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Introduction
The transition from instruction-based architectures to custom hardware
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The CPU Power Wall
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Packing more transistors 
onto a chip will no longer 
work because of limits on 
power delivery and heat 
dissipation.



Compute Devices at a Glance

Energy-optimized  
CPU

Credit: Stanford CS149
4

Least efficient Most efficient

Throughput-Oriented Device 
GPU

Programmable DSP

Programmable Logic 
FPGA Application-Specific  

Integrated Circuit (ASIC)

Not programmableEasiest to program
Most expensiveLeast expensive

Spatial is focused here

Hardest to program
Specialization is the key  
to achieving good performance



FPGA Crash Course
■ Field-programmable gate array 

■ Reconfigurable logic device consisting of  
■ On-chip Memory (BRAMs) - ~10s Mb 
■ Logic Cells (LUTs + FFs) - ~1M 
■ Processing blocks (DSPs) - ~1000s
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Languages for Programming FPGAs
At a glance [1]

[1] N. Kapre et al, "Survey of domain-specific languages for FPGA computing,” FPL 2016
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Register-Transfer Level
■ Traditional hardware description languages are Verilog or VHDL 
■ There are newer, user-friendly alternatives, like Chisel[1], PyMTL[2], 

Bluespec[3], MaxJ[4], SystemVerilog, etc.

[1] J. Bachrach et al. “Chisel: Constructing hardware in a Scala embedded language” DAC 2012 
[2] D. Lockhart et al. “PyMTL: A Unified Framework for Vertically Integrated Computer Architecture Research“ MICRO 2014 
[3] https://www.ece.ucsb.edu/its/bluespec/index.html 
[4] https://www.maxeler.com/products/software/maxcompiler/ 
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Domain Specific
■ Languages rooted in a particular application domain include 

Aetherling[5], Halide[6], LeFlow[7], DNNWeaver[8], Spiral[9], 
SNORT[10], ASV[11],  etc. 

[5] D. Durst et al. “Type-Directed Scheduling of Streaming Accelerators” PLDI 2020 
[6] J. Ragan-Kelley et al. “Halide: A Language and Compiler for Optimizing Parallelism, Locality, and Recomputation in Image Processing Pipelines” PLDI 2013 
[7] D. Noronha et al. “LeFlow: Enabling Flexible FPGA High-Level Synthesis of Tensorflow Deep Neural Networks” FSP 2018 
[8] H. Sharma et al. "From high-level deep neural models to FPGAs”  MICRO 2016 
[9] J. Moura et al. “SPIRAL: Automatic Implementation of Signal Processing Algorithms” HPEC 2000 
[10] A. Mitra et al. “Compiling PCRE to FPGA for accelerating SNORT IDS” ANCS 2007 
[11] Y. Feng et al. “ASV: Accelerated Stereo Vision System” MICRO 2019  
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High Level Synthesis
■ C+pragmas approach: OpenCL[12], Vivado HLS[13], SDAccel[14], 

LegUp[15], Merlin[21], SOFF[16], etc. 
■ JVM-based hardware DSL approach: Liquid Metal (Lime)[18], 

Spatial[19], etc.

[12] https://www.khronos.org/opencl/ 
[13] https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html 
[14] https://www.xilinx.com/products/design-tools/software-zone/sdaccel.html 
[15] A. Canis et al. “LegUp: An Open Source High-Level Synthesis Tool for FPGA-Based Processor/Accelerator Systems” ECS 2012 
[16] G. Jo et al. “SOFF: An OpenCL High-Level Synthesis Framework for FPGAs” ISCA 2020 
[18] S. Huang et al. “Liquid Metal: Object-Oriented Programming Across the Hardware/Software Boundary” ECOOP 2008 
[19] D. Koeplinger et al. “Spatial: a language and compiler for application accelerators” PLDI 2018 
[21] https://www.falconcomputing.com/merlin-fpga-compiler/
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Hardware Design At a Glance
■ A good accelerator has optimized computation and memory accesses 

and keeps all parts of the circuit active at all times 
■ In order to do this, the designer must make decisions about 

■ Parallelism - Run operations concurrently 
■ Data Locality - Manually manage on-chip scratchpads 
■ Control Flow - Orchestrate how loops execute relative to each other 

■ Spatial is an MIT License open source language that exposes these 
knobs, which leads to massive design spaces 

■ HyperMapper is the key to exploring the large design spaces 
automatically
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Introduction to Spatial
Understanding loops and the memory hierarchy
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val B = 64 (64 → 1024)
val buffer = SRAM[Float](B)
Foreach(N by B){i => 
  …
}

val P = 16 (1 → 32)
Reduce(0)(N by 1 par P){i =>
  data(i)
}{(a,b) => a + b}
Stream.Foreach(0 until N){i => 
  …
}

Explicit parallelization factors 
(optional, but can be explicitly declared)

Explicit size parameters for loop step size and buffer sizes 
(informs compiler it can tune this value) 

Implicit/Explicit control schemes 
(also optional, but can be used to override compiler) 

Foreach(64 par 16){i => 
  buffer(i) // Parallel read
}

Implicit memory banking and buffering schemes for 
parallelized access

Spatial: Control And Design Parameters
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Parallel Patterns
■ Parallel patterns are loop abstractions with implicit information 

about parallelism and access patterns
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■ Spatial is an imperative language that is designed to easily capture 
parallel patterns[20]

[20] R. Prabhakar et al. “Generating Configurable Hardware from Parallel Patterns.” ASPLOS 2016



Spatial: Loops in Hardware
■ A software “loop” is counter chain + controller 

■ Counter chain - Collection of iterators that are chained together 
■ Controller - A container for a data path or other controllers 

■ Controllers are nested: 
■ Inner - contains datapaths of only primitive nodes 
■ Outer - contains only other controllers (called “children”)

Foreach(N by 1) { i =>  // Outer controller
    Foreach(M by 1) { j => mem(i,j) = i+j }             // Inner controller
    Foreach(P by 1) { j => if (j == 0) … = mem(i,j) }   // Inner controller
}
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i = 0

i = 1

i = 2

i = 3

i = 4

Spatial: Inner Loop Execution
■ The runtime of a controller (T) depends on its latency (L), initiation 

interval (II), and number of iterations (iters)
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Foreach(5 by 1) {i => 
  … // L = 7, II = 2
} 

Time

Iteration

L = 7 cycs

Enable signal received from parent

II = 2 cycs

Done signal sent to parent

 cycsT = 2 ⋅ (5 − 1) + 7 = 15
(  for communication overhead)±3

Abstract Example

Key Equation: 

T = II ⋅ (iters − 1) + L



Spatial: Outer Controller Schedules
■ Outer controller must take a schedule to describe how their 

children execute relative to each other 
■ Schedules include: 

■ Sequential - No overlapping of child controllers 
■ Pipelined - Coarse-grained overlapping of child controllers 
■ Stream - Data-driven execution of child controllers 

■ Sequential and Pipelined are interchangeable without code 
rewrites
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A Closer Look at Schedules

Pipelined.Foreach(…){i =>
  sram load dram
  Foreach(M by 1){ j => sram2(j) = sram(j) * j }
  dram2 store sram2
}

Sequential.Foreach(…){i =>
  sram load dram
  Foreach(M by 1){ j => sram2(j) = sram(j) * j }
  dram store sram2
}

Stream.Foreach(…){i =>
  fifoIn load dram
  Foreach(M by 1){ j => fifoOut.enq(fifoIn.deq() * j) }
  dram2 store fifoOut
}

17

Note: Foreach with no annotation is implicitly “Pipelined”
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A Closer Look at Schedules

Pipelined.Foreach(…){i =>
  sram load dram
  Foreach(M by 1){ j => sram2(j) = sram(j) * j }
  dram2 store sram2
}

Sequential.Foreach(…){i =>
  sram load dram
  Foreach(M by 1){ j => sram2(j) = sram(j) * j }
  dram store sram2
}

Stream.Foreach(…){i =>
  fifoIn load dram
  Foreach(M by 1){ j => fifoOut.enq(fifoIn.deq() * j) }
  dram2 store fifoOut
}
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Note: Foreach with no annotation is implicitly “Pipelined”
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When an intermediate FIFO is full, 
the producer stage is stalled. 

When an intermediate FIFO is empty, 
the consumer stage is starved. 

When the pipeline is full, it is in steady-
state and the longest stage determines II



Spatial: Piecing the Hierarchy Together
■ Consider the slice of a loop nesting with a parent Sequential 

Controller and three children.

Sequential.Foreach(Q by TS){ i =>
     Foreach(N by 1){ j => /* Primitives */ }
     Foreach(M by 1){ j => /* Controllers */ }
     Stream.Foreach(P by 1) { j => /* Controllers */ }
}
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Spatial: Memory Hierarchy
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DDR DRAM 
GB

On-Chip SRAM 
MB

Local Regs 
KB

val image  = DRAM[UInt8]
(H,W)

val buffer = SRAM[UInt8](C)
val fifo  = FIFO[Float](D)
val lbuf  = LineBuffer[Int]
(R,C)

val accum  = Reg[Double]
val pixels = RegFile[UInt8](R,C)

buffer load   image(i, j::j+C) // dense
buffer gather image(a)         // sparse



i=1i=2i=3

i=4 N-Buffer

S

S

S

Foreach(M by 1){ i =>
     val s = SRAM[T](256)
     Foreach(N by 1){k => s(k) = …}
     Foreach(N by 1){k => …}
     Foreach(N by 1){k => … = s(k)}
}

■ Buffering is implicit duplication of a memory to protect accesses 
from each other in a Pipelined controller 

■ The compiler computes buffering automatically, which can explode 
the resource utilization

Spatial: Memory Buffering
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No-access
i=0



Summary
■ There is always a trade-off between resource utilization and 

performance 
■ The trade-offs are complex, but HyperMapper can help!
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