled for 60 minutes with the possi-
bility to reduce time or prolong it. The interviews were recorded and an-
alyzed using content analysis. The results from each interview were send
back to the interviewees for validation.

4.3 Validity evaluation

In this section, threats to validity are discussed according to four perspec-
tives on validity proposed by Yin (2003).

Construct validity is concerned with establishing appropriate methods
and measured for the studied phenomena or concepts. By using the scope
changes history stored in a database, we minimized the subjectivity of and
analyzed data. Further, the process of data extraction was supervised by
one practitioner from the case company who ensured that all administra-
tive changes in the scope and other ’unimportant’ data was removed. Fi-
nally, we used interviews as a second source of evidence about the studied
phenomenon in order to increase our understand and the quality of ana-
lyzed data.

Internal validity is concerned with uncontrolled confounding factors
that may affect the studied causal relationships. All inferences reported
in Section 5 based on the analysis of the datasets were discussed with the
interviewees during the interviews. In that way, not only the correctness
of the inferences were confirmed but also alternative explanations for ob-
served phenomena were explored. Finally, we used pattern matching of
similar behavior of features when developing inferences.

Reliability is concerned with the degree of repeatability of the study.
We have reported the procedures used in the study to avoid biases and en-
able seamless replications. The analysis of the features scope changes was
automated and thus complete replicability was ensured. The results from
the interviews were recorded and written down to enable further analysis.
Finally, the interviewees acted as audits towards the results of the scope
changes database analysis.

External validity is concerned with the ability to generalize the study’s

327



PAPER VI: SCOPE TRACKING AND VISUALIZATION FOR VERY
LARGE-SCALE REQUIREMENTS ENGINEERING

findings. We are aware that our results are based on a single case study
with a single unit of analysis. However, the fact that all available features
at the case company (8728) were analyzed in this study greatly increase
external validity of the findings.

5 Feature Survival Charts+

The Feature Survival Chart+ technique is demonstrated in Figure 6.3 and
Figure 6.5, illustrating two significant development efforts at the case com-
pany. The company uses an iterative development model with continuous
creation and execution of features. Therefore, the FSC+ charts are an evo-
lution of the previously reported visualizations (Wnuk et al, 2008, 2009)
with time now represented on the X-axis as a relative value: all features
begin at the origin of the X-axis regardless of their actual start date. Order-
ing along the Y-axis is based on the time spent in the process before being
removed from scope. Features that remain in scope for the duration of a
release are at the bottom of the chart; features that are removed early in the
release schedule (e.g. in the Withdrawn or Discarded) states are at the top
of the chart. Features still in scope are in green, completed features are in
blue and withdrawn or discarded features are in red.

This presentation facilitates identification of two behaviors: (1) the cor-
porate response time for scoping decisions and (2) the behavior of fea-
tures that remain in the process for extended periods. The sooner a fea-
ture transitions to blue (analyzed and implemented) or red (removed from
scope), the faster the response time and the less opportunity for wasted
effort (Wnuk et al, 2012), particularly in rapidly changing MDRE contexts.

FSC+ charts are generated using a Java implementation that supports
dynamic filters, multiple y-axis presentation sort orders and control of the
meaning and length of the X-axis based on user preferences. The imple-
mentation also supports pan and zoom operations and data introspection
for individual features. Control over the color scheme and temporal repre-
sentations (absolute and relative) are also supported.

A magnified view, using the zoom feature, is shown in Figure 6.4. We
see an area of 14 features and their early life in the process. One feature
(feature number 9855) has been in the process for a very short time (a small
green area) and was discarded quite early. To avoid cluttering the view,
the implementation shows the time and state names only for features with
more than 100 hours in process. The displayed information can vary de-
pending on the magnification level.

Visual inspection of the the main application features stream (Figure
6.3) and the core software components stream (Figure 6.5) shows a green
region with a similar shape in both charts. However, the red area seems
to be larger in Figure 6.3 (application stream). Further analysis revealed
that 831 features from the core components stream and 1351 from the ap-

328



5. FEATURE SURVIVAL CHARTS+

Figure 6.3: FSC+ for the main application features stream of development
at the case company.

329



PAPER VI: SCOPE TRACKING AND VISUALIZATION FOR VERY
LARGE-SCALE REQUIREMENTS ENGINEERING

Figure 6.4: An example of a zoomed in view from Figure 6.3

plication streamwere rejected. The average time in process before removal
was 77 days for the core components features and 65 days for application
stream features. This difference is statistically significant (p-value<0.001
for two-sided Kolmogorov-Smirnov test), illustrating the utility of the vi-
sualization for guiding further investigative efforts.

The differences between the number of features withdrawn or rejected
in these two development streams may indicate that the company priori-
tizes application features over core component features. This behavior is
acceptable, but only to a certain degree, since implementing application
features requires implementing core software components first (e.g. one
core software components feature can enable several application features).
The FSC+ facilitates identification of these differences with a simple visual
inspection.

There is also a blue region on both visualizations identifying features
(Figures 6.3 and 6.5) that were sent to the development team then quickly
completed. This behavior is highly desirable desired by the case company
but it can seen that only a small number of features exhibited this behav-
ior. In most cases, significant time elapsed before the features were either
implemented or withdrawn. FSC+ supports a rapid assessment of the pro-
portion of features that demonstrate this behavior pattern.

There were 428 core software component features (Figure 6.3) and 635
application features (Figure 6.5) that reached execution completed in the
dataset. The average period from first entry in the process to a completed
implementation was 132 days for core component features and 90 days for
application features, a statistically significant difference (p-value<0.001 for
two-sided Kolmogorov-Smirnov test).

A total of 3818 features were withdrawn or discarded from the two
streams and their average time in the process was 62 days for the appli-
cation features and 102 days for core component features. The difference is
statistically significant (p-value<0.001 for two-sided Kolmogorov-Smirnov
test). The average implementation time, including software definition, was
57 days. Requirements analysis, definition and decision making took, on
average, 17 days longer for withdrawn features than for implemented fea-
tures.

330



5. FEATURE SURVIVAL CHARTS+

Figure 6.5: The FSC+ for the core software components stream of develop-
ment at the case company.

331



PAPER VI: SCOPE TRACKING AND VISUALIZATION FOR VERY
LARGE-SCALE REQUIREMENTS ENGINEERING

Next, we looked at the time spent in requirements definition, analysis
and decision making for features that were implemented and discarded.
Implemented features spent an average of 21 days in requirements defi-
nition and decision making while withdrawn or discarded features spent
44 days in the same states. This difference is statistically significant (p-
value<0.001 for two-sided Kolmogorov-Smirnov test). One possible inter-
pretation of this result is that more effort put on requirements engineering
and preparing for decisionmaking resulted in rejecting features rather than
accepting them.

Feedback during the workshop. The FSC+ visualizations were pre-
sented to industry practitioners in a workshop setting. All workshop par-
ticipants expressed positive opinions about the FSC+ technique. Accord-
ing to the participants, FSC+s facilitate a quick review of scoping history.
However, explaining the FSC+, and how they should be interpreted, took
more time than expected. In particular, explaining the sort method chosen
for the visualization and the accompanying reasoning required extensive
explanations for the participants and several ways of sorting the charts
were discussed.

The coloring scheme was readily understood and participants consid-
ered color an effective presentation of howmany features were withdrawn
and how many were implemented. Participants considered the ability to
visualize all features in database useful, but felt that visualizing subsets,
e.g. one product or one development stream, as considerably more useful.

The large number of decision patterns was highly surprising for the
workshop participants and several of them insisted on booking individual
follow up interviews with the lead researcher to further investigate this
phenomenon.

5.1 FSC+ as a visual technique for very-large agile-inspired
projects: RQ1

Process managers and those who work with process development graded
FSC+ as very useful. Two respondents gave FSC+ a score of 9 out of 10
points (extremely useful) and three respondents graded FSC+ as very useful.
However, respondents who worked with limited sets of features (usually
not more than 100) on a daily basis graded FSC+ as only partly useful. One
respondent mentioned that "I remember what is happening with my fea-
tures so this solution is not particularly useful forme". Thus, the usefulness
of FSC+ appears to be directly correlated with the size of the dataset, reach-
ing full potential with very-large datasets. Nevertheless, the respondents
who worked with features on daily basis expressed a desire to visualize
and analyze the subset of features for which they were responsible.

All respondents considered pan and zoom capabilities positively. Two
respondents suggested that the panning capability facilitated direct com-
parisons between adjacent charts, facilitating alignment. One respondent,

332



5. FEATURE SURVIVAL CHARTS+

who worked with features on a daily basis, did note that filters could be
used instead of zooming.

Tasks that FSC+ could support. Interview respondents identified sev-
eral further tasks that FSC+ could potentially support. Communicating
the current scope and scope changes were the most frequently mentioned
tasks. Five respondents mentioned providing an overview of the "scope
history" and the "health of the scope". One respondent suggested that
FSC+ could help visualize congestion and to visualize how various sub-
processes are synchronized. Another interviewee suggested that FSC+ can
show the wasted implementation effort for features that were sent to im-
plementation and then canceled. Three respondents mentioned that FSC+
can help analyze features that are "stuck in the process": FSC+ are much
better than the current database filters since they also visualize how long
the features remained in the process without a final decision. Nine out of
ten respondents pointed out that the ability to compare FSC+ that were
generated for differing criteria is very useful for improved process under-
standing and can provide valuable feedback for process improvement ac-
tivities.

5.2 X-axis and Y-axis representations: RQ1a, RQ1b

The majority of interview respondents suggested that the Y-axis should
represent development effort and the greater the effort required for a cer-
tain feature the thicker the line. As a result, the green color areas will more
accurately represent the effort spent on both implemented and withdrawn
features. At the same time, the green areas for implemented features will
represent the total effort spent on them. Two respondents suggested that
priority should be on the Y-axis. On the other hand, three respondents said
that priority is changing frequently and therefore it would be less useful
than effort. Finally, one respondent pointed out that the current ’one-size
for all features’ representation is sufficient since it gives a good overview
about the number of features.

Regarding the X-axis, four respondents suggested analyzing one year
in the past. One respondent suggested that the unit on the X-axis should be
one week. On the other hard, two respondents working with process man-
agement and improvement wanted to see the entire time on the X-axis.
One respondent suggested starting the FSC+ chart from the M2 state since
then features are discussed with development effort. Another respondent
wanted FSC+s to start from the definition ongoing state since that is the mo-
ment were the implementation effort and waste can be calculated. The
current FSC+ implementation allows starting the chart from any point on
the X-axis.

333



PAPER VI: SCOPE TRACKING AND VISUALIZATION FOR VERY
LARGE-SCALE REQUIREMENTS ENGINEERING

5.3 Sorting and filtering FSC+s: RQ1c and RQ1d

Four respondents suggested that the FSC+ should be filtered per prod-
ucts. At the same time, 5 respondents suggested that looking at the entire
stream of development is interesting from the management and overview
perspective. One respondent wanted to filter out only legacy features, so
features that have already been noticed in the system for earlier activities.
Five respondents suggested filtering out: (1) executed features, (2) with-
drawn features and (3) features in the process. Among them, three respon-
dents wanted to filter out features that were stuck in the process for a long
time. Finally, one respondent suggested filtering per stakeholders that is-
sued features.

Two respondents suggested sorting per lead-time in a specific state.
One respondent focused on sorting by the lead-time in M2 state, one fo-
cused on the M1 state. Sorting per M2 leadtime gives an overview of how
log it took to make an agreement with the development. Sorting per M1
state gives an overview of how long the prioritization phase took. Further,
three respondents stressed that the current way of sorting (see Figure 6.3
and Figure 6.5) is sufficient and gives a good overview of the agility of the
analysis and decision processes. Finally, two respondents suggested sort-
ing by priority and placing the most important features at the top of FSC+.
This view allows comparing the lead-time for the most important features
(placed at the top) with the least important (pleaced at the bottom).

The three respondents that wanted to filter out features that are stuck
in the process suggested sorting per total time in the process, including
requirements analysis and software definition states. One respondent sug-
gested sorting per time in definition ongoing state while other respondent
suggested sorting per time in execution started. All mentioned ways of sort-
ing are possible within the current implementation.

6 Feature decision patterns analysis and visual-

ization: RQ2

Decision patterns are state changes that features undergone. 2248 deci-
sion patterns were identified in the dataset. The decision patterns were
analyzed in collaboration with industry participants from the case com-
pany. Table 6.2 depicts the top twenty decision patterns. The patterns were
sorted according to their frequency in the dataset. The top 10 patterns have
over 100 features. The patterns were categorized into unsuccessful, success-
ful and in process. Successful decision patterns represent features that were
implemented, unsuccessful represent features that were withdrawn or dis-
carded and in process represent features still in the process.

There seems to be no dominant pattern in the dataset as the most fre-
quent pattern was followed by only 294 features out of 8728. The the two

334



6. FEATURE DECISION PATTERNS ANALYSIS AND VISUALIZATION: RQ2

Table 6.2: Feature decision patterns.

Frequency Type Decision pattern
294 Unsuccessful M0 –> D –> M0 –> D –> M1
244 Unsuccessful M0 –> M2 –> M0 –> D
231 Successful M0 –> M1 –> M2 –> DO –> AE –> ES –> EC
201 In process M0 –> M1 – M0 –> NF
194 In process M0 –> M1 –> M2
151 Unsuccessful M0 –> W –> M0 –> W
132 In process M0 –> M1 –> M2 –> DO
109 In process M0 –> M2
103 In process M0 –> M1 –> M2 –> DO –> AE –> ES
102 Successful M0 –> M2 –> AE –> EC –> M0 –> EC –> M0

–> EC
98 In process M0 –> M1 –> M0
93 Successful M0 –> EC –> M1 –> EC –> M0 –> EC –> M0

–> EC –> M0 –> EC
88 Unsuccessful M0 –> D –> M1 –> D
80 Unsuccessful M0 –> M2 –> D –> W –> D –> W
79 Successful M0 –> M1 –> M2 –> EC
75 In process M0 –> M1
73 Successful M0 –> M2 –> EC –> M0 –> EC –> M0 –> EC
72 In process M0
66 In process M0 –> NF
64 Unsuccessful M0 –> M1 –> W

335



PAPER VI: SCOPE TRACKING AND VISUALIZATION FOR VERY
LARGE-SCALE REQUIREMENTS ENGINEERING

most frequent patterns turned out to be unsuccessful patterns. Further,
two most frequent patterns have 4 or 5 state changes. In both patterns, fea-
tures were send back in the process to the initial state called M0. The third
most frequent decision pattern was a successful pattern. In this decision
pattern features went straight through the state machine, according to the
official process description, and were not send back in the process.

Nine out of 20 most frequent decision patterns are ongoing patterns.
As these features have not yet reached their final states, we could assume
that their final decision patterns will change. Five patterns are successful
patterns and six patterns are unsuccesful patterns. Looking further at the
frequency of the patterns, there seems to be no clear dominance of one
type of decision pattern over another. Therefore, we further analyzed the
identified decision pattern to identify decision archetypes.

6.1 Decision archetypes: RQ2a

Decision archetypes are the feature decision characteristics based on the
analyzed decision patterns. The archetypes combine time characteristics
and decision patterns of features. We have identified five decision archetypes
based on our dataset:

• Fast execution - is the most desirable feature archetype from the pro-
cess efficiency perspective. Fast executions are features that were
quickly analyzed and executed with none or not many backwards
transitions. The third most frequent decision pattern (with 231 fea-
tures) is an example of not sending features back in the process. Only
190 features out of 8728went through the process in less than 3month
andwith one or none decision cycles. 437 features were implemented
in not more than 3 months and with up to 3 decision cycles.

• Fast rejection - is the second most desirable feature archtype from the
requirements and product definition efficiency perspective. We de-
fine a fast rejected feature as a feature that was rejected in less than
one month from its inception and with not more than one decision
cycle. Only 135 features were categorized as fast rejection based on
the above criteria. Increasing the time to reject to 3 months (more
than the average leadtime for all withdrawn features) gave 249 fast
rejections. Therefore, it appears that the number of decision cycles is
influencing the behavior more than the leadtime. Allowing up to 3
decision cycles and 3 months lead-time gave 1104 fast rejection fea-
tures.

• Slow execution - is still successful but less desirable feature archetype
from the process efficiency perspective. Slow executions are features
that were executed inmore than 3months. 2176 features were catego-
rized to this archetype. Further, for 188 features there were four or

336



6. FEATURE DECISION PATTERNS ANALYSIS AND VISUALIZATION: RQ2

more decision cycles (passes through the same state in the state ma-
chine) before these features reached implementation.

• Slow rejection - is the decision archetype where a feature stays in the
process for quite some time, circulates over the state machne and is fi-
nally rejected. 2293 feature tookmore than 3 months to reject or with-
drawn. Further, 617 features cycled three or more times throughout
the state machine before being withdrawn or executed.

• Evolving - is a feature that was sent back in the process process. 5863
features (67%)were categorized as evolving, 1950 features (22%)were
not evolving and for 915 features it was not yet sure if they will be
evolving or not.

6.2 Interview results regarding decision patterns analysis:
RQ2

All respondents considered analyzing decision patterns as useful. Five
respondents suggested that analyzing decision patterns helps to see how
many back and forth transitions were made. Three respondents suggested
that the decision patterns analysis could help in understanding to what
degree the process was followed. In particular, one respondent suggested
that decision patterns analysis could help to understand how the process
was implemented by different organizations of the company.

All interview respondents were negatively surprised about the number
of decision patterns identified. One respondent suggested that the high
number is a result of using the process to discuss features by changing the
states back and forth rather than making a state change after these discus-
sions. Three respondents pointed out that the high number of patterns is
relatedwith a lot of administrative changes in the features databse. Further
it may be a result of pure process knowledge among some practitioners
and thus incorrect usage of the tool in relation to the process description.
Finally, one respondent mentioned that "this analysis is very interesting
and should be presented to the top management".

6.3 Visualizing decision patterns: RQ2b

Figures 6.6 and 6.7 depict atomic decisions visualized using a flowgraph.
The arrows in the graph represent atomic transitions. The length of the
arrows does not have any meaning. The width of the arrows represent the
frequency of a certain transition in the entire dataset. The transitions are
divided into forward transitions (Figure 6.6) and backward transitions (Figure
6.7). Forward transitions are transitions that lead to implementation while
backwards transitions are the opposite transitions. Transitions from the
two terminal states (withdrawn and discarded) and from execution completed
are also considered as backwards transitions.

337



PAPER VI: SCOPE TRACKING AND VISUALIZATION FOR VERY
LARGE-SCALE REQUIREMENTS ENGINEERING

The most frequent transition among all analyzed transition is the tran-
sition between M0 and M1 states. The second most frequent transition is
between M1 and M2. Interesthignly, the fourth most frequent transition
in the dataset is the transition between M0 state and execution completed.
This transition, visualized at the top of Figure 6.6 is a way of "bypassing"
the entire process and sending the features from the start to the end. Ad-
ministrative changes in the tool are one of the reasons for this transitions
together with the fact that several features cycled in the process back and
forth.

Results from interviews. Four of the interview respondents considered
the visualizations (Figures 6.6 and 6.7) as partly useful and the remaining
respondents very useful. The reason why some respondent considered the
visualization partly useful was because they would prefer the visualiza-
tions of the streams done separately since every organization implemented
some additions to the process. However, all these four respondents agreed
that the visualization of the entire dataset shows general process adherence
at the case company.

Respondents working with process improvement andmanagement, in-
cluding high-level management considered visualizations as very useful.
The most interesting transitions to analyze turned out to be transitions M0
–> Execution completed. One manager mentioned that these kind of tran-
sitions are not possible according to the official process description and
thus it is very valuable to investigate the reasons for this way of using the
process. Another respondent suggested that the transition M0 –> Execu-
tion completed was used to clean up features that were in the process for
a long time (execution completed state was used instead of withdrawn or
discarded). Another respondent explained that the high number of these
transition s is caused by the fact that one feature was reused in several
product and thus resubmitted to the processes several times. One respon-
dent suggested that visualization (Figure 6.6 and Figure 6.7) clearly shows
that the process was used as a way to communicate and resolve questions
regarding features instead of email of live negotiations.

Three respondents mentioned that Figures 6.6 and 6.7 clearly show that
some people did not use the tool and the process in the right way. Finally,
one respondent pointed out that the visualizations show that the demo-
cratic model was insufficient at the company and suggested that a dicta-
torship model would have been much better in this case. His conclusion
in especially interesting in relation to the Ultra Large-Scale Systems liter-
ature (Northrop et al, 2006) suggesting that for ultra-large systems overall
control is not possible and thus these systems need to exist as separately
managed system. In our case, it seems to be that around 10 000 features is
not yet large enough for efficient decentralized management.

338



6. FEATURE DECISION PATTERNS ANALYSIS AND VISUALIZATION: RQ2
 

M
0 

 M
1 

 M
2 

D
O

 
A

E
 

E
S

 
E

C
 

W
 

D
 

DDN
F 

D
O

E
S

E
C

A
E

M
1

M
2

55
26

 

23
64

 

34
72

 
44

63
 

14
62

 
12

10
 

17
00

 

73
6 

24
21

 

13
4 

84
0 

42
8 

92
 

23
2 

17
0 

30
3 

31
6 

26
8 

81
4 

29
2 

40
4 

17
8 

52
6 

9 

23
26

 

11
4 

27
 

10
3 

10
 

63
 

37
0 

48
4 

62
5 

15
90

 
4 

36
 

Fi
gu

re
6.
6:
Fo

rw
ar
d
tr
an
si
ti
on

s
vi
su
al
iz
ed
.

339



PAPER VI: SCOPE TRACKING AND VISUALIZATION FOR VERY
LARGE-SCALE REQUIREMENTS ENGINEERING

 

  M
0

 
   M

1 
   M

2 
D

O
 

A
E

 
E

S
 

E
C

 

W
 

D
 

DD N
F 

D
O

E
S

E
C

A
E

  M
1

 M
2

2385
 

842 

585 
1626 

60 
30 

48 

548 

2298 

88 

663 

531 

37 

267 

138 

25 

161 

31 

87 

24 

2 

498 
872 

1 
454 

8 
8 

41 
8 

8 
2 

 
96 

213 
? 

5 776 

347 

Figure
6.7:Backw

ard
transitions

visualized.

340



7. CONCLUSIONS

7 Conclusions

Effective scope management plays an important role in successful project
management (Iacovou and Dexter, 2004; Bjarnason et al, 2012). Issues with
managing the scopemay have negative consequences upon software projects
(Bjarnason et al, 2012). Development process information for 8728 features
was analyzed to investigate topics of interest such as process efficacy, effi-
ciency and adherence. Management decision patterns were extracted from
the production dataset and five archetypical decision patterns in use at the
case company were identified: fast execution, slow execution, fast rejec-
tion, slow rejection and evolving. The detailed analysis of process patterns
identified unexpected behaviors at the case company, triggering further
internal investigations.

Given the quantity of data available in this very-large scale require-
ments engineering context, new visualization techniques were required to
effectively capture meaning and information from the data set. The FSC+
technique was developed to visualize scope changes across the large num-
ber of features and then reviewed by 10 industry practitioners. FSC+s pro-
vided useful overviews of the scope history and the "health" of the devel-
opment efforts currently in scope. In general, FSC+was positively received
but the practitioners indicated that considerable flexibility was necessary
to meet the widely varying needs of the stakeholders, particularly in the
area of filtering the datasets. The FSC+ charts are generated using a Java
implementation that supports dynamic filters, multiple y-axis presentation
sort orders and control of the meaning and length of the X-axis based on
user preferences. The implementation also supports pan and zoom opera-
tions and data introspection for individual features.

Atomic decision patterns throughout the dataset were summarized us-
ing flow graphs with visually weighted edges representing frequency of
occurrence within the dataset. The industry practitioners found that this
visualization allowed them to quickly identify unexpected behavior in the
development process.

The reviewing practitioners found utility in all aspects of the present
work with senior management finding the work slightly more useful than
those chargedwith day to day execution. The new visualization techniques
greatly facilitate comprehension of process operations compared to direct
inspection of the raw data and practitioners felt that they could be used to
guide management decisions such as process optimization.

Future work focuses on further improvements to the FSC+ technique
and further improvements to the performance of the visualization tool.
Further empirical studies to confirm or deny the industrial applicability
of the technique are planned. Finally, further investigations of feature deci-
sion archetypeswill attempt to determinewhether the identified archetypes
are general, rather than specific to the case company, and whether there
may be any omissions from the set of archetypes.

341



PAPER VI: SCOPE TRACKING AND VISUALIZATION FOR VERY
LARGE-SCALE REQUIREMENTS ENGINEERING

Acknowledgment

This work was supported by VINNOVA within the UPITER2 project. We
would like to thank all anonymous interviewees and workshop respon-
dents for their invaluable contribution to this project.

342



7. CONCLUSIONS

Appendix A: Interview questions

Usefulness of visualizing the scope and FSC+:

1. How useful is according to You the FSC+ technique for scope visualiza-
tion?

2. Which tasks can FSC+ support?

3. How often would you use scope visualization in your daily work?

Show a FSC for their context and discuss the possible exten-
sions in Y -axis

4. What do you think about the moving map solution?

5. What do you think about the zooming in solution?

6. How would you like to be represented in the Y-axis? (priority, criticality,
size, impact etc.)

Filtering and sorting

7. What type of information should be filtered by FSC+?

8. How would you like the chart to be sorted?

9. What is the most optimal time-spam to visualize?

Decision patterns

10. Do you think that analyzing decision patterns would be useful for your
work?

11. Do you think that visualizing decision patterns would be beneficial
in your work?

Analyzing decision pattern

12. Howwould you interpret the number of unique patterns in the dataset?

13. How would you interpret the number of cycles in the patterns?

14. Why do so many paths terminate at illogical states?

343



PAPER VI: SCOPE TRACKING AND VISUALIZATION FOR VERY
LARGE-SCALE REQUIREMENTS ENGINEERING

344



REFERENCES

Bibliography

Alenljung B, Persson A (2008) Portraying the practice of decision-making
in requirements engineering: a case of large scale bespoke development.
Requirements Engineering 13(4):257–279

Aurum A, Wohlin C (2003) The fundamental nature of requirements en-
gineering activities as a decision-making process. Information and Soft-
ware Technology 45(14):945–954

Austin M, Mayank V, Shmunis N (2006) Paladinrm: Graph-based visu-
alization of requirements organized for team-based design. Syst Eng
9(2):129–145

Avison D, Fitzgerald G (1998) Information systems development method-
ologies techniques, and tools. John Wiley

Ball T, Eick S (1996) Software visualization in the large. Computer 29(4):33
–43

Basili V, Rombach H (1988) The tame project: towards improvement-
oriented software environments. IEEE Transactions on Software Engi-
neering 14(6):758 –773

Beck K, Andres C (2004) Extreme Programming Explained: Embrace
Change (2nd Edition). Addison-Wesley Professional

Berenbach B, Paulish D, Kazmeier J, Rudorfer A (2009) Software & Systems
Requirements Engineering: In Practice. Pearson Education Inc.

Bergman M, King J, Lyytinen K (2002) Large scale requirements analysis
as heterogeneous engineering. Scandinavian Journal of Information Sys-
tems 14(4):37–55

Bjarnason E, Wnuk K, Regnell B (2012) Are you biting off more than
you can chew? a case study on causes and effects of overscoping in
large-scale software engineering. Information and Software Technology
54(10):1107 – 1124

Boehm B (2006) Some future trends and implications for systems and soft-
ware engineering processes. Systems Engineering 9(1):1–19

Carlshamre P (2002) Release planning in market-driven software product
development: Provoking an understanding. Requirements Engineering
7:139–151

Carlshamre P, Sandahl K, Lindvall M, Regnell B, Natt och Dag J (2001) An
industrial survey of requirements interdependencies in software prod-
uct release planning. In: Proceedings of the Fifth IEEE International
Symposium on Requirements Engineering (RE 2001), pp 84–91

345



REFERENCES

Carman D, Dolinsky A, Lyu M, Yu J (1995) Software reliability engineer-
ing study of a large-scale telecommunications software system. In: Pro-
ceedings of the Sixth International Symposium on Software Reliability
Engineering, pp 350 –359

Carter RA, Antón A, Dagnino A, Williams L (2001) Evolving beyond re-
quirements creep: A risk-based evolutionary prototyping model. In:
Proceedings of the 5th IEEE International Symposium on Requirements
Engineering (RE’01, pp 94–101

Checkland P (1981) Systems Thinking, Systems Practice. John Wiley and
Sons Ltd.,

Cohn M (2004) User Stories Applied: For Agile Software Development.
The Addison-Wesley Signature Series, Addison-Wesley

D’Ambros M, Lanza M, Pinzger M (2007) "a bug’s life" visualizing a bug
database. In: Proceedings of the 4th IEEE International Workshop on
Visualizing Software for Understanding and Analysis, VISSOFT 2007,
pp 113 –120

DeGregorio G (1999) Visual tool support for configuring and understand-
ing software product lines. In: Proceedings of the 9th International Sym-
posium of the International Council on System Engineering, pp 1–7

DeMarco T, Lister T (2003) Risk management during requirements. Soft-
ware, IEEE 20(5):99 – 101

Denne M, Cleland-Huang J (2004) The incremental funding method: Data-
driven software development. IEEE Software 21:39–47

Easterbrook S, Singer J, Storey M, Damian D (2007) Guide to Advanced
Empirical Software Engineering, Springer, chap Selecting Empirical
Methods for Software Engineering Research, pp 285–311

Ebert C (2004) Dealing with nonfunctional requirements in large software
systems. Annals of Software Engineering 3(1):367–395

Fogelström N, Barney S, Aurum A, Hederstierna A (2009) When product
managers gamble with requirements: Attitudes to value and risk. In:
Proceedings of the 15th International Working Conference on Require-
ments Engineering: Foundation for Software Quality, Springer-Verlag,
Berlin, Heidelberg, REFSQ ’09, pp 1–15

Garg P (1989) On supporting large-scale decentralized software engineer-
ing processes. In: Proceedings of the 28th IEEE Conference on Decision
and Control, pp 1314 –1317 vol.2

Gorschek T, Wohlin C (2006) Requirements abstraction model. Require-
ments Engineering Journal 11:79–101

346



REFERENCES

Gotel O, Marchese F, Morris S (2007) On requirements visualization. In:
Proceedings of the Second International Workshop on Requirements En-
gineering Visualization, IEEE Computer Society, Washington, DC, USA,
REV ’07, pp 11–20

Greer D, Ruhe G (2004) Software release planning: an evolutionary and
iterative approach. Information and Software Technology 46(4):243 – 253

Hall T, Beecham S, Rainer A (2002) Requirements problems in twelve soft-
ware companies: an empirical analysis. IEEE Software 149(5):153 – 160

Hanakawa N (2007) Visualization for software evolution based on logical
coupling and module coupling. In: Proceedings of the Asia-Pacific Soft-
ware Engineering Conference, APSEC 2007. 14th Asia-Pacific, pp 214 –
221

Herbsleb J (2007) Global software engineering: The future of socio-
technical coordination. Future of Software Engineering 1(1):188–198

Höst M, BRegnell, JNatt och Dag, Nedstam J, CNyberg (2001) Exploring
bottlenecks in market-driven requirements management. Journal of Sys-
tems and Software 59(3):323–332

Iacovou C, Dexter A (2004) Turning around runaway information technol-
ogy projects. Engineering Management Review, IEEE 32(4):97 –112

Institute PM (2000) A Guide to the Project Management Body of Knowl-
edge (PMBOK Guide), 2000, Project Management Institute, Four Cam-
pus Boulevard, Newtown Square, PA 19073-3299, USA, chap Chapter 5:
Project Scope Management, pp 47–59

Jantunen S, Lehtola L, Gause D, DumdumU, Barnes R (2011) The challenge
of release planning. In: Proceedings of the Fifth International Workshop
on Software Product Management (IWSPM’2011), pp 36 –45

Jermakovics A, Sillitti A, Succi G (2011) Mining and visualizing developer
networks from version control systems. In: Proceedings of the 4th In-
ternational Workshop on Cooperative and Human Aspects of Software
Engineering, ACM, New York, NY, USA, CHASE ’11, pp 24–31

Karlsson J, Ryan K (1997) A cost-value approach for prioritizing require-
ments. IEEE Software 14(5):67–74

Karlsson L, Dahlstedt s, Natt Och Dag J, Regnell B, Persson A (2002) Chal-
lenges in market-driven requirements engineering - an industrial inter-
view study. In: Proceedings of the Eighth International Workshop on Re-
quirements Engineering: Foundation for Software Quality (REFSQ 2002)

347



REFERENCES

Kishi T, Noda N, Katayama T (2002) A method for product line scoping
based on a decision-making framework. In: Chastek G (ed) Software
Product Lines, Lecture Notes in Computer Science, vol 2379, Springer
Berlin / Heidelberg, pp 53–65, 10.1007/3-540-45652-X22

Klein G, Orasanu J, Calderwood R, Zsambok C (1995) Decision making in
action: Models and methods. New Jersey Norwood

Konrad S, Gall M (2008) Requirements engineering in the development of
large-scale systems. In: Proceedings of the 16th International Require-
ments Engineering Conference (RE 2008), pp 217–222

Kulk G, Verhoef C (2008) Quantifying requirements volatility effects. Sci
Comput Program 72(3):136–175

van Lamsweerde A, Letier E (2004) From object orientation to goal orien-
tation: A paradigm shift for requirements engineering. In: Wirsing M,
Knapp A, Balsamo S (eds) Radical Innovations of Software and Systems
Engineering in the Future, Lecture Notes in Computer Science, vol 2941,
Springer Berlin / Heidelberg, pp 153–166

Legodi I, Barry M (2010) The current challenges and status of risk manage-
ment in enterprise data warehouse projects in south africa. In: Proceed-
ings of the 2010 Proceedings of PICMET ’10: Technology Management
for Global Economic Growth, pp 1 –5

Lehtola L, Kauppinen M (2006) Suitability of requirements prioritization
methods for market-driven software product development. Software
Process: Improvement and Practice 11(1):7–19

Leon D, Podgurski A, White L (2000) Multivariate visualization in
observation-based testing. In: Proceedings of the 22nd International
Conference on Software Engineering, ACM, New York, NY, USA, ICSE
’00, pp 116–125

Livieri S, Higo Y, Matushita M, Inoue K (2007) Very-large scale code clone
analysis and visualization of open source programs using distributed
ccfinder: D-ccfinder. In: Proceedings of the 29th international confer-
ence on Software Engineering, IEEE Computer Society, Washington, DC,
USA, ICSE ’07, pp 106–115

Lubars M, Potts C, Richter C (1993) A review of the state of the practice in
requirements modeling. In: Proceedings of the IEEE International Sym-
posium on Requirements Engineering (RE’93), pp 2 –14

Moody D (2009) The physics of notations: Toward a scientific basis for
constructing visual notations in software engineering. IEEE Transactions
on Software Engineering 35:756–779

348



REFERENCES

Ngo-The A, Ruhe G (2005) Engineering and Managing Software Require-
ments, Springer, chap Decision Support in Requirements Engineering,
pp 267–286

Northrop L, Felier P, Habriel R, Boodenough J, Linger R, Klein M, Schmidt
D, Sullivan K,Wallnau K (2006) Ultra-Large-Scale Systems: The Software
Challenge of the Future. Software Engineering Institute

Oezbek C, Prechelt L, Thiel F (2010) The onion has cancer: some social
network analysis visualizations of open source project communication.
In: Proceedings of the 3rd International Workshop on Emerging Trends
in Free/Libre/Open Source Software Research and Development, ACM,
New York, NY, USA, FLOSS ’10, pp 5–10

Patton M (2002) Qualitative Research & Evaluation Methods. Sage Publi-
cation Ltd

Potts C (1995) Invented requirements and imagined customers: require-
ments engineering for off-the-shelf software. In: Proceedings of the Sec-
ond IEEE International Symposium on Requirements Engineering (RE
95), pp 128–130

Regnell B, Brinkkemper S (2005) Engineering and Managing Software Re-
quirements, Springer, chap Market–Driven Requirements Engineering
for Software Products, pp 287–308

Regnell B, Kuchcinski K (2011) Exploring software product management
decision problems with constraint solving - opportunities for prioriti-
zation and release planning. In: Proceedings of the Fifth International
Workshop on Software Product Management (IWSPM’2011), pp 47 –56

Regnell B, Beremark P, Eklundh O (1998) A market-driven requirements
engineering process: Results from an industrial process improvement
programme. Requirements Engineering 3:121–129

Regnell B, Berntsson Svensson R, Wnuk K (2008) Can we beat the com-
plexity of very large-scale requirements engineering? In: Lecture Notes
in Computer Science, vol 5025, pp 123-128

Robson C (2002) Real World Research. Blackwell Publishing

Ruhe G (2009) Product Release Planning: Methods, Tools and Applica-
tions. Auerbach Publications

Ruhe G, Ngo A (2004) Hybrid intelligence in software release planning. Int
J Hybrid Intell Syst 1(1-2):99–110

Ruhe G, Saliu M (2005) The Art and Science of Software Release Planning.
IEEE Software 22(6):47–53

349



REFERENCES

Runeson P, Höst M (2009) Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering
Journal 14(2):131–164

Savolainen J, Kauppinen M, Mannisto T (2007) Identifying key require-
ments for a new product line. In: Proceedings of the 14th Asia-Pacific
Software Engineering Conference, IEEE Computer Society, Washington,
DC, USA, APSEC ’07, pp 478–485

Schmid K (2002) A comprehensive product line scoping approach and its
validation. In: Proceedings of the 24th International Conference on Soft-
ware Engineering (ICSE 2002), pp 593–603

Schwaber K, Beedle M (2002) Agile software development with scrum. Se-
ries in agile software development, Prentice Hall

Sen A, Jain S (2007) A visualization technique for agent based goal refine-
ment to elicit soft goals in goal oriented requirements engineering. In:
Proceedings of the Second International Workshop on Requirements En-
gineering Visualization (REV 2007), pp 2–11

Strigini L (1996) limiting the dangers of intuitive decision making. Soft-
ware, IEEE 13(1):101 –103

SvahnbergM, Gorschek T, Feldt R, Torkar R, Saleem S, ShafiqueM (2010) A
systematic review on strategic release planning models. Inf Softw Tech-
nol 52(3):237–248

Tufte E (1990) Envisioning Information. Graphics Press LLC

UML (2010) The unified modeling language webpage. ������������	
�
��

van Den Akker J, Brinkkemper S, Diepen G, Versendaal J (2005) Determi-
nation of the next release of a software product: an approach using inte-
ger linear programming. In: Proceeding of the 11th International Work-
shop on Requirements Engineering: Foundation for Software Quality
REFSQ’05, pp 247–262

van den Akker M, Brinkkemper S, Diepen G, Versendaal J (2008) Software
product release planning through optimization and what-if analysis. Inf
Softw Technol 50(1-2):101–111

van der Hoek A, Hall R, Heimbigner D, Wolf A (1997) Software release
management. In: In Proceedings of the Sixth European Software Engi-
neering Conference, Springer, pp 159–175

Wieringa R, Heerkens H (2007) Designing requirements engineering re-
search. In: Proceedings of the 5th International Workshop on Compara-
tive Evaluation in Requirements Engineering, pp 36–48

350



REFERENCES

Wnuk K, Regnell B, Karlsson L (2008) Visualization of feature survival in
platform-based embedded systems development for improved under-
standing of scope dynamics. In: Proceedings of the Third International
Workshop on Requirements Engineering Visualization (REV 2008), pp
41–50

Wnuk K, Regnell B, Karlsson L (2009) What happened to our features?
visualization and understanding of scope change dynamics in a large-
scale industrial setting. In: Proceedings of the 17th IEEE International
Requirements Engineering Conference (RE 2009), pp 89–98

Wnuk K, Regnell B, Berenbach B (2011) Scaling up requirements engi-
neering: Exploring the challenges of increasing size and complexity
in market-driven software development. In: Berry D, Franch X (eds)
Requirements Engineering: Foundation for Software Quality, Lecture
Notes in Computer Science, vol 6606, Springer Berlin / Heidelberg, pp
54–59

Wnuk K, Callele D, Karlsson EA, Regnell B (2012) Controlling lost oppor-
tunity costs in agile development: The basic lost opportunity estimation
model for requirements scoping. In: Cusumano M, Iyer B, Venkatraman
N (eds) Software Business, Lecture Notes in Business Information Pro-
cessing, vol 114, Springer Berlin Heidelberg, pp 255–260

Yin R (2003) Case Study Research: Design and Methods. Sage Publications

Yu E (1997) Towards modelling and reasoning support for early-phase re-
quirements engineering. In: Proceedings of the Third IEEE International
Symposium on Requirements Engineering (RE’97), pp 226 –235

351


	1_TitlePageFINAL
	phdVersion6AfterDefenseChangesNOTITLEPAGE

