
Advancing Trace Recovery Evaluation

– Applied Information Retrieval in a

Software Engineering Context

Markus Borg

Licentiate Thesis, 2012

Department of Computer Science

Lund University

ii

Licentiate Thesis 13, 2012
ISSN 1652-4691
Department of Computer Science
Lund University
Box 118
SE-221 00 Lund
Sweden

Email: Markus.Borg@cs.lth.se
WWW: http://cs.lth.se/markus_borg

Cover art: “Exodus from the cave” by Hannah Oredsson
Typeset using LATEX
Printed in Sweden by Tryckeriet i E-huset, Lund, 2012

c© 2012 Markus Borg

ABSTRACT

Successful development of software systems involves the efficient navigation of
software artifacts. However, as artifacts are continuously produced and modified,
engineers are typically plagued by challenging information landscapes. One state-
of-practice approach to structure information is to establish trace links between
artifacts; a practice that is also enforced by several development standards. Un-
fortunately, manually maintaining trace links in an evolving system is a tedious
task. To tackle this issue, several researchers have proposed treating the capture
and recovery of trace links as an Information Retrieval (IR) problem. The goal
of this thesis is to contribute to the evaluation of IR-based trace recovery, both by
presenting new empirical results and by suggesting how to increase the strength of
evidence in future evaluative studies.

This thesis is based on empirical software engineering research. In a System-
atic Literature Review (SLR) we show that a majority of previous evaluations of
IR-based trace recovery have been technology-oriented, conducted in “the cave of
IR evaluation”, using small datasets as experimental input. Also, software artifacts
originating from student projects have frequently been used in evaluations. We
conducted a survey among traceability researchers and found that while a majority
consider student artifacts to be only partly representative of industrial counterparts,
such artifacts were typically not validated for industrial representativeness. Our
findings call for additional case studies to evaluate IR-based trace recovery within
the full complexity of an industrial setting. Thus, we outline future research on
IR-based trace recovery in an industrial study on safety-critical impact analysis.

Also, this thesis contributes to the body of empirical evidence of IR-based trace
recovery in two experiments with industrial software artifacts. The technology-
oriented experiment highlights the clear dependence between datasets and the ac-
curacy of IR-based trace recovery, in line with findings from the SLR. The human-
oriented experiment investigates how different quality levels of tool output affect
the tracing accuracy of engineers. While the results are not conclusive, there are
indications that it is worthwhile further investigating into the actual value of im-
proving tool support for IR-based trace recovery. Finally, we present how tools and
methods are evaluated in the general field of IR research, and propose a taxonomy
of evaluation contexts tailored for IR-based trace recovery in software engineering.

ACKNOWLEDGEMENTS

This work was funded by the Industrial Excellence Center EASE – Embedded
Applications Software Engineering.

First and foremost, I would like to express my deepest gratitude to my supervisor,
Prof. Dr. Per Runeson, for all his support and for showing me another continent.
I will never forget the hospitality his family extended to me during my winter in
North Carolina.

Secondly, thanks go to my assistant supervisor, Prof. Dr. Björn Regnell, for
stimulating discussions in the EASE Theme D project. I am also very grateful to
Dr. Dietmar Pfahl. Thank you for giving your time to explain all those things
I should have known already. I want to thank my co-authors Krzysztof Wnuk,
Dr. Anders Ardö, and Dr. Saïd Assar. All of you have shown me how research
can be discussed outside the office sphere. Furthermore, I would like to clearly
acknowledge my other colleagues at the Department of Computer Science and
the Software Engineering Research Group, as well as my colleagues in the EASE
Theme D project and in the SWELL research school.

Moreover, as a software engineer on study leave, I would like to recognize my
colleagues at ABB in Malmö. In particular, I want to thank my former manager
Henrik Holmqvist for suggesting the position as a PhD student. Also, thanks go
to both my current manager Christer Gerding for continual support, and to Johan
Gren for being my main entry point regarding communication with the real world.

Finally, I want to thank all my family and friends, and to express my honest
gratitude to my parents for always helping me with my homework, and without
whose support I wouldn’t have begun this journey. And I am indebted to Hannah
for the cover art and to Ulla and Ronny for wining and dining me while I wrapped
up this thesis. And most importantly, thank you to Marie for all the love and being
the most stubborn of reviewers. Of course, you have mattered the most!

Markus Borg
Malmö, August 2012

Pursuing that doctoral degree
(V) (;„;) (V)

LIST OF PUBLICATIONS

Publications included in the thesis

I Recovering from a decade: A systematic literature review of informa-
tion retrieval approaches to software traceability
Markus Borg, Per Runeson, and Anders Ardö
Submitted to a journal, 2012.

II Industrial comparability of student artifacts in traceability recovery re-
search - An exploratory survey
Markus Borg, Krzysztof Wnuk, and Dietmar Pfahl
In Proceedings of the 16th European Conference on Software Maintenance
and Reengineering (CSMR’12), Szeged, Hungary, pp. 181–190, 2012.

III Evaluation of traceability recovery in context: A taxonomy for infor-
mation retrieval tools
Markus Borg, Per Runeson, and Lina Brodén
In Proceedings of the 16th International Conference on Evaluation & As-
sessment in Software Engineering (EASE’12), Ciudad Real, Spain, pp. 111–
120, 2012.

IV Do better IR tools improve software engineers’ traceability recovery?
Markus Borg, and Dietmar Pfahl
In Proceedings of the International Workshop on Machine Learning Tech-
nologies in Software Engineering (MALETS’11), Lawrence, KS, USA, pp.
27–34, 2011.

The following papers are related, but not included in this thesis. The research
agenda presented in Section 8 is partly based on Paper V, which was published as
a position paper. Paper VI contains a high-level discussion on information man-
agement in a large-scale software engineering context.

viii

Related publications
V Findability through traceability - A realistic application of candidate

trace links?
Markus Borg
In Proceedings of 7th International Conference on Evaluation of Novel Ap-
proaches to Software Engineering (ENASE’12), Wrocław, Poland, pp. 173–
181, 2012.

VI Towards scalable information modeling of requirements architectures
Krzysztof Wnuk, Markus Borg, and Saïd Assar
To appear in the Proceedings of the 1st International Workshop on Mod-
elling for Data-Intensive Computing, (MoDIC’12), Florence, Italy, 2012.

Contribution statement
Markus Borg is the first author of all included papers. He was the main inventor
and designer of the studies, and was responsible for running the research processes.
Also, he conducted most of the writing.

The SLR reported in Paper I was a prolonged study, which was conducted in
parallel to the rest of the work included in this licentiate thesis. The study was
co-designed with Prof. Per Runeson, but Markus Borg wrote a clear majority of
the paper. Furthermore, Mats Skogholm, a librarian at the Lund University library
contributed to the development of search strings, and Dr. Anders Ardö validated
the data extraction process and reviewed technical contents of the final report.

The survey in Paper II was conducted by Markus Borg and Krzysztof Wnuk.
They co-designed the study and distributed the questionnaire in parallel, however
Markus Borg was responsible for the collection and analysis of the data. Markus
Borg wrote a majority of the report, however with committed assistance from Dr.
Dietmar Pfahl and Krzysztof Wnuk.

The experimental parts of Paper III started as a master thesis project by Lina
Brodén. Markus Borg was the main supervisor, responsible for research design
and collection of data from industry. Prof. Per Runeson had the role as examiner,
and also gave initial input to the study design. The outcome of the master thesis
project was then used by Markus Borg as input to Paper III, who extended it with
a discussion on evaluation contexts.

The experimental setup in Paper IV was originally designed by Markus Borg,
and then further improved together with Dr. Dietmar Pfahl. Markus Borg executed
the experiment, analyzed the data, and conducted most of the writing. Dr. Dietmar
Pfahl also contributed as an active reviewer and initiated rewarding discussions.

CONTENTS

Introduction 1
1 Introduction . 1
2 Background and Related Work 2
3 Research Focus . 9
4 Method . 10
5 Results . 13
6 Synthesis . 15
7 Threats to Validity . 18
8 Agenda for Future Research . 20
9 Conclusion . 24
Bibliography . 27

I Recovering from a Decade: A Systematic Review of Information Re-
trieval Approaches to Software Traceability 37
1 Introduction . 38
2 Background . 39
3 Related work . 44
4 Method . 52
5 Results . 61
6 Discussion . 72
7 Summary and Future Work . 81
Bibliography . 94

II Industrial comparability of student artifacts in traceability recovery
research - An exploratory survey 111
1 Introduction . 112
2 Background and Related Work 113
3 Research Design . 115
4 Results and Analysis . 119
5 Threats to Validity . 126
6 Discussion and Concluding Remarks 127

x CONTENTS

Bibliography . 130

III Evaluation of Traceability Recovery in Context: A Taxonomy for In-
formation Retrieval Tools 133
1 Introduction . 134
2 Background and Related work 135
3 Derivation of Context Taxonomy 137
4 Method . 138
5 Results and Interpretation . 144
6 Discussion . 145
7 Conclusions and Future Work . 150
Bibliography . 152

IV Do Better IR Tools Improve the Accuracy of Engineers’ Traceability
Recovery? 157
1 Introduction . 158
2 Related work . 159
3 Experimental Setup . 160
4 Results and Data Analysis . 165
5 Threats to Validity . 168
6 Discussion and Future Work . 171
Bibliography . 173

1 Introduction 1

1 Introduction

Modern society depends on software-intensive systems. Software operates invis-
ibly in everything from kitchen appliances to critical infrastructure, and living
a life without daily relying on systems running software requires a determined
downshifting from life as most people enjoy it. As the significance of software
continuously grows, so does the importance of being able to create it efficiently.

Software development is an inclusive expression used to describe any approach
to produce source code and its related documentation. During the software crisis of
the 1960s, it became clear that software complexity quickly rises when scaled up to
larger systems. The development methods that were applied at the time did not re-
sult in required software in a predictable manner. Software engineering was coined
to denote software developed according to a systematic and organized approach,
aiming to effectively produce high-quality software with reduced uncertainty [72].
By applying the engineering paradigm to software development, activities such as
analysis, specification, design, implementation, verification, and evolution turned
into well-defined practices. On the other hand, additional knowledge-intensive
activities tend to increase the number of documents maintained in a project [97].

Large projects risk being characterized by information overload, a state where
individuals do not have time or capacity to process all available information [33].
Knowledge workers frequently report the stressing feeling of having to deal with
too much information [32], and in general spend a substantial effort on locating
relevant information [59, 65]. Also, in software engineering the challenge of deal-
ing with a plentitude of software artifacts has been highlighted [37, 74]. Thus,
an important characteristic of a software engineering organization is the findabil-
ity it provides, herein defined as “the degree to which a system or environment
supports navigation and retrieval” [71], particularly in globally distributed devel-
opment [28].

One state-of-practice way to support findability in software engineering is to
maintain trace links between artifacts. Traceability is widely recognized as an im-
portant factor for efficient software engineering [5, 18, 29]. Traceability supports
engineering activities related to software evolution, e.g., change management, im-
pact analyses, and regression testing [5, 16]. Also, traceability assists engineers in
less concrete tasks such as system comprehension, knowledge transfer, and process
alignment [23, 80, 85]. On the other hand, maintaining trace links in an evolving
system is known to be a tedious task [29,34,48]. Thus, to support trace link main-
tenance, several researchers have proposed tool support for trace recovery, i.e.,
proposing candidate trace links among existing artifacts, based on Information
Retrieval (IR) approaches [5, 23, 48, 68, 70]. The rationale is that IR refers to a set
of techniques for finding relevant documents from within large collections [6, 69],
and that the search for trace links can be interpreted as an attempt to satisfy an
information need.

This thesis includes an aggregation of empirical evidence of IR-based trace

2 INTRODUCTION

recovery, and contributes to the body of knowledge on conducting evaluative stud-
ies on IR-based trace recovery tools. As applied researchers, our main interest
lies in understanding how feasible trace recovery tools would be for engineers in
industrial settings. Paper I contains a comprehensive literature review of previous
research on the topic. Based on questions that arose during the literature review,
other studies were designed and conducted in parallel. Paper II provides an in-
creased understanding of the validity of using artifacts originating from student
projects as experimental input. Paper III reports from an experiment with trace re-
covery tools on artifacts collected from industry, and also proposes a taxonomy of
evaluation contexts tailored for IR-based trace recovery. Finally, Paper IV presents
a novel experiment design, addressing the value of slight tool improvements.

This introduction chapter provides a background for the papers and describes
relationships between studies. The remainder of this chapter is organized as fol-
lows. Section 2 presents a brief background of traceability research and introduces
fundamentals of IR. Also, it presents how IR can be applied to address trace recov-
ery. Section 3 expresses the overall aim of this thesis as research questions, and
proposes three viewpoints from which the results can be interpreted. Also, Sec-
tion 4 presents the research methodologies used to answer the research questions.
The results of each individual paper are presented in Section 5, while Section 6
draws together the results to provide answers to the research questions. Section 7
highlights some threats to validity in the presented research. In Section 8, we
present how we plan to continue our work in future studies. Finally, Section 9
concludes the introduction of this thesis.

2 Background and Related Work

This section presents a background of traceability and IR, the two main research
areas on which this thesis rests. Also, we present how IR has been applied to
support trace link maintenance. Finally, we present related work on advancing
IR-based trace recovery evaluation.

2.1 Traceability - A Fundamental Software Engineering
Challenge

The concept of traceability has been discussed in software engineering since the
very beginning. Already at the pioneering NATO Working Conference on Soft-
ware Engineering in 1968, a paper by Randall recognized the need for a devel-
oped software system to “contain explicit traces of the design process” [81]. In
an early survey of software engineering state-of-the-art in the 1970s by Boehm,
“traceability” was mentioned six times, both in relation to engineering challenges
at the time, and when predicting future trends [12]. In the software industry, trace-
ability became acknowledged as an important aspect in high quality development.

2 Background and Related Work 3

Consequently, by the 1980s several development standards specified process re-
quirements on the maintenance of traceability information [30]. At the time, the
IEEE definition of traceability was “the degree to which a relationship can be es-
tablished between two or more products of the development process, especially
products having a predecessor-successor or master-subordinate relationship to one
another; for example, the degree to which the requirements and design of a given
software component match” [50].

In the 1990s, the requirements engineering community emerged and estab-
lished dedicated publication fora. As traceability was in scope, published research
on the topic increased and its relation to requirements engineering was further em-
phasized. A paper by Gotel and Finkelstein in 1994 identified the lack of a com-
mon definition of requirements traceability and suggested: “Requirements trace-
ability refers to the ability to describe and follow the life of a requirement, in both
a forwards and backwards direction (i.e., from its origins, through its development
and specification, to its subsequent deployment and use, and through all periods
of on-going refinement and iteration in any of these phases)” [40]. According to a
recent systematic literature review by Torkar et al., this definition of requirements
traceability is the most commonly cited in research publications [91].

While traceability has been questioned by some of the lean-thinkers of the
agile movement in the 2000s to be too costly in relation to its benefits [79], trace-
ability continues to be a fundamental aspect in many development contexts. Since
traceability is important to software verification, general safety standards such as
IEC 61508 [53], and industry-specific variants (e.g., ISO 26262 in the automo-
tive industry [54] and IEC 61511 in the process industry [52]) mandate mainte-
nance of traceability information. Furthermore, as traceability has a connection
to quality, it is also required by organizations aiming at process improvement as
defined by CMMI (Capability Maturity Model Integration) [14]. Thus, traceability
is neither negotiable in safety certifications nor in CMMI appraisals. In 2006, the
international organization CoEST, the Center of Excellence for Software Trace-
ability1, was founded to gather academics and practitioners to advance traceability
research.

In the beginning of 2012, an extensive publication edited by Cleland-Huang et
al. was published [18], containing contributions from several leading researchers
in the traceability community. Apart from summarizing various research topics on
traceability, the work presents a number of fundamental definitions. We follow the
proposed terminology in the introduction chapter of this thesis. However, when
the included Papers II-IV were written, the terminology was not yet aligned in the
community. Cleland-Huang et al. define traceability as: “the potential for traces to
be established and used” [39], i.e., the trace ability is stressed. On the other hand,
they also present the more specific definition of requirements traceability by Gotel
and Finkelstein in its original form.

1www.coest.org

4 INTRODUCTION

A number of other terms relevant for this thesis are also defined in the book.
A trace artifact denotes a traceable unit of data. A trace link is an association
forged between two trace artifacts, representing relations such as overlap, depen-
dency, contribution, evolution, refinement, or conflict [80]. The main subject in
this thesis, trace recovery, denotes an approach to create trace links among ex-
isting software artifacts. This is equivalent to what we consistently referred to as
traceability recovery in the Papers II-IV.

2.2 Information Retrieval - Satisfying an Information Need

A central concept in this thesis is information seeking, the “conscious effort to
acquire information in response to a gap in knowledge” [15]. Particularly, we are
interested in finding pieces of information that enable trace links to be recovered,
i.e. trace link seeking. One approach to seek information is information retrieval,
meaning “finding material (usually documents) of an unstructured nature (usually
text) that satisfies an information need from within large collections (usually stored
on computers)” [69]. This section briefly presents the two main categories of IR
models. A longer presentation is available in Paper I.

Typically, IR models apply the bag-of-words model, a simplifying assumption
that represents a document as an unordered collection of words, disregarding word
order [69]. Most IR models can be classified as either algebraic or probabilistic,
depending on how relevance between queries and documents is measured. Alge-
braic IR models assume that relevance is correlated with similarity, while prob-
abilistic retrieval is based on models estimating the likelihood of queries being
related to documents.

The Vector Space Model (VSM), developed in the 1960s, is the most com-
monly applied algebraic IR model [86]. VSM represents both documents and
queries as vectors in a high-dimensional space and similarities are calculated be-
tween vectors using distance functions. In principle, every term constitutes a di-
mension. Usually, terms are weighted using some variant of Term Frequency-
Inverse Document Frequency (TF-IDF). TF-IDF is used to weight a term based
on the length of the document and the frequency of the term, both in the docu-
ment and in the entire document collection. Latent Semantic Indexing (LSI) is
an approach to reduce the dimension space, sometimes successful in reducing the
effects of synonymy and polysemy [25]. LSI uses singular value decomposition
to transform the dimensions from individual terms to combinations of terms, i.e.,
concepts constitute the dimensions rather than individual terms.

In probabilistic models, documents are ranked according to their probability
of being relevant to the query. Two common models are the Binary Independence
retrieval Model (BIM) [25] [82] and Probabilistic Inference Networks [92]. A sub-
set of probabilistic retrieval estimate Language Models (LM) for each document.
Documents are then ranked based on the probability that a document would gen-
erate the terms of a query [78]. A later refinement of simple LMs, topic models,

2 Background and Related Work 5

describes documents as a mixture over topics, where each topic is characterized by
an LM. Examples include probabilistic latent semantic indexing [45] and Latent
Dirichlet Allocation (LDA) [11].

2.3 Information Retrieval Evaluation

IR is a highly experimental discipline, and empirical evaluations are the main re-
search tool to scientifically compare IR algorithms. The state-of-the-art has ad-
vanced through careful examination and interpretation of experimental results.
Traditional IR evaluation, as it was developed by Cleverdon in the Cranfield project
in the late 1950s [20], consists of three main elements: a document collection, a set
of information needs (typically formulated as queries), and relevance judgments
telling what documents are relevant to these information needs, i.e., a gold stan-
dard. Thus, as the experimental units are central in IR evaluation it is important to
address threats to content validity, i.e., the extent to which the experimental units
reflect and represent the elements of the domain under study [93]. A selection of
experimental units that match the real-world setting should carefully be selected,
and the sample should be sufficiently large to be representative to the domain.

The most common way to evaluate the effectiveness of an IR system is to
measure precision and recall. As displayed in Figure 1, precision is the fraction
of retrieved documents that are relevant, while recall is the fraction of relevant
documents that are retrieved. The outcome is often visualized as a Precision-Recall
(P-R) curve where the average precision is plotted at fixed recall values, presented
as PR@Fix in Figure 1. However, this set-based approach has been criticized
for being opaque, as the resulting curve obscure the actual numbers of retrieved
documents needed to get beyond low recall [90]. Alternatively, the ranking of
retrieval results can be taken into account. The most straightforward approach
is to plot the P-R curve for the top k retrieved documents instead [69], shown
as PR@k in Figure 1. In such curves, one can see the average accuracy of the
first search result, the first ten search results etc. The Text Retrieval Conference
(TREC), hosting the most distinguished evaluation series for IR, reports results
using both precision at 11 fixed recall values (0.0, 0.1 ... 1.0) and precision at the
top 5, 10, 15, 30, 100 and 200 retrieved documents [90]. A discussion on IR-based
trace recovery evaluation styles is available in Paper I.

There are several other measures available for IR evaluations, including F-
measure, ROC curve, R-precision and the break-even point [69], but none of them
are as established as P-R curves. On the other hand, two measures offering sin-
gle figure effectiveness have gained increased attention. Mean Average Precision
(MAP), roughly the area under the P-R curve for a set of queries, is established
in the TREC community. Normalized Discounted Cumulative Gain [56], similar
to precision at top k retrieved documents but especially designed for non-binary
relevance judgments, is popular especially among researchers employing machine
learning techniques to rank search results.

6 INTRODUCTION

Figure 1: Traditional IR evaluation using P-R curves showing PR@Fix and
PR@k. In the center part of the figure, displaying a document space, the rele-
vant items are to the right of the straight line while the retrieved items are within
the oval.

The experimental setups of IR evaluations rarely fulfil assumptions required
for significance testing, e.g., independence between retrieval results, randomly
sampled document collections, and normal distributions. Thus, traditional statis-
tics has not had a large impact on IR evaluation [41]. However, it has been pro-
posed both to use hypergeometric distributions to compute retrieval accuracy to be
expected by chance [87], and to apply the Monte Carlo method [13].

Although IR evaluation has been dominated by technology-oriented experi-
ments, it has also been challenged for its unrealistic lack of user involvement [61].
Ingwersen and Järvelin argued that IR is always evaluated in a context and pro-
posed an evaluation framework, where the most simplistic evaluation context is
referred to as “the cave of IR evaluation” [51]. In Paper III, we present their
framework and an adapted version tailored for IR-based trace recovery.

2.4 Trace Recovery - An Information Retrieval Problem

Tool support for linking artifacts containing Natural Language (NL) has been ex-
plored by researchers since at least the early 1990s. Whilst a longer history of IR-
based trace recovery is available in Paper I, this section introduces the approach
and highlights some key publications.

The underlying assumption of using IR for trace recovery is that artifacts with
highly similar textual content are good candidates to be linked. Figure 2 shows the
key steps involved in IR-based trace recovery, organized in a pipeline architecture
as suggested by De Lucia et al. [24]. First, input documents are parsed and prepro-
cessed, typically using stop word removal and stemming. In the second step, the

2 Background and Related Work 7

Figure 2: Key steps in IR-based trace recovery, adapted from De Lucia et al. [24].

documents are indexed using the IR model. Then, candidate trace links are gen-
erated, ranked according to the IR model, and the result is visualized. Finally, the
result is presented to the engineer, as emphasized in Figure 2, who gets to assess
the output. The rationale is that it is faster for an engineer to assess a ranked list
of candidate trace links, despite both missed links and false positives, than seeking
trace links from scratch.

In 1998, a pioneering study by Fiutem and Antoniol proposed a trace recov-
ery process to bridge the gap between design and code, based on edit distances
between NL content of artifacts [36]. They coined the term “traceability recov-
ery”, and published several papers on the topic. Also, they were the first to express
identification of trace links as an IR problem [4]. Their well-cited work from 2002
compared the accuracy of candidate trace links from two IR models, BIM and
VSM [5]. Marcus and Maletic were the first to apply LSI to recover trace links
between source code and NL documentation [70]. Huffman Hayes et al. enhanced
trace recovery based on VSM with relevance feedback. They had from early on a
human-oriented perspective, aiming at supporting V&V activities at NASA using
their tool RETRO [49]. De Lucia et al. have conducted work focused on empir-
ically evaluating LSI-based traceability recovery in their document management
system ADAMS [22]. They have advanced the empirical foundation by conducting
a series of controlled experiments and case studies with student subjects. Cleland-
Huang and colleagues have published several studies using probabilistic IR models
for trace recovery, implemented in their tool Poirot [66]. Much of their work has
focused on improving the accuracy of their tool by various enhancements.

Lately, a number of publications suggest that the P-R differences for trace
recovery between different IR models are minor. Oliveto et al. compared VSM,
LSI, LM and LDA on artifacts originating from two student projects, and found
no significant differences [73]. Also a review by Binkley and Lawrie reported
the same phenomenon [10]. Falessi et al. proposed a taxonomy of algebraic IR
models and experimentally studied how differently configured algebraic IR models
performed in detecting duplicated requirements [34]. They concluded that simple
IR solutions tend to produce more accurate output.

We have identified some progress related to IR-based trace recovery in non-
academic environments. In May 2012, a US patent with the title “System and
method for maintaining requirements traceability” was granted [9]. The patent ap-

8 INTRODUCTION

plication, filed in 2007, describes an application used to synchronize artifacts in a
requirements repository and a testing repository. Though the actual linking process
is described in general terms, a research publication implementing trace recovery
based on LSI is cited. Also indicating industrial interest in IR-based trace recovery
is that HP Quality Center, a component of HP Application Lifecycle Management,
provides a feature to link artifacts based on textual similarity analysis [44]. While
it is implemented to detect duplicate defect reports, the same technique could be
applied for trace recovery.

2.5 Previous Work on Advancing IR-based Trace Recov-
ery Evaluation

While there are several general guidelines on software engineering research (e.g.,
experiments [95], case studies [84], reporting [57], replications [88], literature
reviews [62]), only few publications have specifically addressed research on IR-
based trace recovery. The closest related work is described in this section.

Huffman Hayes and Dekhtyar proposed a framework for comparing experi-
ments on requirements tracing [47]. Their framework describes the four exper-
imental phases: definition, planning, realization and interpretation. We evalu-
ated the framework in Paper III, and concluded that it provides valuable structure
for conducting technology-oriented experiments. However, concerning human-
oriented experiments, there is room for enhancements. Huffman Hayes et al. also
suggested categorizing trace recovery research as either studies of methods (are
the tools capable of providing accurate results fast?) or studies of human analysts
(how do humans use the tool output?) [48]. Furthermore, in the same publica-
tion, they suggested assessing the accuracy of tool output according to the quality
intervals “Acceptable/Good/Excellent”, with specified P-R levels. In Paper I, we
catalog the primary publications according to their suggestions, but we also catalog
the primary publications according to the context taxonomy we propose in Paper
III. A recent publication by Falessi et al. proposed seven “empirical principles”
for technology-oriented evaluation of IR tools in software engineering, explicitly
mentioning trace recovery as one application [35]. Despite the absence of statisti-
cal analysis in traditional IR evaluation [41], they argued for both increased differ-
ence and equivalence testing. In Paper IV, we also propose equivalence testing of
IR-based trace recovery, however in the context of human-oriented experiments.

A number of researchers connected to CoEST have repeatedly argued that a
repository of benchmarks for trace recovery research should be established, in line
with what has driven large scale IR evaluations at TREC [17,26,27]. Furthermore,
Ben Charrada et al. have presented a possible benchmark for traceability studies,
originating from an example in a textbook on software design [8]. We support the
attempt to develop large public datasets, but there are also risks involved in bench-
marks. As mentioned in Section 2.3, the results of IR evaluations depend on the
experimental input. Thus, there is a risk of over-engineering tools on datasets that

3 Research Focus 9

Tool developer Which IR model should we implement in our
(Paper I, Paper IV) new trace recovery tool?
RQ1 Which IR model has most frequently been imple-

mented in research tools?
RQ2 Which IR model has displayed the most promising

results?
Development manager Should we deploy an IR-based trace recovery
(Paper I, II) tool in our organization?
RQ3 What evidence is there that IR-based trace recovery

is feasible in an industrial setting?
Traceability researcher How can we strengthen the base of empirical
(Paper I, III) evidence of IR-based trace recovery?
RQ4 How can we advance technology-oriented studies

on IR-based trace recovery?
RQ5 How can we advance human-oriented studies

on IR-based trace recovery?

Table 1: Viewpoints further broken down into RQs. The scope of trace recovery
is implicit in RQ1-2, while explicit in RQ3-5.

do not have acceptable content validity. Benchmarking in IR-based trace recovery
is further discussed in Paper III.

Another project, also promoted by CoEST, is the TraceLab project [17, 60].
TraceLab is a visual experimental workbench, highly customized for traceabil-
ity research. It is currently under Alpha release to project collaborators. CoEST
claims that it can be used for designing, constructing, and executing trace recovery
experiments, and facilitating evaluation of different techniques. TraceLab is said
to be similar to existing data mining tools such as Weka and RapidMiner, and aims
at providing analogous infrastructure to simplify experimentation on traceability.
However, to what extent traceability researchers are interested in a common ex-
perimental workbench remains an open question.

3 Research Focus

This section describes how this thesis contributes to the body of knowledge on
IR-based trace recovery in general, and evaluations of IR-based trace recovery
in particular. We base the discussion on the viewpoints from the perspectives of
three stakeholders, each with his own pictured consideration: (1) a CASE tool
developer responsible for a new trace recovery tool, (2) a manager responsible for
a large software development organization, and (3) an academic researcher trying
to advance the trace recovery research frontier. We further divide each viewpoint
into more specific Research Questions (RQ), as presented in Table 1.

10 INTRODUCTION

As the included papers are closely related, all papers to some extent contribute
to the three viewpoints. Paper I is the most recent publication included in this
thesis, and by far the most comprehensive. As such, it contributes to all individ-
ual RQs presented in Table 1. Papers II, III, and IV primarily address the RQs
from the perspective of a development manager, an academic researcher, and a
tool developer respectively. Figure 3 positions this thesis in relation to existing re-
search on IR and its application on traceability. The rows in the figure show three
different research foci: development and application of retrieval models, improv-
ing technology-oriented IR evaluations, and improving human-oriented IR evalu-
ations. The arrows A-C indicate how approaches from the IR domain have been
applied in traceability research.

• The A arrow represents pioneering work on applying IR models to trace re-
covery, such as presented by Antoniol et al. [5] and Marcus and Maletic [70].

• The B arrow denotes contributions to technology-oriented evaluations of IR-
based trace recovery, inspired by methods used in the general IR domain.
Examples include the experimental framework proposed by Huffman Hayes
and Dekhtyar [47] and CoEST’s ambition to create benchmarks [17].

• The context taxonomy we propose in Paper III is an example of work along
arrow C, where we apply results from human-oriented IR evaluations to
traceability research.

To the right in Figure 3, the internal relations among the included papers are
presented. The study in Paper II on industrial comparability of student artifacts
was initiated to further explore early results from the work in Paper I. The exper-
iment on human subjects in Paper IV was designed to further analyze the differ-
ences between the technology-oriented experimental results in Paper III. Finally,
the evaluation taxonomy proposed in paper IV was used in Paper I to structure
parts of the literature review.

The right box in Figure 3 also shows to which research focus the included
papers mainly contribute. Paper I contributes to all foci. Paper II mainly con-
tributes to improving technology-oriented IR evaluations, as it addresses the con-
tent validity of experimental input originating from student projects. Paper III
proposes a taxonomy of evaluation contexts, and thus contributes to improving
human-oriented IR evaluations. Finally, while Paper IV questions the implications
of minor differences of tool output in previous technology-oriented experiments,
we consider it to mainly contribute by providing empirical results on the applica-
tion of IR models on a realistic work task involving trace recovery.

4 Method
The research in this thesis is mainly based on empirical research, a way to obtain
knowledge through observing and measuring phenomena. Empirical studies result

4 Method 11

Figure 3: Contributions of this thesis, presented in relation to research on IR
and traceability. Arrows A-C denote examples of knowledge transfer between the
domains. The right side of the figure positions the individual papers of this thesis,
and shows their internal relationships.

in evidence, pieces of information that support conclusions. Since evidence is
needed to build and verify theories [63], empirical studies should be conducted to
improve the body of software engineering knowledge [31, 84, 89]. However, as
engineers, we also have an ambition to create innovations that advance the field
of software engineering. One research paradigm that seeks to create innovative
artifacts to improve the state-of-practice is design science [43]. Design science
originates from engineering and is fundamentally a problem solving paradigm. As
presented in Figure 4, the build-evaluate loop is central in design science (in some
disciplines referred to as action research [83]). Based on empirical understanding
of a context, innovations in the form of tools and practices are developed. The
innovations are then evaluated empirically in the target context. These steps might
then be iterated until satisfactory results have been reached.

This thesis mainly contains exploratory and evaluative empirical research,
based on studies using experiments, surveys, and systematic literature reviews as
research methodology. However, also case studies are relevant for this thesis, as
such studies are discussed as possible future work in Section 8. Future work also
involves design tasks to improve industry practice, after proper assessment.

Exploratory research is typically conducted in early stages of research projects,
and attempts to bring initial understanding to a phenomenon, preferably from rich
qualitative data [31]. An exploratory study is seldom used to draw definitive con-
clusions, but is rather used to guide further work. Decisions on future study design,
data collection methods, and sample selections can be supported by preceding ex-
ploratory research. Paper I and Paper II explored both tool support for IR-based

12 INTRODUCTION

Figure 4: Design science and the build-evaluate loop. Adapted from Hevner et
al. [43]

trace recovery in general, and evaluation of such tools in particular.
Evaluative research can be conducted to assess the effects and effectiveness of

innovations, interventions, practices etc. [83]. An evaluative study involves a sys-
tematic collection of data, which can be of both qualitative and quantitative nature.
Paper III contains a quantitative evaluation of two IR-based trace recovery tools
compared to a naïve benchmark. Paper IV reports from an evaluation comparing
how human subjects solve a realistic work task when supported by IR-based trace
recovery. Both papers use industrial artifacts as input to the evaluative studies.

4.1 Research Methods

Experiments (or controlled experiments) are commonly used in software engineer-
ing to investigate the cause-effect relationships of introducing new methods, tech-
niques or tools. Different treatments are applied to or by different subjects, while
other variables are kept constant, and the effects on outcome variables are mea-
sured [95]. Experiments are categorized as either technology-oriented or human-
oriented, depending on whether objects or human subjects are given various treat-
ments. Involving human subjects is expensive, consequently university students
are commonly used and not engineers working in industry [46]. Paper III presents
a technology-oriented experiment, while Paper IV describes an experimental setup
of a human-oriented experiment, and results from a pilot run using both students
and senior researchers as subjects.

A case study in software engineering is conducted to study a phenomenon
within its real-life context. Such a study draws on multiple sources of evidence
to investigate one or more instances of the phenomenon, and is especially appli-
cable when the boundary between phenomenon and its context cannot be clearly
specified [84]. While this thesis does not include any case studies, such studies are
planned as future work, and are further discussed in Section 8.

5 Results 13

Works Type of research Research method
Paper I Exploratory Systematic literature review
Paper II Exploratory Questionnaire-based survey
Paper III Evaluative Technology-oriented experiment
Paper IV Evaluative Human-oriented experiment

Table 2: Type and method of research in the included papers.

A Systematic Literature Review (SLR) is a secondary study aimed at aggregat-
ing a base of empirical evidence. It is an increasingly popular method in software
engineering research, relying on a rigid search and analysis strategy to ensure a
comprehensive collection of publications [62]. A variant of an SLR is a Sys-
tematic Mapping (SM) study, a less granular literature study, designed to identify
research gaps and direct future research [62, 76]. The primary contribution of this
thesis comes from the SLR presented in Paper I.

Survey research is used to describe what exists, and to what extent, in a given
population [55]. Three distinctive characteristics of survey research can be identi-
fied [77]. First, it is used to quantitatively (sometimes also qualitatively) describe
aspects of a given population. Second, the collected data is collected from people
and thus subjective. Third, survey research uses findings from a portion of a popu-
lation to generalize back to the entire population. Surveys can be divided into two
categories based on how they are executed: written surveys (i.e., questionnaires)
and verbal surveys (i.e., telephone or face-to-face interviews). Paper II reports how
valid traceability researchers consider studies on student artifacts to be, based on
empirical data collected using a questionnaire-based survey.

Table 2 summarizes the type of research, and the selected research method, in
the included papers.

5 Results

This section presents the main results from each of the included papers.

Paper I: A Systematic Literature Review of IR-based Trace
Recovery

The objective of the study was to conduct a comprehensive review of IR-based
trace recovery. Particularly focusing on previous evaluations, we explored col-
lected evidence of the feasibility of deploying an IR-based trace recovery tool in
an industrial setting. Using a rigorous methodology, we aggregated empirical data
from 132 studies reported in 79 publications. We found that a majority of the
publications implemented algebraic IR models, most often the classic VSM. Also,

14 INTRODUCTION

we found that no IR model regularly outperforms VSM. Most studies do not an-
alyze the usefulness of the IR-based trace recovery further than tool output, i.e.,
evaluations conducted “in the cave”, entirely based on P-R curves dominate. The
strongest evidence of the benefits of IR-based trace recovery comes from a num-
ber of controlled experiments. Several experiments report that subjects perform
certain software engineering work tasks faster (and/or with higher quality) when
supported by IR-based trace recovery tools. However, the experimental settings
have been artificial using mainly student subjects and small sets of software arti-
facts. In technology-oriented evaluations, we found a clear dependence between
datasets used in evaluations and the experimental results. Also, we found that few
case studies have been conducted, and only one in an industrial context. Finally,
we conclude that the overall quality of reporting should be improved regarding
both context and tool details, measures reported, and use of IR terminology.

Paper II: Researchers’ Perspectives on the Validity of Stu-
dent Artifacts

While conducting the SLR in Paper I, we found that in roughly half of the evalu-
ative studies on IR-based trace recovery, output from student projects was used as
experimental input. Paper II explores to what extent student artifacts differ from
industrial counterparts when used in evaluations of IR-based trace recovery. In a
survey among authors identified in the SLR in Paper I, including both academics
and practitioners, we found that a majority of the respondents consider software
artifacts originating from student projects to be only partly comparable to indus-
trial artifacts. Moreover, only few respondents reported that they validated student
artifacts for industrial representativeness before using them as experimental input.
Also, our respondents made suggestions for improving the description of artifact
sets used in IR-based trace recovery studies.

Paper III: A Taxonomy of Evaluation Contexts and a Cave
Study

Paper III contains a technology-oriented experiment, an evaluation “in the cave”,
of two publicly available IR-based trace recovery tools. We use both a de-facto
traceability benchmark originating from a NASA project, and artifacts collected
from a company in the domain of process automation. Our study shows that even
though both artifact sets contain software artifacts from embedded development,
their characteristics differ considerably, and consequently the accuracy of the re-
covered trace links. Furthermore, Paper III proposes a context taxonomy for eval-
uations of IR-based trace recovery, covering evaluation contexts from “the cave”
to in-vivo evaluations in industrial projects. This taxonomy was then used to struc-
ture parts of the SLR in Paper I.

6 Synthesis 15

Paper IV: Towards Understanding Minor Tool Improvements

Since a majority of previous studies evaluated IR-based trace recovery only based
on P-R curves, one might wonder to what extent minor improvements of tool out-
put actually influence engineers working with the tools. Is it worthwhile to keep
hunting slight improvements in precision and recall? To tackle this question, we
conducted a pilot experiment with eight subjects, supported by tool output from
the two tools evaluated in Paper IV. As such, the subjects were supported by tool
output matching two different P-R curves. Inspired by research in medicine, more
specifically a study on vaccination coverage [7], we then analyzed the data using
statistical testing of equivalence [94]. The low number of subjects did not result
in any statistically significant results, but we found that the effect size of being
supported by the slightly more accurate tool output was of practical significance.
While our results are not conclusive, the pilot experiment indicates that it is worth-
while to investigate further into the actual value of improving tool support for trace
recovery, in a replication with more subjects.

6 Synthesis

This section presents a synthesis of the results from the included papers to provide
answers to the research questions asked in this thesis.

RQ1: Which IR model has most frequently been imple-
mented in research tools?

Paper I concludes that algebraic IR models have been implemented more often
than probabilistic IR models. Although there has been an increasing trend of trace
recovery based on probabilistic LMs the last five years, a majority of publications
report IR-based trace recovery using vector space retrieval. In roughly half of the
papers applying VSM, the number of dimensions of the vector space is reduced
using LSI. However, it is important to note that one reason for the many studies on
vector space retrieval is that it is frequently used as a benchmark when comparing
the output from more advanced IR models.

RQ2: Which IR model has displayed the most promising
results?

As presented in Paper I, no IR model has been reported to repeatedly outperform
the classic VSM developed in the 60s. This confirms previous work by Oliveto et
al. [73], Binkley and Lawrie [10], and Falessi et al. [34]. Instead, our work shows
that the input software artifacts have a much larger impact on the outcome of trace
recovery experiments than the choice of IR model. While this is well known in

16 INTRODUCTION

IR research [69], and has been mentioned by Ali et al. in the traceability commu-
nity [2], it has not been highlighted as clearly before in traceability research.

RQ3: What evidence is there that IR-based trace recovery
is feasible in an industrial setting?

The software engineering literature identified in Paper I does not contain any sub-
stantial success stories from in-vivo evaluations. Only one industrial case study,
conducted in a short 5-people project, has reported that IR-based trace recovery
was beneficial. Apart from this study, the strongest empirical evidence comes from
controlled experiments with student subjects (similar to our contribution in Paper
IV) and case studies in student projects. While these studies suggest that certain
traceability-centric work tasks can be supported by IR-based trace recovery tools,
the majority of studies do not go further than reporting P-R curves “in the cave
of IR evaluation” (similar to our contribution in Paper III). However, some identi-
fied non-academic activity indicates a usefulness of the approach. In May 2012, a
patent was granted protecting a “System and method for maintaining requirements
traceability” [9]. Furthermore, the CASE tool HP Quality Center describes an IR
feature in its marketing of the product [44].

RQ4: How can we advance technology-oriented studies
on IR-based trace recovery?

As the results of IR-based trace recovery are so dependent on the input software
artifacts, there is little value in additional evaluations based on a small number
of artifacts. It is critical to conduct experiments on large, preferably publicly
available, datasets. While this has been proposed by members of COEST be-
fore [8, 17, 26, 27], Paper I underlines how few previous evaluations have been
conducted using datasets of reasonable size. Moreover, in Paper II we argue that if
student artifacts are to be used as experimental input, they should first be properly
validated for industrial representability. In the IR sub-domain of enterprise search,
it has been proposed to extract documents from companies that no longer exist [42]
(e.g., Enron), an option that could be explored also in software engineering. In Pa-
per I we argue that the reporting of technical details of IR implementations should
be improved, while Paper II stresses the importance to clearly describe the input
artifacts in technology-oriented experiments. Describing the artifacts is especially
important in studies where the artifacts cannot be disclosed, e.g., for confidential-
ity reasons, as it obstructs secondary studies.

6 Synthesis 17

Viewpoint Consideration Recommendation

Tool devel-
oper

Which IR model should
we implement in our new
trace recovery tool?

The classic VSM, since sev-
eral efficient implementations
are available as open source.
There is no empirical evidence
that more advanced IR mod-
els produce more accurate trace
links.

Development
manager

Should we deploy an IR-
based trace recovery tool
in our organization?

Await empirical evidence from
future in-vivo studies. In the
meantime, assure that your gen-
eral search solutions make trace
artifacts findable.

Traceability
researcher

How can we strengthen
the base of empirical ev-
idence of IR-based trace
recovery?

Case studies in industrial set-
tings are required. Furthermore,
larger datasets containing indus-
trial artifacts should be used as
experimental input. Also, the
reporting of evaluation contexts,
input artifacts, and IR solutions
should be improved.

Table 3: Recommendations for the proposed viewpoints.

RQ5: How can we advance human-oriented studies on IR-
based trace recovery?

As paper I shows, a majority of evaluations of IR-based trace recovery have been
conducted in “the cave of IR evaluation”, drawing conclusions based on P-R curves.
More evaluations with human subjects, working with realistic tasks, are needed to
strengthen the evidence of IR-based trace recovery. While a number of controlled
experiments have been conducted, conspicuously few industrial case studies have
been reported. In an attempt to guide future studies beyond “the cave”, Paper
III proposes a taxonomy of evaluation contexts, along with suggested measures,
tailored for IR-based trace recovery, based on previous work by Ingwersen and
Järvelin [51].

In Table 3, we further summarize our answers in an attempt to address the three
viewpoints presented in Section 3. The last column presents our recommendations,
based on the understanding obtained during the work of this thesis.

18 INTRODUCTION

7 Threats to Validity

The results of any research effort should be questioned, even though proper re-
search methodologies were applied. The validity of the research is the foundation
on which the trustworthiness of the results is established. In this thesis, threats to
validity, and actions taken to reduce the threats, are discussed based on the clas-
sification proposed by Wohlin et al. [95]. Further details on validity threats are
available in the individual papers.

Construct validity is concerned with the relation between theories behind the
research and the observations. Consequently, it covers the choice and collection of
measures for the studied concepts. For example, the questions of a questionnaire
must not be misunderstood or misinterpreted by the respondents. One strategy to
increase construct validity is to use multiple sources of evidence, and to establish
chains of evidence [96].

In Paper I, we partly aggregate evidence from previous evaluations based on
data in tables or directly from P-R curves. Thus, we were limited by the levels
of detail included in the reviewed publications. A possible way to obtain richer
data would have been to contact the corresponding authors and ask for access to
all measurements from the studies. As 79 publications from the last decade were
included, it would have required a large effort. On the other hand, as we extracted
data from P-R values from 48 publications and, whenever possible, followed the
TREC convention of reporting both precision at fixed recall levels as well as pre-
cision and recall at certain cut off levels, we limit this threat. Regarding the survey
in Paper II, the questionnaire was reviewed by a native English speaker, and a pilot
study was conducted on five senior software engineering researchers.

Internal validity is related to issues that may affect the causal relationship be-
tween treatment and outcome. In experiments, used in both Paper III and IV, the
internal validity questions whether the effect is caused by the independent vari-
ables or other factors. Internal validity is typically not a threat to descriptive or
exploratory studies, as casual claims rarely are made [96].

The SLR in Paper I is subject to a number of threats to internal validity. As
most evaluations of IR-based trace recovery have been conducted in controlled
settings, e.g., in university classrooms, we have not considered different domains
in the analysis of the results. Further research is required to study whether the
approach is more feasible in certain contexts such as safety-critical development.
Also, as the use of terminology in the publications was not aligned, our choice of
search string might have influenced the resulting evidence base. These threats were
addressed by combining database searches with snowball sampling, and by incre-
mentally developing the search string based on a gold standard of publications.
Another threat to the SLR is publication bias, e.g., authors might be less likely to
publish negative results, or IR-based trace recovery might be successfully used in
industry even though it is not reported in research publications. As the results in
Paper I are related to all RQs, so are the threats to internal validity. Furthermore,

7 Threats to Validity 19

regarding the experiments included in this thesis, our understanding of the studied
IR-based trace recovery tools (Paper III), and the subjects’ understanding of the
work task (Paper IV), are confounding factors. In both experiments we addressed
threats to internal validity by running pilot experiments.

External validity concerns the ability to generalize the findings outside the
actual scope of the study. Results obtained in a specific context may not be valid
in other contexts. Strategies to address threats to external validity include studying
multiple cases and replicating experiments [96].

In Paper II, we surveyed published researchers in the traceability community.
However, as the number of respondents was low, we do not have a strong basis for
generalizing our results to the entire population of traceability researchers. On the
other hand, considering the exploratory nature of our study, the external validity
of the survey is acceptable. Another threat to external validity is that all software
artifacts used as experimental input in Paper III and IV originate from embed-
ded development contexts, either from the space domain or process automation.
Furthermore, as emphasized in Paper I, the limited number of artifacts makes gen-
eralizations to larger document spaces uncertain.

Conclusion validity results from the ability to draw correct conclusions about
the relation between the treatment and the outcome. This type of validity is related
to the repeatability of a study. Threats to conclusion validity in quantitative studies
are often related to statistics [95]. In qualitative studies on the other hand, it can
be used to discuss to which extent the data and the analysis are dependent on the
specific researchers, then sometimes also referred to as reliability [84, 96].

In Paper III, the technology-oriented experimental results were not analyzed
using significance testing since assumptions underlying statistical treatment such
as independence, random sampling and normality were not met. Instead, the out-
put differences were analyzed in a human-oriented experiment in Paper IV. While
these results were analyzed using statistical testing, the low number of subjects did
not result in any statistically significant results. On the other hand, we consider the
effect sizes reported in Paper IV to be of practical significance.

In Paper I, we assess the strength of evidence of the industrial feasibility of
IR-based trace recovery. This assessment involves interpretation. While we do not
consider P-R curves from small evaluations “in the cave” to be particularly strong
pieces of evidence, other researchers might value them differently. For example,
the foreword by Finkelstein in the recently published textbook on software and sys-
tems traceability discusses IR-based trace recovery in a less critical manner [18].
However, in line with practices in reflexive methodology, there is a demand for
reflection in research in conjunction with interpretation [3]. As such, a researcher
should be aware of, and critically confront, favored lines of interpretation. Natu-
rally, there is a risk of bias in the foreword of a textbook, written by a notable part
of the traceability research community. In such a foreword, there are few incen-
tives to present sceptical views on the research. On the other hand, there is also a
risk that the work in this licentiate thesis, written by a junior PhD student fostered

20 INTRODUCTION

in a strictly empirical research tradition, is overly critical to the mainly technology-
oriented research strategy. Our conclusion, that there is a need for evaluations that
go beyond “the cave”, might be in the interest of the individual researcher, as an
attempt to pave the way for future empirical studies. To conclude, the conclusion
validity is a threat to RQ5 and RQ6, as other researchers might suggest different
ways to advance evaluation of IR-based trace recovery.

8 Agenda for Future Research

This section presents a speculative research agenda for future work, partly based
on Paper V. We intend to continue our research with a focus on trace links, however
in a more solution-oriented manner. Our ambition is to study a specific work task
that requires an engineer to explicitly specify trace links among artifacts, namely
change impact analysis in a safety-critical context. As we suspect that software
engineers are more comfortable navigating the source code than its related doc-
umentation, we intend to focus specifically on trace links between non-code ar-
tifacts. A summary of the planned work in this section is presented as Future
research Questions (FQ) and planned Design science Tasks (DT) in Table 5.

8.1 Description of the Context

The targeted impact analysis process is applied by a large multinational company
active in the power and automation sector. The development context is safety-
critical embedded development in the domain of industrial control systems, gov-
erned by IEC 61511 [52]. The number of developers is in the magnitude of hun-
dreds; a project has typically a length of 12-18 months and follows an iterative
stage-gate project management model. Also, the software is certified to a Safety
Integrity Level (SIL) of 2 as defined by IEC 61508 [53], corresponding to a risk
reduction factor of 1.000.000-10.000.000 for continuous operation. Process re-
quirements mandate maintenance of traceability information, especially between
requirements and test cases. Both requirements and test case descriptions are pre-
dominantly specified in English NL text.

As specified in IEC 61511 [52], impact of proposed software changes, e.g.,
for error corrections, should be analyzed before implementation. In the initially
studied case, as presented in Paper V, this process is integrated in the issue track-
ing system. As part of the analysis, engineers are required to investigate impact,
and report their results according to a project specific template, validated by an
external certifying agency. A slightly modified version of this template, recently
described as part of a master thesis project [64], is presented in Table 4. As seen
in Table 4, several questions explicitly ask for trace links (6 out of 13 questions).
The engineer is required to specify source code that will be modified (with a file-
level granularity), and also which related software artifacts need to be updated to

8 Agenda for Future Research 21

Impact Analysis Questions for Error Corrections
1) Is the reported problem safety critical?
2) In which versions/revisions does this problem exist?
3) How are general system functions and properties affected by the

change?
4) List modified code files/modules and their SIL classifications,

and/or affected safety safety related hardware modules.
5) How are general system functions and properties affected by the

change?
6) Which library items are affected by the change? (e.g., library types,

firmware functions, HW types, HW libraries)
7) Which documents need to be modified? (e.g., product requirements

specifications, architecture, functional requirements specifications,
design descriptions, schematics, functional test descriptions, design
test descriptions)

8) Which test cases need to be executed? (e.g., design tests, functional
tests, sequence tests, environmental/EMC tests, FPGA simulations)

9) Which user documents, including online help, need to be modified?
10) How long will it take to correct the problem, and verify the correction?
11) What is the root cause of this problem?
12) How could this problem been avoided?
13) Which requirements and functions need to be retested by product

test/system test organization?

Table 4: Impact analysis template. Questions in bold fonts require explicit trace
links to other artifacts. Based on a description by Klevin [64].

reflect the changes, e.g., requirement specifications, design documentation, test
case descriptions, test scripts and user manuals. Furthermore, the impact analysis
should specify which high-level system requirements cover the involved features,
and which test cases should be executed to verify that the changes are correct once
implemented in the system. Consequently, the impact analysis reports explicitly
connect requirements and test artifacts. As this has been reported as a specific
challenge in requirements and verification alignment [85], we also intend to ex-
plore how the knowledge embedded in the impact analysis reports can be used to
support this aspect of large-scale software development.

8.2 Solution idea

While an important part of the impact analysis work task involves specifying trace
links to related software artifacts, there are rarely any traceability matrices to con-
sult. Consequently, if engineers do not already know which artifacts are impacted,

22 INTRODUCTION

a substantial part of the impact analysis work task turns into an information seek-
ing activity. In Figure 5, we present an initial model of the trace link seeking
activity involved in the impact analysis. At first, depicted in the left of the fig-
ure, the engineer starts the work task with six questions that require explicit trace
links. The engineer then enters the process of trace link seeking, presented as the
second step in Figure 5. Typically, this is an iterative process where the engineer
seeks information suggesting trace links in different ways. Knowledge embedded
in previous impact analysis reports can be reused, project documentation can be
studied, and colleagues can be asked. As reported by Dagenais et al., especially
junior engineers and newcomers rely on communication with more experienced
colleagues, in particular when project findability is low due to poor search solu-
tions [21]. Finally, as presented to the right in Figure 5, enough information has
been found to specify required trace links in the impact analysis template. As
presented in Table 5, we intend to improve the trace link seeking model (DT1)
based on observational studies with protocol analysis. This work could comple-
ment Freund et al.’s more general work on modeling the information behavior of
software engineer [37] by exploring a specific work task. Moreover, we plan to
assess whether the trace link seeking model is applicable to other contexts with
strict process requirements on maintenance of traceability information (FQ1).

Currently, as presented in Paper V, engineers conduct the trace link seeking
supported by a low level of automation [75]. Our plan is to increase the level
of automation in two areas of the trace link seeking process, as indicated by the
cogwheels in Figure 5. In the present work flow, engineers use the search features
(primarily keyword-based) of the issue tracking system and the document manage-
ment system to gather enough information to specify trace links. Our hypothesis
is that these steps could be supported by a recommendation system based on tex-
tual similarity analysis. As discussed in Paper V, our goal is to support trace link
seeking by deploying a plug-in to the issue tracking system (presented as DT2 in
Table 5). Developing plug-ins to tools already deployed in industry enables in-vivo
studies without introducing additional external tools.

Another direction we want to explore is to consider artifact meta-information
to improve the trace recovery, presented as FQ2 in Table 5. One possibility, that
we initially have explored, is to exploit the already existing link structures among
software artifacts. Using link mining, we have explored clusters of issue reports
from the public Android issue tracking system. Figure 6 visualizes link structures
among Android issue reports, extracted from hyperlinks manually established by
developers. We expect to find patterns of linked artifacts also in the targeted safety-
critical case, however also between different types of artifacts, when conducting
link mining in the impact analysis reports in the issue tracking system. As hyper-
links have proven useful in tasks such as object ranking, link prediction, and sub-
graph discovery [38], we hope it can also be used to advance trace recovery. A link
mining approach might move our research closer to work on semantic networks of
software artifacts, which previously has been used to significantly improve search-

8 Agenda for Future Research 23

Figure 5: Trace link seeking in the impact analysis work task. Adapted from Pa-
per V. Cogwheels indicate an information seeking activity that could be supported
by IR-based trace recovery.

ing based on textual similarity in the software engineering context [58]. Further-
more, work on trace link structures would enable us to explore the use of visual-
ization techniques to support engineers’ trace links seeking, as has previously been
proposed by Cleland-Huang and Habrat [19].

We also suspect that other pieces of artifact meta-information could be useful
in trace recovery. Web search engines consider hundreds of features to assess the
relevance of web pages for ranking purposes [1]. Learning-to-rank methods are
then used on training data to learn the optimal combination of feature weights, re-
sulting in the best ranking of search results [67]. In the context of trace recovery,
we envision that both nominal software artifact features (e.g., responsible team,
subsystem), ordinal features (e.g., safety level, severity), and features measurable
on a ratio scale (e.g, resolution time, link structure) can be used to improve rank-
ing of candidate trace links, in particular when combined with information about
the user of the tool. Engineers conducting trace recovery might not consider the
relevance of candidate trace links to be binary, but rather of a multi-dimensional
nature [61], i.e., dynamic and situational. For example, the relevance of a trace
link might depend on the role of the tracing engineer (tester, developer, manager,
etc.), the current phase of the development project (pre-study, implementation, ver-
ification, etc.), and which other trace links have already been identified (as there
might be dependencies). Using meta-information and user information, IR-based
trace recovery could assumably be advanced beyond what is possible using merely
textual similarity analysis.

24 INTRODUCTION

Figure 6: Linked structures of issue reports in the public Android issue tracking
system.

We anticipate certain challenges as we continue our work. First, in many en-
terprises, information access is hindered by information being widely dispersed
in information management systems with poor interoperability [69], resulting in
what is referred to as information silos. It is uncertain which artifacts could be
accessed without major engineering efforts and without breaking information ac-
cess policies. Second, as identified by Klevin [64], the impact analysis reports in
the targeted case, i.e., the answers to the template presented in Table 4, are stored
in the issue tracking system as unstructured text. Clearly, this will complicate in-
formation extraction and data mining from the reports. Third, while the number
of software artifacts in large projects can be challenging, it is several orders of
magnitude smaller than the number of web pages indexed by modern web search
engines. There is a risk that we will not be able to gather enough data for machine
learning methods to do themselves justice.

9 Conclusion

The challenge of maintaining trace links in large-scale software engineering has
been addressed by IR approaches in roughly a hundred previous publications. In
an SLR, we identified 79 publications reporting empirical evaluations of IR-based
trace recovery. We found that most often algebraic IR models have been applied

9 Conclusion 25

Future
work

Description Research
method

Type of re-
search

DT1 How can we further improve the
trace link seeking model?

Design science Modeling

FQ1 Is the trace link seeking model ap-
plicable in other development con-
texts with process requirements on
traceability?

Multi-case
study

Exploratory

DT2 How can textual similarity analysis
be applied to support trace recovery
in the impact analysis?

Design science Tool devel-
opment

FQ2 Can the accuracy of the tool output
be improved by considering artifact
meta-information?

Technology-
oriented
experiment

Evaluative

FQ3 Does the tool support the impact
analysis work task?

Case study Evaluative

Table 5: Future research questions and planned design science tasks.

(RQ1), and confirm the previous claim that no IR model regularly outperforms
trace recovery based on VSM (RQ2).

A majority of previous evaluations of IR-based trace recovery have been techno-
logy-oriented, conducted in what Ingwersen and Järvelin refer to as “the cave of IR
evaluation”. Also, we show that evaluations of IR-based trace recovery primarily
have been conducted using simplified datasets, both in relation to size (most often
less than 500 artifacts) and origin (frequently former student projects, typically not
validated for industrial representability). As such, the validity of concluding that
IR-based trace recovery is feasible in an industrial setting, based on P-R curves “in
the cave”, can be questioned (RQ3).

On the other hand, a set of previous evaluations conducted with human subjects
suggest that engineers would benefit from IR-based trace recovery tools when per-
forming certain work tasks (RQ3). To further strengthen the evidence of IR-based
trace recovery, more studies involving humans are needed, particularly industrial
case studies (RQ5). Moreover, evaluative studies should be conducted on diverse
datasets containing a higher number of artifacts (RQ4). Consequently, our findings
intensify the call for additional empirical research by CoEST.

This thesis also includes two experiments on IR-based trace recovery. The
technology-oriented experiment highlights the clear dependence between datasets
and the accuracy of IR-based trace recovery, which was also confirmed by the SLR.
Thus, to enable replications and secondary studies, we argue that datasets should
be thoroughly characterized in future studies on trace recovery, especially when
they cannot be disclosed (RQ4). The human-oriented experiment suggests that it

26 INTRODUCTION

is worthwhile investigating further into the actual value of improved P-R curves.
The pilot experiment showed that the effect size of using a slightly better tool
is of practical significance regarding precision and F-measure. Finally, based on
research on general IR evaluation, we propose a taxonomy of evaluation contexts
tailored for IR-based trace recovery (RQ5).

As future work, we intend to target an industrial case of impact analysis in
a safety-critical development context. In the case, engineers perform trace link
seeking among textual artifacts, and explicitly specify the trace links according to
a template. Consequently, the case appears to be suitable for evaluating IR-based
trace recovery in an in-vivo setting.

BIBLIOGRAPHY

[1] E. Agichtein, E. Brill, and S. Dumais. Improving Web search ranking by
incorporating user behavior information. In Proceedings of the 29th annual
international ACM SIGIR conference on Research and development in infor-
mation retrieval, pages 19–26, 2006.

[2] N. Ali, Y-G. Guéhéneuc, and G. Antoniol. Factors impacting the inputs of
traceability recovery approaches. In J. Cleland-Huang, O. Gotel, and A. Zis-
man, editors, Software and Systems Traceability. Springer, 2012.

[3] M. Alvesson and K. Sköldberg. Reflexive methodology: New vistas for qual-
itative research. Sage Publications, 2000.

[4] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia. Information retrieval
models for recovering traceability links between code and documentation. In
Conference on Software Maintenance, pages 40–49, 2000.

[5] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recover-
ing traceability links between code and documentation. In Transactions on
Software Engineering, volume 28, pages 970–983, 2002.

[6] R. Baeza-Yates and B. Ribeiro-Neto. Modern information retrieval: The
concepts and technology behind search. Addison-Wesley, 2nd edition, 2011.

[7] L. Barker, E. Luman, M. McCauley, and S. Chu. Assessing equivalence: An
alternative to the use of difference tests for measuring disparities in vacci-
nation coverage. American Journal of Epidemiology, 156(11):1056–1061,
2002.

[8] E. Ben Charrada, D. Caspar, C. Jeanneret, and M. Glinz. Towards a bench-
mark for traceability. In Proceedings of the 12th International Workshop on
Principles on Software Evolution, pages 21–30, 2011.

[9] J. Berlik, S. Dharmadhikari, M. Harding, and N. Singh. System and method
for maintaining requirements traceability, United States Patent 8191044,
2012.

28 INTRODUCTION

[10] D. Binkley and D. Lawrie. Information retrieval applications in software
maintenance and evolution. In J. Marciniak, editor, Encyclopedia of software
engineering. Taylor & Francis, 2nd edition, 2010.

[11] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. The Journal of
Machine Learning Research, 3(4-5):993–1022, 2003.

[12] B. Boehm. Software engineering. 25(12):1226–1241, 1976.

[13] R. Burgin. The Monte Carlo method and the evaluation of retrieval sys-
tem performance. Journal of the American Society for Information Science,
50(2):181–191, 1999.

[14] Carnegie Mellon Software Engineering Institute. CMMI for development,
Version 1.3, 2010.

[15] D. Case. Looking for information: A survey of research on information seek-
ing, needs and behavior. Academic Press, 2nd edition, 2007.

[16] J. Cleland-Huang, C. K Chang, and M. Christensen. Event-based traceability
for managing evolutionary change. Transactions on Software Engineering,
29(9):796– 810, 2003.

[17] J. Cleland-Huang, A. Czauderna, A. Dekhtyar, O. Gotel, J. Huffman Hayes,
E. Keenan, J. Maletic, D. Poshyvanyk, Y. Shin, A. Zisman, G. Antoniol,
B. Berenbach, A. Egyed, and P. Mäder. Grand challenges, benchmarks, and
TraceLab: Developing infrastructure for the software traceability research
community. In Proceedings of the 6th International Workshop on Traceabil-
ity in Emerging Forms of Software Engineering, 2011.

[18] J. Cleland-Huang, O. Gotel, and A. Zisman, editors. Software and systems
traceability. Springer, 2012.

[19] J. Cleland-Huang and R. Habrat. Visualization and analysis in automated
trace retrieval. In Proceedings of the 2nd International Workshop on Re-
quirements Engineering Visualization, 2007.

[20] C. Cleverdon. The significance of the Cranfield tests on index languages. In
Proceedings of the 14th Annual International SIGIR Conference on Research
and Development in Information Retrieval, pages 3–12, 1991.

[21] B. Dagenais, H. Ossher, R. Bellamy, M. Robillard, and J. de Vries. Moving
into a new software project landscape. In Proceedings of the 32nd Interna-
tional Conference on Software Engineering, pages 275–284, 2010.

[22] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. ADAMS re-trace: A
traceability recovery tool. In Proceedings of the 9th European Conference
on Software Maintenance and Reengineering, pages 32–41, 2005.

BIBLIOGRAPHY 29

[23] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Recovering traceability
links in software artifact management systems using information retrieval
methods. Transactions on Software Engineering and Methodology, 16(4),
2007.

[24] A. De Lucia, A. Marcus, R. Oliveto, and D. Poshyvanyk. Informa-
tion retrieval methods for automated traceability recovery. In J. Cleland-
Huang, O. Gotel, and A. Zisman, editors, Software and Systems Traceability.
Springer, 2012.

[25] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Index-
ing by latent semantic analysis. Journal of the American Society for Infor-
mation Science, 41(6):391–407, 1990.

[26] A. Dekhtyar and J. Huffman Hayes. Good benchmarks are hard to find:
Toward the benchmark for information retrieval applications in software en-
gineering. Proceedings of the International Conference on Software Mainte-
nance, 2006.

[27] A. Dekhtyar, J. Huffman Hayes, and G. Antoniol. Benchmarks for traceabil-
ity? In Proceedings of the International Symposium on Grand Challenges in
Traceability, 2007.

[28] K. Desouza, Y. Awazu, and P. Baloh. Managing knowledge in global soft-
ware development efforts: Issues and practices. Software, IEEE, 23(5):30–
37, 2006.

[29] R. Dömges and K. Pohl. Adapting traceability environments to project-
specific needs. Communications of the ACM, 41(12):54–62, 1998.

[30] M. Dorfman. Standards, guidelines, and examples on system and software
requirements engineering. IEEE Computer Society Press, 1994.

[31] S. Easterbrook, J. Singer, M. Storey, and D. Damian. Selecting empiri-
cal methods for software engineering research. In F. Shull, J. Singer, and
D. Sjöberg, editors, Guide to Advanced Empirical Software Engineering,
pages 285–311. Springer, 2008.

[32] A. Edmunds and A. Morris. The problem of information overload in business
organisations: A review of the literature. International Journal of Informa-
tion Management, 20(1):17–28, 2000.

[33] M. Eppler and J. Mengis. The concept of information overload: A review of
literature from organization science, accounting, marketing, MIS, and related
disciplines. The Information Society, 20(5):325–344, 2004.

30 INTRODUCTION

[34] D. Falessi, G. Cantone, and G. Canfora. A comprehensive characterization of
NLP techniques for identifying equivalent requirements. In Proceedings of
the International Symposium on Empirical Software Engineering and Mea-
surement, 2010.

[35] D. Falessi, G. Cantone, and G. Canfora. Empirical principles and an indus-
trial case study in retrieving equivalent requirements via natural language
processing techniques. Transactions on Software Engineering, 2011.

[36] R. Fiutem and G. Antoniol. Identifying design-code inconsistencies in
object-oriented software: A case study. In Proceedings of the International
Conference on Software Maintenance, pages 94–102, 1998.

[37] L. Freund, E. Toms, and J. Waterhouse. Modeling the information behaviour
of software engineers using a work - task framework. Proceedings of the
American Society for Information Science and Technology, 42(1), 2005.

[38] L. Getoor and C. Diehl. Link mining: A survey. SIGKDD Explorations
Newsletter, 7(2):3–12, 2005.

[39] O. Gotel, J. Cleland-Huang, J. Huffman Hayes, A. Zisman, A. Egyed,
P. Grünbacher, A. Dekhtyar, G. Antoniol, J. Maletic, and P. Mäder. Trace-
ability fundamentals. In J. Cleland-Huang, O. Gotel, and A. Zisman, editors,
Software and Systems Traceability, pages 3–22. Springer, 2012.

[40] O. Gotel and C. Finkelstein. An analysis of the requirements traceability
problem. In Proceedings of the First International Conference on Require-
ments Engineering, pages 94–101, 1994.

[41] S. Harter and C. Hert. Evaluation of information retrieval systems: Ap-
proaches, issues, and methods. Annual Review of Information Science and
Technology, 32:3–94, 1997.

[42] D. Hawking. Challenges in enterprise search. In Proceedings of the 15th
Australasian database conference, pages 15–24, 2004.

[43] A. Hevner, S. March, J. Park, and S. Ram. Design science in information
systems research. MIS Quarterly, 28(1):75–105, 2004.

[44] Hewlett Packard Development Company. HP quality center software (for-
merly HP TestDirector for quality center software) Data sheet, 4AA0-
9587ENW rev. 3, 2009.

[45] T. Hofman. Unsupervised learning by probabilistic latent semantic analysis.
Machine Learning, 42(1-2):177–196, 2001.

BIBLIOGRAPHY 31

[46] M Höst, B. Regnell, and C. Wohlin. Using students as subjects: A com-
parative study of students and professionals in lead-time impact assessment.
Empirical Software Engineering, 5(3):201–214, 2000.

[47] J. Huffman Hayes and A. Dekhtyar. A framework for comparing require-
ments tracing experiments. Interational Journal of Software Engineering
and Knowledge Engineering, 15(5):751–781, 2005.

[48] J. Huffman Hayes, A. Dekhtyar, and S. Sundaram. Advancing candidate link
generation for requirements tracing: The study of methods. Transactions on
Software Engineering, 32(1):4–19, 2006.

[49] J. Huffman Hayes, A. Dekhtyar, S. Sundaram, A. Holbrook, S. Vadlamudi,
and A. April. REquirements TRacing on target (RETRO): improving soft-
ware maintenance through traceability recovery. Innovations in Systems and
Software Engineering, 3(3):193–202, 2007.

[50] IEEE Computer Society. 610.12-1990 IEEE Standard glossary of software
engineering terminology. Technical report, 1990.

[51] P. Ingwersen and K. Järvelin. The turn: Integration of information seeking
and retrieval in context. Springer, 2005.

[52] International Electrotechnical Commission. IEC 61511-1 ed 1.0, Safety in-
strumented systems for the process industry sector, 2003.

[53] International Electrotechnical Commission. IEC 61508 ed 2.0, Electrical/-
Electronic/Programmable electronic safety-related systems, 2010.

[54] International Organization for Standardization. ISO 26262-1:2011 Road ve-
hicles –Functional safety –, 2011.

[55] S. Isaac and W. Michael. Handbook in research and evaluation: A collection
of principles, methods, and strategies useful in the planning, design, and
evaluation of studies in education and the behavioral sciences. Edits Pub,
3rd edition, 1995.

[56] K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving highly
relevant documents. In Proceedings of the 23rd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
pages 41–48, 2000.

[57] A. Jedlitschka, M. Ciolkowski, and D. Pfahl. Reporting experiments in soft-
ware engineering. In F. Shull, J. Singer, and D. Sjöberg, editors, Guide to
Advanced Empirical Software Engineering, pages 201–228. Springer, Lon-
don, 2008.

32 INTRODUCTION

[58] G. Karabatis, Z. Chen, V. Janeja, T. Lobo, M. Advani, M. Lindvall, and
R. Feldmann. Using semantic networks and context in search for relevant
software engineering artifacts. In S. Spaccapietra and L. Delcambre, editors,
Journal on Data Semantics XIV, pages 74–104. Springer, Berlin, 2009.

[59] P. Karr-Wisniewski and Y. Lu. When more is too much: Operationalizing
technology overload and exploring its impact on knowledge worker produc-
tivity. Computers in Human Behavior, 26(5):1061–1072, 2010.

[60] E. Keenan, A. Czauderna, G. Leach, J. Cleland-Huang, Y. Shin, E. Mor-
litz, M. Gethers, D. Poshyvanyk, J. Maletic, J. Huffman Hayes, A. Dekhtyar,
A. Manukian, S. Hussein, and D. Hearn. TraceLab: an experimental work-
bench for equipping researchers to innovate, synthesize, and comparatively
evaluate traceability solutions. In Proceedings of the 34th International Con-
ference on Software Engineering, 2012.

[61] J. Kekäläinen and K. Järvelin. Evaluating information retrieval systems un-
der the challenges of interaction and multidimensional dynamic relevance.
Proceedings of the COLIS 4 Conference, pages 253—270, 2002.

[62] B. Kitchenham and S. Charters. Guidelines for performing systematic litera-
ture reviews in software engineering. EBSE Technical Report, 2007.

[63] B. Kitchenham, T. Dybå, and M. Jörgensen. Evidence-based software engi-
neering. In Proceedings of the 26th International Conference on Software
Engineering, volume 2004, pages 273–281, 2004.

[64] A. Klevin. People, process and tools: A study of impact analysis in
a change process. Master thesis, Lund University, ISSN 1650-2884,
http://sam.cs.lth.se/ExjobGetFile?id=434, 2012.

[65] G. Leckie, K. Pettigrew, and C. Sylvain. Modeling the information seeking
of professionals: A general model derived from research on engineers, health
care professionals, and lawyers. Library Quarterly, 66(2):161–93, 1996.

[66] J. Lin, L. Chan, J. Cleland-Huang, R. Settimi, J. Amaya, G. Bedford,
B. Berenbach, O. B Khadra, D. Chuan, and X. Zou. Poirot: A distributed
tool supporting enterprise-wide automated traceability. In Proceedings of
the 14th International Conference on Requirements Engineering, pages 363–
364, 2006.

[67] T-Y Liu. Learning to rank for information retrieval. Springer, 2011.

[68] M. Lormans and A. van Deursen. Can LSI help reconstructing requirements
traceability in design and test? In Proceedings of the 10th European Confer-
ence on Software Maintenance and Reengineering, pages 45–54, 2006.

BIBLIOGRAPHY 33

[69] C. Manning, P. Raghavan, and H. Schütze. Introduction to information re-
trieval. Cambridge University Press, 2008.

[70] A. Marcus and J. Maletic. Recovering documentation-to-source-code trace-
ability links using latent semantic indexing. In Proceedings of the Interna-
tional Conference on Software Engineering, pages 125–135, 2003.

[71] P. Morville. Ambient findability: What we find changes who we become.
O’Reilly Media, 2005.

[72] P. Naur and B. Randell, editors. Software Engineering: Report of a confer-
ence sponsored by the NATO Science Committee. 1969.

[73] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia. On the equivalence
of information retrieval methods for automated traceability link recovery. In
International Conference on Program Comprehension, pages 68–71, 2010.

[74] T. Olsson. Software information management in requirements and test docu-
mentation. Licentiate thesis, Lund University, 2002.

[75] R. Parasuraman, T. Sheridan, and C. Wickens. A model for types and levels
of human interaction with automation. Transactions on Systems, Man and
Cybernetics, 30(3):286–297, 2000.

[76] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. Systematic mapping
studies in software engineering. In Proceedings of the 12th International
Conference on Evaluation and Assessment in Software Engineering, pages
71–80, 2008.

[77] A. Pinsonneault and K. Kraemer. Survey research methodology in manage-
ment information systems: An assessment. Journal of Management Infor-
mation Systems, 10(2):75–105, 1993.

[78] J. Ponte and B. Croft. A language modeling approach to information re-
trieval. In Proceedings of the 21st Annual International SIGIR Conference on
Research and Development in Information Retrieval, pages 275–281, 1998.

[79] M. Poppendieck and T. Poppendieck. Lean software development: An agile
toolkit. Addison-Wesley Professional, 2003.

[80] B. Ramesh. Process knowledge management with traceability. IEEE Soft-
ware, 19(3):50–52, 2002.

[81] B. Randall. Towards a methodology of computing system design. In P. Naur
and B. Randall, editors, NATO Working Conference on Software Engineering
1968, Report on a Conference Sponsored by NATO Scientific Committee,
pages 204–208. 1969.

34 INTRODUCTION

[82] S. E. Robertson and S. Jones. Relevance weighting of search terms. Journal
of the American Society for Information Science, 27(3):129–146, 1976.

[83] B. Robson. Real world research. Blackwell, 2nd edition, 2002.

[84] P. Runeson, M. Höst, A. Rainer, and B. Regnell. Case study research in
software engineering: Guidelines and examples. Wiley, 2012.

[85] G. Sabaliauskaite, A. Loconsole, E. Engström, M. Unterkalmsteiner, B. Reg-
nell, P. Runeson, T. Gorschek, and R. Feldt. Challenges in aligning require-
ments engineering and verification in a large-scale industrial context. In Re-
quirements Engineering: Foundation for Software Quality, pages 128–142,
2010.

[86] G. Salton, A. Wong, and C. Yang. A vector space model for automatic in-
dexing. Commununications of the ACM, 18(11):613–620, 1975.

[87] W. Shaw Jr, R. Burgin, and P. Howell. Performance standards and evaluations
in IR test collections: Vector-space and other retrieval models. Information
Processing & Management, 33(1):15–36, 1997.

[88] F. Shull, J. Carver, S. Vegas, and N. Juristo. The role of replications in
empirical software engineering. Empirical Software Engineering, 13(2):211–
218, 2008.

[89] F. Shull, J. Singer, and D. Sjöberg. Guide to advanced empirical software
engineering. Springer, 1st edition, 2010.

[90] K. Spärck Jones, S. Walker, and S. E. Robertson. A probabilistic model of in-
formation retrieval: Development and comparative experiments. Information
Processing and Management, 36(6):779–808, 2000.

[91] R. Torkar, T. Gorschek, R. Feldt, M. Svahnberg, U. Raja, and K. Kamran.
Requirements traceability: A systematic review and industry case study. In-
ternational Journal of Software Engineering and Knowledge Engineering,
22(3):1–49, 2012.

[92] H. Turtle and B. Croft. Evaluation of an inference network-based retrieval
model. Transactions on Information Systems, 9(3):187–222, 1991.

[93] J. Urbano. Information retrieval meta-evaluation: Challenges and opportu-
nities in the music domain. In International Society for Music Information
Retrieval Conference, pages 597–602, 2011.

[94] S. Wellek. Testing statistical hypotheses of equivalence. Chapman and Hall,
2003.

BIBLIOGRAPHY 35

[95] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in software engineering: A practical guide. Springer, 2012.

[96] R. Yin. Case study research: Design and methods. Sage Publications, 3rd
edition, 2003.

[97] H. Zantout and F. Marir. Document management systems from current capa-
bilities towards intelligent information retrieval: An overview. International
Journal of Information Management, 19(6):471–484, 1999.

PAPER I

RECOVERING FROM A
DECADE: A SYSTEMATIC
REVIEW OF INFORMATION

RETRIEVAL APPROACHES TO
SOFTWARE TRACEABILITY

Abstract

Context: Engineers in large-scale software development have to manage large
amounts of information, spread across many artifacts. Several researchers have
proposed expressing retrieval of trace links among artifacts, i.e., trace recovery,
as an Information Retrieval (IR) problem. Objective: The objective of this study
is to review work on IR-based trace recovery, with a particular focus on previous
evaluations and strength of evidence. Method: We conducted a systematic litera-
ture review of IR-based trace recovery. Results: Of the 79 publications classified,
a majority applied algebraic IR models. We found no IR model to regularly out-
perform the classic vector space model. While a set of studies on students indicate
that IR-based trace recovery tools support certain work tasks, most previous stud-
ies do not go beyond reporting precision and recall of candidate trace links from
evaluations using datasets containing less than 500 artifacts. Conclusions: We
found a clear dependence between datasets and the accuracy of IR-based trace re-
covery. Also, our review identified a need of industrial case studies. Furthermore,
we conclude that the overall quality of reporting should be improved regarding
both context and tool details, measures reported, and use of IR terminology. Fi-
nally, based on our empirical findings, we present suggestions on how to advance
research on IR-based trace recovery.

Markus Borg, Per Runeson, and Anders Ardö, Submitted to a journal, 2012

38 Recovering from a Decade: A Systematic Review of Information . . .

1 Introduction

The successful evolution of software systems involves concise and quick access to
information. However, information overload plagues software engineers, as large
amounts of formal and informal information is continuously produced and mod-
ified [36, 133]. Inevitably, especially in large-scale projects, this leads to a chal-
lenging information landscape, that includes, apart from the source code itself,
requirements specifications of various abstraction levels, test case descriptions,
defect reports, manuals, and the like. The state-of-practice approach to structure
such information is to organize artifacts in databases, e.g., document management
systems, requirements databases, and code repositories, and to manually main-
tain trace links [80, 88]. With access to trace information, engineers can more
efficiently perform work tasks such as impact analysis, identification of reusable
artifacts, and requirements validation [7, 169]. Furthermore, research has identi-
fied lack of traceability to be a major contributing factor in project overruns and
failures [36, 69, 80]. Moreover, as traceability plays a role in software verifica-
tion, safety standards such as ISO 26262 [94] for the automotive industry, and IEC
61511 [93] for the process industry, mandate maintenance of traceability informa-
tion [99], as does the CMMI process improvement model [31]. However, manually
maintaining trace links is an approach that does not scale [81]. In addition, the dy-
namics of software development makes it tedious and error-prone [69, 73, 88].

As a consequence, engineers would benefit from additional means of dealing
with information seeking and retrieval, to navigate effectively the heterogeneous
information landscape of software development projects. Several researchers have
claimed it feasible to treat traceability as an information retrieval (IR) problem [7,
51, 88, 115, 120]. Also, other studies have reported that the use of semi-automated
trace recovery reduces human effort when performing requirements tracing [49,54,
58,88,130]. The IR approach builds upon the assumption that if engineers refer to
the same aspects of the system, similar language is used across different software
artifacts. Thus, tools suggest trace links based on Natural Language (NL) con-
tent. During the first decade of the millennium, substantial research effort has been
spent on tailoring, applying, and evaluating IR techniques to software engineering,
but we found that a comprehensive overview of the field is missing. Such a sec-
ondary analysis would provide an evidence based foundation for future research,
and advise industry practice [103]. As such, the gathered empirical evidence could
be used to validate, and possibly intensify, the recent calls for future research by
the traceability research community [79], organized by the Center of Excellence
for Software Traceability (CoEST)1. Furthermore, it could assess the recent claims
that applying more advanced IR models does not improve results [73, 132].

We have conducted a Systematic Mapping (SM) study [102, 136] that clusters
publications on IR-based trace recovery. Then, as suggested by Kitchenham and
Charters [103], we used the resulting map as a starting point for a Systematic Lit-

1www.coest.org

2 Background 39

erature Review (SLR). SMs and SLRs are primarily distinguished by their driving
Research Questions (RQ) [102], i.e., an SM identifies research gaps and clusters
evidence to direct future research, while an SLR synthesizes empirical evidence on
a specific RQ. The rigor of the methodologies is a key asset in ensuring a compre-
hensive collection of published evidence. We define our overall goals of this study
in four RQs (RQ1 and RQ2 guided the SM, while RQ3 and RQ4 were subsequent
starting points for the SLR):

RQ1 Which IR models and enhancement strategies have been most frequently
applied to perform trace recovery among NL software artifacts?

RQ2 Which types of NL software artifacts have been most frequently linked in
IR-based trace recovery studies?

RQ3 How strong is the evidence, wrt. degree of realism in the evaluations, of
IR-based trace recovery?

RQ4 Which IR model has been the most effective, wrt. precision and recall, in
recovering trace links?

This paper is organized as follows. Section 2 contains a thorough definition of
the IR terminology we refer to throughout this paper, and a description of how IR
tools can be used in a trace recovery process. Section 3 presents related work, i.e.,
the history of IR-based trace recovery, and related secondary and methodological
studies. Section 4 describes how the SLR was conducted, including the collection
of studies and the subsequent synthesis of empirical results. Section 4 shows the
results from the study. Section 6 discusses our research questions based on the
results. Finally, Section 7 presents a summary of our contributions and suggests
directions for future research.

2 Background
This section presents fundamentals of IR, and how tools implementing IR models
can be used in a trace recovery process.

2.1 IR background and terminology

As the study identified variations in use of terminology, this section defines the
terminology used in this study (summarized in Table 1), which is aligned with
recently redefined terms [39]. We use the following IR definition: “information
retrieval is finding material (usually documents) of an unstructured nature (usu-
ally text) that satisfies an information need from within large collections (usually
stored on computers)” [119]. If a retrieved document satisfies such a need, we
consider it relevant. We solely consider text retrieval in the study, yet we follow

40 Recovering from a Decade: A Systematic Review of Information . . .

convention and refer to it as IR. In our interpretation, the starting point is that any
approach that retrieves documents relevant to a query qualifies as IR. The terms
Natural Language Processing (NLP) and Linguistic Engineering (LE) are used in
a subset of the mapped publications of this study, even if they refer to the same
IR techniques. We consider NLP and LE to be equivalent and borrow two defini-
tions from Liddy [111]: “NL text is text written in a language used by humans to
communicate to one another”, and “NLP is a range of computational techniques
for analyzing and representing NL text”. As a result, IR (referring to a process
solving a problem) and NLP (referring to a set of techniques) are overlapping. In
contrast to the decision by Falessi et al. [73] to consistently apply the term NLP,
we choose to use IR in this study, as we prefer to focus on the process rather than
the techniques. While trace recovery truly deals with solutions targeting NL text,
we prefer to primarily consider it as a problem of satisfying an information need.

Furthermore, a “software artifact is any piece of information, a final or inter-
mediate work product, which is produced and maintained during software devel-
opment” [106], e.g., requirements, design documents, source code, test specifica-
tions, manuals, and defect reports. To improve readability, we refer to such pieces
of information only as ‘artifacts’. Regarding traceability, we use two recent def-
initions: “traceability is the potential for traces to be established and used” and
“trace recovery is an approach to create trace links after the artifacts that they
associate have been generated or manipulated” [39]. In the literature, the trace
recovery process is referred to in heterogeneous ways including traceability link
recovery, inter-document correlation, document dependency/similarity detection,
and document consolidation. We refer to all such approaches as trace recovery,
and also use the term links without differentiating between dependencies, relations
and similarities between artifacts.

In line with previous research, we use the term dataset to refer to the set of arti-
facts that is used as input in evaluations and preprocessing to refer to all processing
of NL text before the IR models (discussed next) are applied [14], e.g., stop word
removal, stemming and identifier (ID) splitting names expressed in CamelCase
(i.e., identifiers named according to the coding convention to capitalize the first
character in every word) or identifiers named according to the under_score con-
vention. Feature selection is the process of selecting a subset of terms to represent
a document, in an attempt to decrease the size of the effective vocabulary and to
remove noise [119].

To support trace recovery, several IR models have been applied. Since we
identified contradicting interpretations of what is considered a model, weight-
ing scheme, and similarity measure, we briefly present our understanding of the
IR field. IR models often apply the bag-of-words model, a simplifying assump-
tion that represents a document as an unordered collection of words, disregarding
word order [119]. Most existing IR models can be classified as either algebraic
or probabilistic, depending on how relevance between queries and documents is
measured. In algebraic IR models, relevance is assumed to be correlated with

2 Background 41

similarity [173]. The most well-known algebraic model is the commonly applied
Vector Space Model (VSM) [150], which due to its many variation points acts as
a framework for retrieval. Common to all variations of VSM is that both docu-
ments and queries are represented as vectors in a high-dimensional space (every
term, after preprocessing, in the document collection constitutes a dimension) and
that similarities are calculated between vectors using some distance function. In-
dividual terms are not equally meaningful in characterizing documents, thus they
are weighted accordingly. Term weights can be both binary (i.e., existing or non-
existing) and raw (i.e., based on term frequency) but usually some variant of Term
Frequency-Inverse Document Frequency (TF-IDF) weighting is applied. TF-IDF
is used to weight a term based on the length of the document and the frequency of
the term, both in the document and in the entire document collection [154]. Re-
garding similarity measures, the cosine similarity (calculated as the cosine of the
angle between vectors) is dominating in IR-based trace recovery using algebraic
models, but also Dice’s coefficient and the Jaccard index [119] have been applied.
In an attempt to reduce the noise of NL (such as synonymy and polysemy), La-
tent Semantic Indexing (LSI) was introduced [60]. LSI reduces the dimensions
of the vector space, finding semi-dimensions using singular value decomposition.
The new dimensions are no longer individual terms, but concepts represented as
combinations of terms. In the VSM, relevance feedback (i.e., improving the query
based on human judgement of partial search results, followed by re-executing an
improved search query) is typically achieved by updating the query vector [173].
In IR-based trace recovery, this is commonly implemented using the Standard Roc-
chio method [145]. The method adjusts the query vector toward the centroid vector
of the relevant documents, and away from the centroid vector of the non-relevant
documents.

In probabilistic retrieval, relevance between a query and a document is es-
timated by probabilistic models. The IR is expressed as a classification problem,
documents being either relevant or non-relevant [154]. Documents are then ranked
according to their probability of being relevant [124], referred to as the probabilis-
tic ranking principle [141]. In trace recovery, the Binary Independence Retrieval
model (BIM) [144] was first applied to establish links. BIM naïvely assumes that
terms are independently distributed, and essentially applies the Naïve Bayes classi-
fier for document ranking [109]. Different weighting schemes have been explored
to improve results, and currently the BM25 weighting used in the non-binary Okapi
system [143] constitutes state-of-the-art.

Another category of probabilistic retrieval is based on the model of an infer-
ence process in a Probabilistic Inference Network (PIN) [164]. In an inference net-
work, relevance is modeled by the uncertainty associated with inferring the query
from the document [173]. Inference networks can embed most other IR models,
which simplifies the combining of approaches. In its simplest implementation, a
document instantiates every term with a certain strength and multiple terms accu-
mulate to a numerical score for a document given each specific query. Relevance

42 Recovering from a Decade: A Systematic Review of Information . . .

feedback is possible also for BIM and PIN retrieval [173], but we have not identi-
fied any such attempts within the trace recovery research.

In the last years, another subset of probabilistic IR models has been applied
to trace recovery. Statistical Language Models (LM) estimate an LM for each
document, then documents are ranked based on the probability that the LM of a
document would generate the terms of the query [138]. A refinement of simple
LMs, topic models, describes documents as a mixture over topics. Each individual
topic is then characterized by an LM [174]. In trace recovery research, studies ap-
plying the four topic models Probabilistic Latent Semantic Indexing (PLSI) [82],
Latent Dirichlet Allocation (LDA) [20], Correlated Topic Model (CTM) [19] and
Relational Topic Model (RTM) [33] have been conducted. To measure the dis-
tance between LMs, where documents and queries are represented as stochastic
variables, several different measures of distributional similarity exist, such as the
Jensen-Shannon divergence (JS). To the best of our knowledge, the only imple-
mentation of relevance feedback in LM-based trace recovery was based on the
Mixture Model method [175].

Finally, a number of measures used to evaluate IR tools need to be defined. Ac-
curacy of a set of search results is primarily measured by the standard IR-measures
precision (the fraction of retrieved instances that are relevant), recall (the fraction
of relevant instances that are retrieved) and F-measure (harmonic mean of pre-
cision and recall, possibly weighted to favour one over another) [14]. Precision
and recall values (P-R values) are typically reported pairwise or as precision and
recall curves (P-R curves). Two other set-based measures, originating from the
traceability community, are Recovery Effort Index (REI) [7] and Selectivity [162].
Secondary measures aim to go further than comparing sets of search results, and
also consider their internal ranking. Two standard IR measures are Mean Average
Precision (MAP) of precision scores for a query [119], and Discounted Cumulative
Gain (DCG) [95] (a graded relevance scale based on the position of a document
among search results). To address this matter in the specific application of trace
recovery, Sundaram et al. [162] proposed DiffAR, DiffMR, and Lag to assess the
quality of retrieved candidate links.

2.2 IR-based support in a trace recovery process
As the candidate trace links generated by state-of-the-art IR-based trace recovery
typically are too inaccurate, the current tools are proposed to be used in a semi-
automatic process. De Lucia et al. describe this process as a sequence of four key
steps, where the fourth step requires human judgement [55]. Although steps 2 and
3 mainly apply to algebraic IR models, also other IR models can be described by
a similar sequential process flow. The four steps are:

1. document parsing, extraction, and pre-processing

2. corpus indexing with an IR method

2 Background 43

Retrieval Models Misc.
Algebraic Probabilistic Statistical Weighting Similarity Relevance

models models language schemes measures / feedback
models distance models

functions
Vector Binary Language Binary Cosine Standard
Space Independence Model similarity Rochio
Model Model (LM)
(VSM) (BIM)
Latent Probabilistic Probabilistic Raw Dice’s Mixture

Semantic Inference Latent coefficient Model
Indexing Network Semantic

(LSI) (PIN) Indexing
(PLSI)

Best Match 25 Latent Term Frequency Jaccard
(BM25)a Dirichlet Inverse Document index

Allocation Frequency
(LDA) (TFIDF)

Correlated Best Match 25 Jensen-
Topics (BM25)a Shannon
Model divergence
(CTM) (JS)

Relational
Topics
Model
(RTM)

a Okapi BM25 is used to refer both to a non-binary probabilistic model, and its weighting scheme.

Table 1: A summary of fundamental IR terms applied in trace recovery. Note that
only the vertical organization carries a meaning.

44 Recovering from a Decade: A Systematic Review of Information . . .

3. ranked list generation

4. analysis of candidate links

In the first step, the artifacts in the targeted information space are processed
and represented as a set of documents at a given granularity level, e.g., sections,
class files or individual requirements. In the second step, for algebraic IR models,
features from the set of documents are extracted and weighted to create an index.
When also the query has been indexed in the same way, the output from step 2 is
used to calculate similarities between artifacts to rank candidate trace links accord-
ingly. In the final step, these candidate trace links are provided to an engineer for
examination. Typically, the engineer then reviews the candidate source and target
artifacts of every candidate trace link, and determines whether the link should be
confirmed or not. Consequently, the final outcome of the process of IR-based trace
recovery is based on human judgment.

A number of publications propose advice for engineers working with candi-
date trace links. De Lucia et al. have suggested that an engineer should iteratively
decrease the similarity threshold, and stop considering candidate trace links when
the fraction of incorrect links get too high [56, 57]. Based on an experiment with
student subjects, they concluded that an incremental approach in general both im-
proves the accuracy and reduces the effort involved in a tracing task supported
by IR-based trace recovery. Furthermore, they report that the subjects preferred
working in an incremental manner. Working incrementally with candidate trace
links can to some subjects also be an intuitive approach. In a previous experiment
by Borg and Pfahl, several subjects described such an approach to deal with tool
output, even without explicit instructions [22]. Coverage analysis is another strat-
egy proposed by De Lucia et al., intended to follow up on the step of iteratively
decreasing the similarity threshold [59]. By analyzing the confirmed candidate
trace links, i.e., conducting a coverage analysis, De Lucia et al. suggest that en-
gineers should focus on tracing artifacts that have few trace links. Also, in an
experiment with students, they demonstrated that an engineer working according
to this strategy recovers more correct trace links.

3 Related work

This section presents a chronological overview of IR-based trace recovery, previ-
ous overviews of the field, and related work on advancing empirical evaluations of
IR-based trace recovery.

3.1 A brief history of IR-based trace recovery

Tool support for the linking process of NL artifacts has been explored by re-
searchers since at least the early 1990s. Pioneering work was done in the LESD

3 Related work 45

project (Linguistic Engineering for Software Design) by Borillo et al., in which a
tool suite analyzing NL requirements was developed [25]. The tool suite parsed
NL requirements to build semantic representations, and used artificial intelligence
approaches to help engineers establish trace links between individual require-
ments [26]. Apart from analyzing relations between artifacts, the tools evaluated
consistency, completeness, verifiability and modifiability [32]. In 1998, a study
by Fiutem and Antoniol presented a recovery process to bridge the gap between
design and code, based on edit distances between artifacts [75]. They coined the
term “traceability recovery”, and Antoniol et al. published several papers on the
topic. Also, they were the first to clearly express identification of trace links as
an IR problem [5]. Their milestone work from 2002 compared two standard IR
models, probabilistic retrieval using the BIM and the VSM [7]. Simultaneously,
in the late 1990s, Park et al. worked on tracing dependencies between artifacts us-
ing a sliding window combined with syntactic parsing [134]. Similarities between
sentences were calculated using cosine similarities.

During the first decade of the new millennium, several research groups ad-
vanced IR-based trace recovery. Natt och Dag et al. did research on requirement
dependencies in the dynamic environment of market-driven requirements engi-
neering [129]. They developed the tool ReqSimile, implementing trace recovery
based on the VSM, and later evaluated it in a controlled experiment [130]. A
publication by Marcus and Maletic, the second most cited article in the field, con-
stitutes a technical milestone in IR-based trace recovery [120]. They introduced
Latent Semantic Indexing (LSI) to recover trace links between source code and
NL documentation, a technique that has been used by multiple researchers since.
Huffman Hayes and Dekhtyar enhanced VSM retrieval with relevance feedback
and introduced secondary performance metrics [90]. From early on, their research
had a human-oriented perspective, aimed at supporting V&V activities at NASA
using their tool RETRO [89].

De Lucia et al. have conducted work focused on empirically evaluating LSI-
based trace recovery in their document management system ADAMS [52]. They
have advanced the empirical foundation by conducting a series of controlled ex-
periments and case studies with student subjects [53, 54, 58]. Cleland-Huang and
colleagues have published several studies on IR-based trace recovery. They intro-
duced probabilistic trace recovery using a PIN-based retrieval model, implemented
in their tool Poirot [112]. Much of their work has focused on improving the ac-
curacy of their tool by enhancements such as: applying a thesaurus to deal with
synonymy [152], extraction of key phrases [180], and using a project glossary to
weight the most important terms higher [180].

Recent work on IR-based trace recovery has, with various results, gone be-
yond the traditional models for information retrieval. In particular, trace recovery
supported by probabilistic topic models has been explored by several researchers.
Dekhtyar et al. combined several IR models using a voting scheme, including the
probabilistic topic model Latent Dirachlet Allocation (LDA) [65]. Parvathy et al.

46 Recovering from a Decade: A Systematic Review of Information . . .

proposed using the Correlated Topic Model (CTM) [135], and Gethers et al. sug-
gested using Relational Topic Model (RTM) [77]. Abadi et al. proposed using
Probabilistic Latent Semantic Indexing (PLSI) and utilizing two concepts based
on information theory, Sufficient Dimensionality Reduction (SDR) and Jensen-
Shannon Divergence (JS) [1]. Capobianco et al. proposed representing NL ar-
tifacts as B-splines and calculating similarities as distances between them on the
Cartesian plane [30]. Sultanov and Huffman Hayes implemented trace recovery
using a swarm technique [160], an approach in which a non-centralized group of
non-intelligent self-organized agents perform work that, when combined, enables
conclusions to be drawn.

3.2 Previous overviews on IR-based trace recovery

Basically every publication on IR-based trace recovery contains some information
on previous research in the field. In our opinion, the previously most compre-
hensive summary of the field was provided by De Lucia et al. [58]. Even though
the summary was not the primary contribution of the publication, they chrono-
logically described the development, presented 15 trace recovery methods and 5
tool implementations. They compared underlying IR models, enhancing strate-
gies, evaluation methodologies and types of recovered links. However, regarding
both methodological rigor and depth of the analysis, it is not a complete SLR. De
Lucia et al. have also surveyed proposed approaches to traceability management
for impact analysis [50]. They discussed previous work based on a conceptual
framework by Bianchi et al. [17], consisting of the three traceability dimensions:
type of links, source of information to derive links, and their internal representa-
tion. Apart from IR-based methods, the survey by De Lucia et al. contains both
rule-based and data mining-based trace recovery. Also Binkley and Lawrie have
presented a survey of IR-based trace recovery as part of an overview of applica-
tions of IR in software engineering [18]. They concluded that the main focus of
the research has been to improve the accuracy of candidate links wrt. P-R values,
and that LSI has been the most popular IR model. However, they also report that
no IR model has been reported as superior for trace recovery. While our work is
similar to previous work, our review is more structured and goes deeper with a
more narrow scope.

Another set of publications has presented taxonomies on IR techniques in soft-
ware engineering. In an attempt to harmonize the terminology of the IR appli-
cations, Canfora and Cerulo presented a taxonomy of IR models [28]. However,
their surveyed IR applications are not explicitly focusing on software engineering.
Furthermore, their proposed taxonomy does not cover recent IR models identi-
fied in our study, and the subdivision into ‘representation’ and ‘reasoning’ poorly
serves our intentions. Falessi et al. recently published a comprehensive taxonomy
of IR techniques available to identify equivalent requirements [73]. They adopted
the term variation point from Software Product Line Engineering [137], to stress

3 Related work 47

the fact that an IR solution is a combination of different, often orthogonal, design
choices. They consider an IR solution to consist of a combination of algebraic
model, term extraction, weighting scheme and similarity metric. Finally, they
conducted an empirical study of various combinations and concluded that sim-
ple approaches yielded the most accurate results on their dataset. We share their
view on variation points, but fail to apply it since our literature review is limited by
what previous publications report on IR-based trace recovery. Also, their proposed
taxonomy only covers algebraic IR models, excluding other models (most impor-
tantly, the entire family of probabilistic retrieval). The main difference between
our study and the work by Falessi et al. is that they identified variation points of
IR approaches and found the best combination by experimentation. Our study on
the other hand systematically extracts empirical evidence from previous research,
using the systematic literature approach, and aggregates results in a secondary
analysis. However, since our IR taxonomies partly overlap, empirical results from
the two studies can be compared.

Concept location (a.k.a. feature location) is a research topic that overlaps trace
recovery. It can be seen as the first step of a change impact analysis process [122].
Given a concept (or feature) that is to be modified, the initial information need of
a developer is to locate the part of the source code where it is embedded. Clearly,
this information need could be fulfilled by utilizing IR. However, we distinguish
the topics by considering concept location to be more query-oriented [76]. Fur-
thermore, whereas trace recovery typically is evaluated by linking n artifacts to m
other artifacts, evaluations of concept location tend to focus on n queries targeting
a document set of m source code artifacts (where n << m), as for example in
the study by Torchiano and Ricca [163]. Also, while it is often argued that trace
recovery should retrieve trace links with a high recall, the goal of concept location
is mainly to retrieve one single location in the code with high precision. Dit et al.
recently published a literature review on feature location [68].

3.3 Related contributions to the empirical study of IR-
based trace recovery

A number of previous publications have aimed at structuring or advancing the re-
search on IR-based trace recovery, and are thus closely related to our study. An
early attempt to advance reporting and conducting of empirical experiments was
published by Huffman Hayes and Dekhtyar [84]. Their experimental framework
describes the four phases: definition, planning, realization and interpretation. In
addition, they used their framework to characterize previous publications. Un-
fortunately, the framework has not been applied frequently and the quality of the
reporting of empirical evaluations varies greatly [24]. Huffman Hayes et al. also
presented the distinction between studies of methods (are the tools capable of pro-
viding accurate results fast?) and studies of human analysts (how do humans use
the tool output?) [88]. Furthermore, they proposed assessing the accuracy of tool

48 Recovering from a Decade: A Systematic Review of Information . . .

Figure 1: The Integrated Cognitive Research Framework by Ingwersen and
Järvelin [92], a framework for IR evaluations in context.

output according to quality intervals named ‘acceptable’, ‘good’, and ‘excellent’,
based on Huffman Hayes’ industrial experience of working with traceability ma-
trices of various qualities. Huffman Hayes et al.’s quality levels were defined to
represent the effort that would be required by an engineer to vet an entire candidate
traceability matrix. In our study, we use both classification schemes proposed by
Huffman Hayes et al. to map the identified primary publications.

Considering empirical evaluations, we extend the classifications proposed by
Huffman Hayes et al. [88] by an adapted version of the Integrated Cognitive Re-
search Framework by Ingwersen and Järvelin [92]. Their work aimed at extending
the de-facto standard of IR evaluation, the Laboratory Model of IR Evaluation, de-
veloped in the Cranfield tests in the 60s [44], challenged for its unrealistic lack of
user involvement [101]. Ingwersen and Järvelin argued that IR is always evaluated
in a context, referred to the innermost context as “the cave of IR evaluation”, and
proposed a framework consisting of four integrated contexts (see Figure 1). We
have adapted their framework to a four-level context taxonomy, tailored for IR-
based trace recovery, to classify in which contexts previous evaluations have been
conducted, see Table 2. Also, we add a dimension of study environments (uni-
versity, proprietary, and open source environment), as presented in Figure 12 in
Section 4. For more information on the context taxonomy, we refer to our original
publication [23].

In the field of IR-based trace recovery, the empirical evaluations are termed
very differently by different authors. Some call them ‘experiments’, others ‘case
studies’, and yet others only ‘studies’. We use the following definitions, which are
established in the field of software engineering.

Case study in software engineering is an empirical enquiry that draws on mul-
tiple sources of evidence to investigate one instance (or a small number of
instances) of a contemporary software engineering phenomenon within its
real-life context, especially when the boundary between phenomenon and
context cannot be clearly specified. [147]

Experiment (or controlled experiment) in software engineering is an empirical
enquiry that manipulates one factor or variable of the studied setting. Based

3 Related work 49

in randomization, different treatments are applied to or by different sub-
jects, while keeping other variables constant, and measuring the effects on
outcome variables. In human-oriented experiments, humans apply different
treatments to objects, while in technology-oriented experiments, different
technical treatments are applied to different objects. [170]

Empirical evaluations of IR-based trace recovery may be classified as case
studies, if they evaluate the use of, e.g., IR-based trace recovery tools in a com-
plex software engineering environment, where it is not clear whether the tool is
the main factor or other factors are at play. These are typically level 4 studies in
our taxonomy, see Table 2. Human-oriented controlled experiments may evaluate
human performance when using two different IR-tools in an artificial (in vitro) or
well-controlled real (in vivo) environment, typically at level 3 of the taxonomy.
The stochastical variation is here primarily assumed to be in the human behav-
ior, although there of course are interactions between the human behavior, the
artifacts and the tools. Technology-oriented controlled experiments evaluate tool
performance on different artifacts, without human intervention, corresponding to
levels 1 and 2 in our taxonomy. The variation factor is here the artifacts, and hence
the technology-oriented experiment may be seen as benchmarking studies, where
one technique is compared to another technique, using the same artifacts, or the
performance of one technique is compared for multiple different artifacts.

The validity of the datasets used as input in evaluations in IR-based trace re-
covery is frequently discussed in the literature. Also, two recent publications pri-
marily address this issue. Ali et al. present a literature review on characteristics
of artifacts reported to impact trace recovery evaluations [4], e.g., ambiguous and
vague requirements, and the quality of source code identifiers. Ali et al. extracted
P-R values from eight previous trace recovery evaluations, not limited to IR-based
trace recovery, and show that the same techniques generate candidate trace links
of very different accuracy across datasets. They conclude that research targeting
only recovery methods in isolation is not expected to lead to any major break-
throughs, instead they suggest that factors impacting the input artifacts should be
better controlled. Borg et al. recently highlighted that a majority of previous eval-
uations of IR-based trace recovery have been conducted using artifacts developed
by students [24]. The authors explored this potential validity threat in a survey
of the traceability community. Their results indicate that while most authors con-
sider artifacts originating from student projects to be only partly representative to
industrial artifacts, few respondents explicitly validated them before using them as
experimental input.

3.4 Precision and recall evaluation styles for technology-
oriented trace recovery

In the primary publications, two principally different styles to report output from
technology-oriented experiments have been used, i.e., presentation of P-R val-

50 Recovering from a Decade: A Systematic Review of Information . . .

Level 1: The most simplified context, referred to Precision, recall, Experiments on
Retrieval as “the cave of IR evaluation”. F-measure benchmarks,
context A strict retrieval context, performance possibly with

is evaluated wrt. the accuracy of a set simulated
of search results. Quantitative studies feedback
dominate.

Level 2: A first step towards realistic applications Secondary measures. Experiments on
Seeking of the tool, “drifting outside the cave’. General IR: benchmarks,
context A seeking context with a focus on how MAP, DCG. possibly with

the human finds relevant information Traceability specific: simulated
in what was retrieved by the system. Lag, DiffAR, DiffMR. feedback
Quantitative studies dominate.

Level 3: Humans complete real tasks, but in an Time spent on Controlled
Work task in-vitro setting. Goal of evaluation is task and quality experiments

context to assess the casual effect of an IR tool of work. with human
when completing a task. A mix of subjects.
quantitative and qualitative studies.

Level 4: Evaluations in a social-organizational User satisfaction, Case studies
Project context. The IR tool is studied when tool usage
context used by engineers within the full

complexity of an in-vivo setting.
Qualitative studies dominate.

Table 2: A context taxonomy of IR-based trace recovery evaluations. Level 1 is
technology-oriented, and level 3 and 4 are human-oriented. Level 2 typically has
a mixed focus.

ues from evaluations in the retrieval and seeking contexts. A number of publica-
tions, including the pioneering work by Antoniol et al. [7], used the traditional
style from the ad hoc retrieval task organized by the Text REtrieval Conference
(TREC) [166], driving large-scale evaluations of IR. In this style, a number of
queries are executed on a document set, and each query results in a ranked list of
search results (cf. (a) in Figure 2). The accuracy of the IR system is then calcu-
lated as an average of the precision and recall over the queries. For example, in
Antoniol et al.’s evaluation, source code files were used as queries and the doc-
ument set consisted of individual manual pages. We refer to this reporting style
as query-based evaluation. This setup evaluates the IR problem: “given this trace
artifact, to which other trace artifacts should trace links be established?” The IR
problem is reformulated for each trace artifact used as a query, and the results can
be presented as a P-R curve displaying the average accuracy of candidate trace
links over n queries. This reporting style shows how accurately an IR-based trace
recovery tool supports a work task that requires single on-demand tracing efforts
(a.k.a. reactive tracing or just-in-time tracing), e.g., establishing traces as part of
an impact analysis work task [7, 22, 110].

In the other type of reporting style used in the primary publications, documents
of different types are compared to each other, and the result from the similarity-
or probability-based retrieval is reported as one single ranked list of candidate

3 Related work 51

Figure 2: Query-based evaluation vs. matrix-based evaluation of IR-based trace
recovery.

trace links. This can be interpreted as the IR problem: “among all these possible
trace links, which trace links should be established?” Thus, the outcome is an
entire candidate traceability matrix. We refer to this reporting style as matrix-
based evaluation. The candidate traceability matrix can be compared to a golden
standard, and the accuracy (i.e., overlap between the matrices) can be presented
as a P-R curve, as shown in b) in Figure 2. This evaluation setup has been used
in several primary publications to assess the accuracy of candidate traceability
matrices generated by IR-based trace recovery tools. Also, Huffman Hayes et al.
defined the quality intervals described in Section 3.3 to support this evaluation
style [88].

Consequently, since the P-R values reported from query-based evaluations and
matrix-based evaluations carry different meanings, the differences in reporting
styles have to be considered when synthesizing results. Unfortunately, the primary
publications do not always clearly report which evaluation style that has been used.

Apart from the principally different meaning of reported P-R values, the pri-
mary publications also differ by which sets of P-R values are reported. Precision
and recall are set-based measures, and the accuracy of a set of candidate trace links
(or candidate trace matrix) depends on which links are considered the tool output.
Apart from the traditional way of reporting precision at fixed levels of recall, fur-
ther described in Section 4.3, different strategies for selecting subsets of candidate
trace links have been proposed. Such heuristics can be used by engineers working
with IR-based trace recovery tools, and several primary publications report corre-
sponding P-R values. We refer to these different approaches to consider subsets
of ranked candidate trace links as cut-off strategies. Example cut-off strategies in-
clude: Constant cut point, a fixed number of the top-ranked trace links are selected,

52 Recovering from a Decade: A Systematic Review of Information . . .

e.g. 5, 10, or 50. Variable cut point, a fixed percentage of the total number of can-
didate trace links is selected, e.g. 5% or 10%. Constant threshold, all candidate
trace links representing similarities (or probabilities) above a specified threshold
is selected, e.g. above a cosine similarity of 0.7.

The choice of what subset of candidate trace links to represent by P-R values
reflects the cut-off strategy an imagined engineer could use when working with the
tool output. However, which strategy results in the most accurate subset of trace
links depends on the specific case evaluated. Moreover, in reality it is possible that
engineers would not be consistent in how they work with candidate trace links.
As a consequence of the many possibly ways to report P-R values, the primary
publications view output from IR-based trace recovery tools from rather different
perspectives. For work tasks supported by a separate list of candidate trace links
per source artifact, there are indications that human subjects seldom consider more
than 10 candidate trace links [22], in line with what is commonplace to present as
a ‘pages-worth’ output of major search engines such as Google, Bing and Yahoo.
On the other hand, when an IR-based trace recovery tool is used to generate a
candidate traceability matrix over an entire information space, considering only
the first 10 candidate links would obviously be insufficient, as there would likely
be thousands of correct trace links to recover. However, regardless of reporting
style, the number of candidate trace links a P-R value represents is important in
any evaluation of IR-based trace recovery tools, since a human is intended to vet
the output.

4 Method
The overall goal of this study was to form a comprehensive overview of the ex-
isting research on IR-based trace recovery. To achieve this objective, we system-
atically collected empirical evidence to answer research questions characteristic
both for an SM and an SLR [103, 136]. The study was conducted in the following
distinct steps, (i) development of the review protocol, (ii) selection of publications,
(iii) data extraction and mapping of publications, which were partly iterated and
each of them was validated.

4.1 Protocol development
Following the established review guidelines for SLRs in software engineering [103],
we iteratively developed a review protocol in consensus meetings between the au-
thors. The protocol defined the research questions (stated in Section 1), the search
strategy (described in Section 4.2), the inclusion/exclusion criteria (presented in
Table 3), and the classification scheme used for the data extraction (described in
Section 4.3). Also, the protocol specified use of qualitative cross-case analysis to
synthesize data extracted from the primary studies [126], sometimes however ex-
tended by pieces of quantitative information. The extracted data were organized

4 Method 53

in a tabular format to support comparison across studies. Evidence was summa-
rized per category, and commonalities and differences between studies were in-
vestigated. Also, the review protocol specified the use of Zotero2 as the reference
management system, to simplify general tasks such as sorting, searching and re-
moval of duplicates. An important deviation from the terminology used in the SLR
guidelines is that we distinguish between primary publications (i.e., included units
of publication) and primary studies (i.e., included pieces of empirical evidence),
since a number of publications report multiple studies.

Table 3 states our inclusion/exclusion criteria, along with rationales and exam-
ples. A number of general decisions accompanied the criteria:

• Empirical results presented in several articles, we only included from the
most extensive publication. Examples of excluded publications include pi-
oneering work later extended to journal publications, the most notable be-
ing work by Antoniol et al. [5] and Marcus and Maletic [120]. However,
we included publications describing all independent replications (deliberate
variations of one or more major aspects), and dependant replications (same
or very similar experimental setups) by other researchers [153].

• Our study included publications that apply techniques in E2a-d in Table 3,
but use an IR model as benchmark. In such cases, we included the IR bench-
mark, and noted possible complementary approaches as enhancements. An
example is work using probabilistic retrieval enhanced by machine learning
from existing trace links [66].

• We included approaches that use structured NL as input, i.e., source code or
tabular data, but treat the information as unstructured. Instead, we consid-
ered any attempts to utilize document structure as enhancements.

• Our study only included linking between software artifacts, i.e., artifacts that
are produced and maintained during development [106]. Thus, we excluded
linking approaches to entities such as e-mails [13] and tacit knowledge [83,
159].

• We excluded studies evaluating trace recovery in which neither the source
nor the target artifacts dominantly represent information as NL text. Ex-
cluded publications comprise linking source code to test code [165], and
work linking source code to text expressed in specific modelling notation [9,
41].

4.2 Selection of publications
The systematic identification of publications consisted of two main phases: (i) de-
velopment of a golden standard of primary publications, and (ii) a search string that

2www.zotero.org

54 Recovering from a Decade: A Systematic Review of Information . . .

Inclusion criteria Rationale/comments
I1 Publication available in English in

full text
We assumed that all relevant publications would be
available in English.

I2 Publication is a peer-reviewed piece
of software engineering work

As a quality assurance, we did not include technical
reports, master theses etc.

I3 Publication contains empirical re-
sults (case study, experiment, sur-
vey etc.) of IR-based trace recovery
where natural language artifacts are
either source or target

Defined our main scope based on our RQs. Publi-
cation should clearly link artifacts, thus we excluded
tools supporting a broader sense of program under-
standing such as COCONUT [48]. Also, the ap-
proach should treat the linking as an IR problem.
However, we excluded solutions exclusively extract-
ing specific character sequences in NL text, such as
work on Mozilla defect reports [12].

Exclusion criteria Rationale/comments
E1 Answer is no to I1, I2 or I3
E2 Publication proposes one of the fol-

lowing approaches to recover trace
links, rather than IR:

We included only publications that are deployable in
an industrial setting with limited effort. Thus, we
limited our study to techniques that require nothing
but unstructured NL text as input. Other approaches
could arguably be applied to perform IR, but are too
different to fit our scope. Excluded approaches in-
clude: rules [71,157], ontologies [10], supervised ma-
chine learning [156], semantic networks [113], and
dynamic analysis [72].

a) rule-based extraction
b) ontology-based extraction
c) machine learning approaches
that require supervised learning
d) dynamic/execution analysis

E3 Article explicitly targets one of the
following topics, instead of trace re-
covery:

We excluded both concept location and duplicate de-
tection since it deals with different problems, even
if some studies apply IR models. Excluded publica-
tions include: duplicate detection of defects [146], de-
tection of equivalent requirements [73], and concept
location [122]. We explicitly added the topics code
clustering, class cohesion, and cross cutting concerns
to clarify our scope.

a) concept/feature location
b) duplicate/clone detection
c) code clustering
d) class cohesion
e) cross cutting concerns/aspect
mining

Table 3: Inclusion/exclusion criteria applied in our study. The rightmost column
motivates our decisions.

4 Method 55

Figure 3: Overview of the publication selection phase. Smileys show the number
of people involved in a step, while double frames represent a validation. Numbers
refer to number of publications.

retrieves them, and a systematic search for publications, as shown in Figure 1. In
the first phase, a set of publications was identified through exploratory searching,
mainly by snowball sampling from a subset of an informal literature review. The
most frequently recurring publication fora were then scanned for additional pub-
lications. This activity resulted in 59 publications, which was deemed our golden
standard3. The first phase led to an understanding of the terminology used in the
field, and made it possible to develop valid search terms.

The second step of the first phase consisted of iterative development of the
search string. Together with a librarian at the department, we repeatedly evaluated
our search string using combined searches in the Inspec/Compendex databases.
Fifty-five papers in the golden standard were available in those databases. We
considered the search string good enough when it resulted in 224 unique hits with
80% recall and 20% precision when searching for the golden standard, i.e., 44 of
the 55 primary publications plus 176 additional publications were retrieved.

The final search string was composed of four parts connected with ANDs,
specifying the activity, objects, domain, and approach respectively.

3The golden standard was not considered the end goal of our study, but was the target during the
iterative development of the search string described next.

56 Recovering from a Decade: A Systematic Review of Information . . .

Primary Databases Search options #Search results
Inspec Title+abstract, no auto-stem 194
Compendex Title+abstract, no auto-stem 143
IEEE Explore All fields 136
Web of Science Title+abstract+keywords 108
Secondary Databases Search options #Search results
ACM Digital Library All fields, auto-stem 1038
SciVerse Hub Beta Science Direct+SCOPUS 203

Table 4: Search options used in databases, and the number of search results.

(traceability OR "requirements tracing" OR "requirements trace" OR
"trace retrieval")

AND
(requirement* OR specification* OR document OR documents OR
design OR code OR test OR tests OR defect* OR artefact* OR
artifact* OR link OR links)

AND
(software OR program OR source OR analyst)
AND
("information retrieval" OR IR OR linguistic OR lexical OR
semantic OR NLP OR recovery OR retrieval)

The search string was first applied to the four databases supporting export of
search results to BibTeX format, as presented in Table 4. The resulting 581 papers
were merged in Zotero. After manual removal of duplicates, 281 unique publica-
tions remained. This result equals 91% recall and 18% precision compared to the
golden standard. The publications were filtered by our inclusion/exclusion crite-
ria, as shown in Figure 1, and specified in Section 4.1. Borderline articles were
discussed in a joint session of the first two authors. Our inclusion/exclusion crite-
ria were validated by having the last two authors compare 10% of the 581 papers
retrieved from the primary databases. The comparison resulted in a free-marginal
multi-rater kappa of 0.85 [140], which constitutes a substantial inter-rater agree-
ment.

As the next step, we applied the search string to two databases without Bib-
TeX export support. One of them, ACM Digital Library, automatically stemmed
the search terms, resulting in more than 1000 search results. The inclusion/exclu-
sion criteria were then applied to the total 1241 publications. This step extended
our primary studies by 13 publications, after duplicate removal, and application
of inclusion/exclusion criteria, 10 identified in ACM Digital Library and 3 from
SciVerse.

As the last step of our publication selection phase, we again conducted ex-
ploratory searching. Based on our new understanding of the domain, we scanned
the top publication fora and the most published scholars for missed publications.
As a last complement, we searched for publications using Google Scholar. In total,

4 Method 57

this last phase identified 8 additional publications. Thus, the systematic database
search generated 89% of the total number of primary publications, which is in
accordance with expectations from the validation of the search string.

As a final validation step, we visualized the selection of the 70 primary pub-
lications using REVIS, a tool developed to support SLRs based on visual text
mining [74]. REVIS takes a set of primary publications in an extended BibTeX
format and, as presented in Figure 4, visualizes the set as a document map (a), edge
bundles (b), and a citation network for the document set (c). While REVIS was
developed to support the entire SLR process, we solely used the tool as a means to
visually validate our selection of publications.

In Figure 4, every node represents a publication, and a black outline distin-
guishes primary publications (in c), not only primary publications are visualized).
In a), the document map, similarity of the language used in title and abstract is
presented, calculated using the VSM and cosine similarities. In the clustering,
only absolute distances between publications carry a meaning. The arrows point
out Antoniol et al.’s publication from 2002 [7], the most cited publication on IR-
based trace recovery. The closest publications in a) are also authored by Antoniol
et al. [6, 8]. An analysis of a) showed that publications sharing many co-authors
tend to congregate. As an example, all primary publications authored by De Lu-
cia et al. [51–54, 56–59], Capobianco et al. [29, 30], and Oliveto et al. [132] are
found within the rectangle. No single outlier stands out, indicating that none of
the primary publications uses a very different language.

In b), the internal reference structure of the primary studies is shown, displayed
by edges connecting primary publications in the outer circle. Analyzing the cita-
tions between the primary publications shows one outlier, just below the arrow.
The publication by Park et al. [134], describing work conducted concurrently with
Antoniol et al. [7], has not been cited by any primary publications. This questioned
the inclusion of the work by Park et al., but as it meets our inclusion/exclusion cri-
teria described in Section 4.1, we decided to keep it.

Finally, in c), the total citation network of the primary studies is presented.
Regarding common citations in total, again Park et al. [134] is an outlier, shown
as I in c). The two other salient data points, II and III, are both authored by Natt
och Dag et al. [128, 130]. However, according to our inclusion/exclusion criteria,
there is no doubt that they should be among the primary publications. Thus, in
December 2011, we concluded the set of 70 primary publications.

However, as IR-based trace recovery is an active research field, several new
studies were published while this publication was in submission. To catch up
with the latest research, we re-executed the search string in the databases listed in
Table 4 in June 2012, to catch up with publications from the second half of 2011.
This step resulted in 9 additional publications, increasing the number of primary
publications to 79. In the rest of this paper, we refer to the original 70 publications
as the “core primary publications”, and the 79 publications as just the “primary
publications”.

58 Recovering from a Decade: A Systematic Review of Information . . .

Figure 4: Visualization of core primary publications. a) document map, shows
similarities in language among the core primary publications. b) edge bundle,
displays citations among the core primary publications. c) citation network, shows
shared citations among the core primary publications.

4 Method 59

4.3 Data extraction and mapping

During the stage of the study, data was extracted from the primary publications
according to the pre-defined extraction form of the review protocol. We extracted
general information (title, authors, affiliation, publication forum, citations), de-
tails about the applied IR approach (IR model applied, selection and weighting of
features, enhancements) and information about the empirical evaluation (types of
artifacts linked, size and origin of dataset, research methodology, context of IR
evaluation, results of evaluation).

The extraction process was validated by the second and third authors, work-
ing on a 30% sample of the core primary publications. Half the sample, 15% of
the core primary publications, was used to validate extraction of IR details. The
other half was used by the other author to validate empirical details. As expected,
the validation process showed that the data extraction activity, and the qualitative
analysis inherent in that work, inevitably leads to some deviating interpretations.
Classifying according to the four levels of IR contexts, which was validated for
the entire 30% sample, showed the least consensus. This divergence, and other
minor discrepancies detected, were discussed until an agreement was found and
followed for the rest of the primary publications. Regarding the IR contexts in
particular, we adopted an inclusive strategy, typically selecting the higher levels
for borderline publications.

Regarding results from studies dominated by evaluations in the retrieval and
seeking contexts, as described in Section 3.3, we extracted information in two
separate ways. For publications comparing multiple underlying IR models, we
extracted the conclusions of the original authors, a process that in some cases
required qualitative analysis. Also, while the authors of the primary publications
based their conclusions on different types of evidence, we treated all conclusions
as equally strong.

Also, we extracted P-R values from the primary publications based on our
discussions in Section 3.4. However, as highlighted by Banko and Brill in the em-
pirical NLP community [15], the effect of large number of evaluations conducted
on small datasets is an open question. One has to wonder what conclusions drawn
on small datasets may carry over to datasets of industrial size. In trace recov-
ery research, this is particularly notable regarding context-dependent enhancement
strategies, as they risk leading to overtrained or over-engineered solutions that are
not generalizable. To mitigate this possible bias, in line with our interest in general
solutions that are easily deployable, we extracted P-R values from basic trace re-
covery methods rather than enhancements. Instead, the various enhancements are
reported in Section 5.1.

We agree with the opinion of Spärck Jones et al., pioneers of standardized test
collections for IR evaluations, that the widely reported precision at standard recall
levels is opaque [158]. The figures obscure the actual numbers of retrieved docu-
ments needed to get beyond low recall. Still, we follow the convention established

60 Recovering from a Decade: A Systematic Review of Information . . .

at TREC and report both precision at fixed levels of recall as well as precision
at specific cut-off levels. In line with what was reported for the ad hoc retrieval
task at TREC, we report precision at ten recall levels from 0.1 to 1 (referred to
as PR@Fix). However, while TREC established the cut-off levels 5, 10, 15, 20,
30 and 100 [98], evaluations on IR-based trace recovery have typically not been
reported at such a level of detail. As a consequence, we report P-R values from
only the cut-off levels 5, 10 and 100 (referred to as PR@N), as they are the most
frequently reported in the primary publications.

Furthermore, as discussed in Section 3.4, neither PR@Fix nor PR@N cover
all P-R reporting styles in the primary publications. Thus, we also extracted P-R
values beyond standard TREC practice. We extracted P-R values corresponding
to a set of candidate trace links with a cosine similarity ≥ 0.7 (referred to as
PR@Sim0.7). Finally, to ensure that all primary publications reporting P-R val-
ues contributed to our synthesis, we also report from an inclusive aggregation of
miscellaneous P-R values (referred to as PR@Tot).

While we extracted P-R values from tables whenever possible, a majority were
extracted from figures presenting P-R curves. As both the information density and
resolution of such figures vary, so did the errors involved in the manual measuring
process. Consequently, the extracted data should be interpreted as a general trend
rather than exact results.

4.4 Threats to validity

Threats to the validity of the mapping study are analyzed with respect to construct
validity, reliability, internal validity and external validity [172]. Particularly, we
report deviations from the SLR guidelines [103].

Construct validity concerns the relation between measures used in the study
and the theories in which the research questions are grounded. In this study, this
concerns the identification of papers, which is inherently qualitative and dependent
on the coherence of the terminology in the field. To mitigate this threat, we took
the following actions. The search string we used was validated using a golden set
of publications, and we executed it in six different publication databases. Further-
more, our subsequent exploratory search further improved our publication cover-
age. A single researcher applied the inclusion/exclusion criteria, although, as a
validation proposed by Kitchenham and Charters [103], another researcher justi-
fied 10% of the search results from the primary databases. There is a risk that
the specific terms of the search string related to ‘activity’ (e.g., “requirements
tracing”) and ‘objects’ cause a bias toward both requirements research and pub-
lications with technical focus. However, the golden set of publications was es-
tablished by a broad scanning of related work, using both searching and browsing,
and was not restricted to specific search terms. Finally, as this work was conducted
both as an SM and an SLR, the quality assessment was expressed as a RQ in its
own (RQ3). As such, quality was assessed further than by the inclusion/exclusion

5 Results 61

criteria. Furthermore, applicable to RQ4, quality differences were accounted for
by considering single publications reporting multiple studies as multiple units of
empirical evidence.

An important threat to reliability concerns whether other researchers would
come to the same conclusions based on the publications we selected. The ma-
jor threat is the extraction of data, as mainly qualitative synthesis was applied, a
method that involves interpretation. A single researcher extracted data from the
primary publications, and the other two researchers reviewed the process, as sug-
gested by Brereton et al. [27]. As a validation, both the reviewers individually
repeated the data extraction on a 15% sample of the core primary publications.
Another reliability threat is that we present qualitative results with quantitative
figures. Thus, the conclusions we draw might depend on the data we decided
to visualize; however, the primary studies are publicly available, allowing oth-
ers to validate our conclusions. Furthermore, as our study contains no formal
meta-analysis, no sensitivity analysis was conducted, neither was publication bias
explored explicitly.

Internal validity concerns confounding factors that can affect the causal rela-
tionship between the treatment and the outcome, especially relevant to RQ4. There
is a threat that the reporting style in the primary publications has a bigger impact
on our conclusions than the actual output from tools. Consequently, there is a risk
that we failed to include results due to differences in both experimental setups and
level of detail in reports. Also regarding RQ4, we aggregate evidence from pre-
vious comparisons made in different ways, some report statistical analysis while
others discuss results in more general terms. We do not weight the contributions of
the individual studies based on this. Moreover, while we attempted to distinguish
between query-based and matrix-based evaluations in the synthesis, different con-
texts (e.g., domain, work task, artifact types, language of the artifacts) were all
included in the synthesis of P-R values.

External validity refers to generalization from this study. As we do not claim
that our results apply to other applications of IR in software engineering, this is
a minor threat. On the other hand, due to the comprehensive nature of our study,
we extrapolate our conclusions on RQ4 to all studies on IR-based trace recovery
published until December 2011, including studies that did not report a sufficient
amount of details.

5 Results

Following the method defined in Section 4.2, we identified 79 primary publica-
tions. Most of the publications were published in conferences or workshops (67
of 79, 85%), while twelve (15%) were published in scientific journals. Table 5
presents the top publication channels for IR-based trace recovery, showing that it
spans several research topics. Figure 5 depicts the number of primary publications

62 Recovering from a Decade: A Systematic Review of Information . . .

Publication forum #Publications
International Requirements Engineering 9
Conference
International Conference on Automated 7
Software Engineering
International Conference on Program 6
Comprehension
International Workshop on Traceability in 6
Emerging Forms of Software Engineering
Working Conference on Reverse 5
Engineering
Empirical Software Engineering 4

International Conference on Software 4
Engineering
International Conference on Software 4
Maintenance

Other publication fora 34
(two or fewer publications)

Table 5: Top publication channels for IR-based trace recovery.

per year, starting from Antoniol et al.’s pioneering work from 1999. Almost 150
authors have contributed to the 79 primary publications, on average writing 2.2
of the articles. The top five authors have on average authored 14 of the primary
publications, and are in total included as authors in 53% of the articles. Thus,
a wide variety of researchers have been involved in IR-based trace recovery, but
there is a group of a few well-published authors. More details and statistics about
the primary publications are available in Appendix 6.

Several publications report empirical results from multiple evaluations. Con-
sequently, our mapping includes 132 unique empirical contributions, i.e., the map-
ping comprises results from 132 unique combinations of an applied IR model and
its corresponding evaluation on a dataset. As described in Section 4.1, we denote

Figure 5: IR-based trace recovery publication trend. The curve shows the number
of publications, while the bars display empirical studies in these publications.

5 Results 63

Figure 6: Taxonomy of IR models in trace recovery. The numbers show in how
many of the primary publications a specific model has been applied, the numbers
in parentheses show IR models applied since 2008.

such a unit of empirical evidence a ‘study’, to distinguish from ‘publications’.

5.1 IR models applied to trace recovery (RQ1)

In Figure 6, reported studies in the primary publications are mapped according
to the (one or several) IR models applied, as defined in Section 2. The most fre-
quently reported IR models are the algebraic models, VSM and LSI. Various prob-
abilistic models have been applied in 29 of the 113 evaluations, including 14 appli-
cations of statistical LMs. Five of the applied approaches identified do not fit in the
taxonomy; examples include utilizing swarm techniques [160] and B-splines [30].
As shown in Figure 6, VSM has been the most applied model 2008-2011, however
repeatedly as a benchmark to compare new IR models against. An apparent trend
is that trace recovery based on LMs has received an increasing research interest
during the last years.

Only 46 (71%) of the 65 primary publications with technical foci report which
preprocessing operations were applied to NL text. Also, in several publications
one might suspect that the complete preprocessing was not reported. As a result,
a reliable report of feature selection for IR-based trace recovery is not possible.
Furthermore, several papers do not report any differences regarding preprocess-
ing of NL text and source code. Among the publications reporting preprocessing,
29 report conducting stop word removal and stemming, making it the most com-
mon combination. The remaining publications report other combinations of stop
word removal, stemming and ID splitting. Also, two publications report applying

64 Recovering from a Decade: A Systematic Review of Information . . .

Figure 7: Preprocessing operations used in IR-based trace recovery. The figure
shows the number of times a specific operation has been reported in the primary
publications. Black bars refer to preprocessing of NL text, gray bars show prepro-
cessing of text extracted from source code.

Google Translate as a preprocessing step to translate NL text to English [91, 110].
Figure 7 presents in how many primary publications different preprocessing steps
are explicitly mentioned, both for NL text and source code.

Regarding NL text, most primary publications select all terms that remain af-
ter preprocessing as features. However, two publications select only nouns and
verbs [176, 177], and one selects only nouns [30]. Also, Capobianco et al. have
explicitly explored the semantic role of nouns [29]. For the purposes of the map-
ping of primary publications dealing with source code, a majority unfortunately
does not clearly report about the feature selection (i.e., selecting which subset of
terms to extract to represent the artifact). Seven publications report that only IDs
were selected, while four publications selected both IDs and comments. Three
other publications report more advanced feature selection, including function ar-
guments, return types and commit comments [1, 3, 28].

Among the primary publications, the weighting scheme applied to selected
features is reported in 58 articles. Although arguably more tangible for alge-
braic retrieval models, feature weighting is also important in probabilistic retrieval.
Moreover, most weighing schemes are actually families of configuration vari-
ants [149], but since this level of detail often is omitted in publications on IR-based
trace recovery [131], we were not able to investigate this further. Figure 8 shows
how many times, in the primary publications, various types of feature weighting
schemes have been applied. Furthermore, one publication reports upweighting of
verbs in the TFIDF weighting scheme, motivated by verbs’ nature of describing
the functionality of software [117].

Several strategies to improve the performance of IR-based trace recovery tools
are proposed, as presented in Figure 9. The figure shows how many times different
enhancement strategies have been applied in the primary publications. Most en-
hancements aim at improving the precision and recall of the tool output, however
also a (computation) performance enhancement is reported [97]. The most fre-

5 Results 65

Figure 8: Feature weighting schemes in IR-based trace recovery. Bars depict how
many times a specific weighting scheme has been reported in the primary publi-
cations. Black color shows reported weighting in publications applying algrebraic
IR models.

quently applied enhancement strategy is relevance feedback, giving the human a
chance to judge partial search results, followed by re-executing an improved search
query. The following most frequently applied strategies are applying a thesaurus
to deal with synonyms, clustering (organizing/ranking results depending on for
instance document structure), phrasing (going beyond the bag of word model by
considering sequences of words). Other enhancement strategies repeatedly applied
include: up-weighting terms considered important by applying a project glossary,
machine learning approaches to improve results based on for example the existing
trace link structure, and combining the results from different retrieval models in
voting systems. Yet another set of enhancements have only been proposed in sin-
gle primary publications, such as query expansion, analyses of call graphs, regular
expressions, and smoothing filters.

5.2 Types of software artifacts linked (RQ2)

Figure 10 maps onto the classical software development V-model the various soft-
ware artifact types that have been used in IR-based trace recovery evaluations. Re-
quirements, the left part of the model, include all artifacts that specify expectations
on a system, e.g., market requirements, system requirements, functional require-
ments, use cases, and design specifications. The distinction between these are not
always possible to derive from the publications, and hence we have grouped them
together under the broad label ‘requirements’. The right part of the model repre-
sents all artifacts related to verification activities, e.g., test case descriptions and
test scripts. Source code artifacts constitute the bottom part of the model. Note
however, that our inclusion/exclusion criteria, excluding duplication analyses and
studies where not either source or target artifacts are dominated by NL text, results
in fewer links between requirements-requirements, code-code, code-test, test-test

66 Recovering from a Decade: A Systematic Review of Information . . .

Figure 9: Enhancement strategies in IR-based trace recovery. Bars depict how
many times a specific strategy has been reported in the primary publications. Black
color represents enhancements reported in publications using algebraic IR models.

and defect-defect than would have been the case if we had studied the entire field
of IR applications within software engineering.

The most common type of links that has been studied was found to be between
requirements (37 evaluations), either of the same type or of different levels of ab-
straction. The second most commonly studied artifact linking is between require-
ments and source code (32 evaluations). Then, in decreasing order, mixed links in
an information space of requirements, source code and tests (10 evaluations), links
between requirements and tests (9 evaluations) and links between source code and
manuals (6 evaluations). Less frequently studied trace links include links between
source code and defects/change requests and links between tests. In three primary
publications, the types of artifacts traced are unclear, either not specified at all or
merely described as ‘documents’.

5.3 Strength of evidence (RQ3)

An overview of the datasets used for evaluations in the primary publications is
shown in Figure 1. In total we identified 132 evaluations; in 42 (32%) cases propri-
etary artifacts, either originating from development projects in private companies
or the US agency NASA, were studied. Nineteen (14%) evaluations using artifacts
collected from open source projects have been published and 65 (49%) employ-
ing artifacts originating from a university environment. Among the datasets from
university environments, 34 consist of artifacts developed by students. In six pri-
mary publications, the origin of the artifacts is mixed or unclear. Figure 1 also
depicts the sizes of the datasets used in the evaluations, wrt. the number of arti-

5 Results 67

Figure 10: Types of links recovered in IR-based trace recovery. The table shows
the number of times a specific type of link is the recovery target in the primary
publications, also represented by the weight of the edges in the figure.

facts. The majority of the evaluations in the primary publications were conducted
using an information space of less than 500 artifacts. In 38 of the evaluations, less
than 100 artifacts were used as input. The primary publications with the by far
highest number of artifacts, evaluated links between 3.779 business requirements
and 8.334 market requirements at Baan [128] (now owned by Infor Global Solu-
tions), and trace links between 9 defect reports and 13380 test cases at Research
in Motion [100].

Table 6 presents the six datasets that have been most frequently used in evalua-
tions of IR-based trace recovery, sorted by the number of primary studies in which
they were used. CM-1, MODIS, and EasyClinic are publicly available from the
CoEST web page4. Note that most publicly available datasets except EasyClinic
are bipartite, i.e., the dataset contains only links between two disjunct subsets of
artifacts.

All primary publications report some form of empirical evaluations, a majority
(80%) conducting “studies of methods” [88]. Fourteen publications (18%) report
results regarding the human analyst, two primary publications study both methods
and human analysts. Figure 12 shows the primary publications mapped to the
four levels of the context taxonomy described in Section 3.3. Note that a number
of publications cover more than one environment, due to either mixed artifacts
or multiple studies. Also, two publications did not report the environment, and
could not be mapped. A majority of the publications (50), exclusively conducted
evaluations taking place in the innermost retrieval context, the so-called “cave of
IR evaluation” [92]. As mentioned in Section 2, evaluations in the cave display an

4coest.org

68 Recovering from a Decade: A Systematic Review of Information . . .

Dataset Artifacts Links Origin Development
characteristics

Sizea

17 CM-1 Requirements
specifying
system re-
quirements
and detailed
design

Bipartite
dataset,
many-
to-many
links

NASA Embedded
software de-
velopment in
governmental
agency

455

16 EasyClinic Use cases,
sequence dia-
grams, source
code, test case
descriptions.
Language:
Italian.

Many-
to-many
links

Univ. of San-
nio

Student project 150

8 MODIS Requirements
specifying
system re-
quirements
and detailed
design

Bipartite
dataset,
many-
to-many
links.

NASA Embedded
software de-
velopment in
governmental
agency

68

7 Ice-
Breaker
System
(IBS)

Functional
requirements
and source
code

Not publicly
available in
full detail

[142] Textbook on re-
quirements engi-
neering

185

6 LEDA Source code
and user doc-
umentation

Bipartite
dataset,
many-to-
one links

Max Planck
Inst. for
Informatics
Saarbrücken

Scientific com-
puting

296

5 Event-
Based
Trace-
ability
(EBT)

Functional
requirements
and source
code

Not publicly
available

DePaul Univ. Tool from re-
search project

138

a Size is presented as the total number of artifacts.

Table 6: Summary of the datasets most frequently used for evaluations.

5 Results 69

Figure 11: Datasets used in studies on IR-based trace recovery. Bars show num-
ber and origin of artifacts.

inconsistent use of terminology. Nineteen (38%) of the primary publications refer
to their evaluations in the retrieval context as experiments, 22 (44%) call them case
studies, and in nine (18%) publications they are merely referred to as studies.

Since secondary measures were applied, fourteen publications (18%) are con-
sidered to have been conducted in the seeking context. Eleven primary publica-
tions conducted evaluations in the work context, mostly through controlled exper-
iments with student subjects. Only three evaluations are reported in the outermost
context of IR evaluation, the project context, i.e., evaluating the usefulness of trace
recovery in an actual end user environment. Among these, only a single publica-
tion reports an evaluation from a non-student development project [110].

5.4 Patterns regarding output accuracy (RQ4)

Meta-analysis was not possible due to inhomogeneous experimental setups and
presentation. Therefore, we applied vote counting analysis. Among the primary
publications, 25 compare the output accuracy of trace recovery when applying dif-
ferent IR models. Figure 13 depicts the outcomes of the comparisons, based on
the original authors’ conclusions. An edge represents a comparison of two im-
plemented IR models on a dataset, thus a single publication can introduce several
arrows. The direction of an edge points at the IR model that produced the most ac-
curate output, i.e., an arrow points at the better model. Accordingly, an undirected
edge (dotted) shows inconclusive comparisons. Finally, an increased edge weight
depicts multiple comparisons between the IR models, also presented as a label on
the edge.

VSM and LSI are the two IR models that have been most frequently evaluated
in comparing studies. Among those, and among comparing studies in general,

70 Recovering from a Decade: A Systematic Review of Information . . .

Figure 12: Contexts of evaluations of IR-based trace recovery, along with study
environments. Numbers show the number of primary publications that target each
combination.

VSM has presented the best results. On the other hand, implementing LMs and
measuring similarities using JS divergence has been concluded as a better tech-
nique in four studies and has never underperformed any other models. As it has
been compared to VSM in three publications, it appears to perform trace recovery
with a similar accuracy [1, 30, 132]. Also conducting retrieval based on B-splines
and swarm techniques has not been reported to perform worse than other mod-
els, but has only been explored in two primary publications [30, 160]. Notably,
one of the commonly applied IR models, PIN, has not been explicitly studied in
comparison to other IR models within the context of trace recovery.

We also present P-R values extracted from the primary publications as shown
in Figures 14 and 15. In the upper right corners of figures, constituting the ideal
output accuracy of an IR-based trace recovery tool, we show intervals representing
‘Excellent’, ‘Good’, and ‘Acceptable’ as proposed by Huffman Hayes et al. [88].
As discussed in Section 3.4, it is unclear in several primary publications whether
a query-based or matrix-based evaluation style has been used. However, it is ap-
parent that a majority of the P-R values in PR@5/10/100 originate from query-
based evaluations, and that the P-R values in PR@Sim0.7/Fix/Tot are dominated
by matrix-based evaluations.

Figure 14 show P-R footprints from trace recovery evaluations with constant
cutpoints at 5, 10, and 100 candidate trace links respectively. Evaluations on five
datasets (Leda, CM-1, Gedit, Firefox, and ArgoUML) are marked with separate
symbols, as shown in the legend. Especially for PR@5 and PR@10, the pri-
mary publications contain several empirical results from trace recovery on these

5 Results 71

Figure 13: Empirical comparisons of IR models in trace recovery. Squares show
algebraic models, circles represent probabilistic models, diamonds show other
models.

datasets. The P-R values in PR@5, PR@10 and PR@100 represent evaluations
using: LDA (24 results), LSI (19 results), BM25 (18 results), VSM (14 results),
LM (12 results), BIM (7 results), PLSI (6 results), and SDR (6 results).

No clear pattern related to the IR models can be observed in Figure 14. Instead,
different implementations performed similarly when applied to the same datasets.
This is particularly evident for evaluations on LEDA, for which we could extract
several P-R values (shown as squares in Figure 14). In the footprint PR@5, nine
P-R values from four different research groups implementing VSM [7], BIM [7],
and LSI [97,121,167] cluster in the lower right corner. Also, the footprint PR@10
shows five results from evaluations on LEDA, clustered in the very right corner,
corresponding to P-R values from three different research groups implementing
VSM [7], BIM [7], and LSI [97, 121]. No results on LEDA have been reported at
the constant cut-off 100. In line with the results on LEDA, PR@5/10/100 show
clustered P-R values from trace recovery using different configurations of BM25
on the Firefox dataset (diamonds) and Gedit (triangles). Similar results can be
seen regarding evaluations on CM-1 (circles) in PR@5 and ArgoUML (pluses) in
PR@100. However, results on CM-1 in PR@10/100 and ArgoUML in PR@5/10
are less clear as they display lower degrees of clustering.

Few P-R values originating from query-based evaluations are within the three
goodness zones. Seven P-R values, corresponding to evaluations on LEDA (4
results), Firefox (2 results), and MODIS (1 result) are within the ‘acceptable’ zone
in PR@5. On the other hand, no P-R values within any goodness zones have
been reported in the primary publications neither in PR@10 nor PR@100. In
general, this is due to unacceptable precision values. In Figure 14, a number of P-

72 Recovering from a Decade: A Systematic Review of Information . . .

R values display precision values above 0.4, however they represent matrix-based
evaluation of trace recovery in the EasyClinic and eTour datasets.

In studies where constant cut-points have not been used, P-R values in all good-
ness zones have been reported. In the footprint PR@Sim0.7 in Figure 15, show-
ing P-R values corresponding to candidate trace links with a cosine similarity of
≥ 0.7, P-R values are located in the entire P-R space. Four ‘good’ values are re-
ported from a publication recovering trace links in the EasyClinic dataset [53]. In
PR@Fix, the expected precision-recall tradeoff is evident as shown by the trend-
line. Several primary publications report both ‘acceptable’ and ‘good’ P-R values.
Six P-R values are even reported within the ‘excellent’ zone, all originating from
evaluations of trace recovery based on LSI. However, all six evaluations were con-
ducted on datasets containing around 150 artifacts, CoffeeMaker (5 results) and
EasyClinic (1 result). In PR@Tot, showing 1.076 P-R values, 19 (1.8%) are in the
‘excellent’ zone. Apart from the six P-R values that are also present in PR@Fix,
additional ‘excellent’ results have been reported on EasyClinic based on LSI (6
results) and VSM (1 result). Also, P-R values in the ‘excellent’ zone have been re-
ported from evaluations of VSM-based recovery of trace links between documen-
tation and source code on JDK1.5 (2 results) [34], trace recovery in the MODIS
dataset (1 result) [162] and, also implementing VSM, from recovered trace links
in an undisclosed dataset (2 results) [135].

In total, we extracted 270 P-R values (25.2%) within the ‘acceptable’ zone, 129
P-R values (12.0%) in the ‘good’ zone, and 19 P-R values (1.8%) in the ‘excellent’
zone. The average (balanced) F-measure for the P-R values in PR@Tot is 0.31
with a standard deviation of 0.07. The F-measure of the lowest acceptable P-R
value is lower, 0.24 (corresponding to recall=0.6, precision=0.2), which reflects
the difficulty in achieving reasonably balanced precision and recall in IR-based
trace recovery. Among the 100 P-R values with the highest F-measure in PR@Tot,
69 have been reported when evaluating trace recovery on the EasyClinic dataset,
extracted from 9 different publications. However, the other 31 P-R values come
from evaluations on 9 other datasets originating from either industrial, open source
or academic contexts.

6 Discussion

Our set of 79 primary publications shows that there are more publications on IR-
based trace recovery than has previously been acknowledged. Based on our com-
prehensive study, the rest of this section discusses our research questions. Along
with the discussions, we conclude every question with concrete suggestions on
how to advance research on IR-based trace recovery. Finally, in Section 6.5,
we map our recommendations to the traceability challenges articulated by Co-
EST [79].

6 Discussion 73

Figure 14: P-R footprints for trace recovery tools. The figures show P-R values
at the constant cut-offs PR@5, PR@10 and PR@100.

74 Recovering from a Decade: A Systematic Review of Information . . .

Figure 15: P-R footprints for trace recovery tools. The figures show P-R values
representing a cut-off at the cosine similarity 0.7 (PR@Sim0.7), precision at fixed
recall levels (PR@Fix), and an aggregation of all collected P-R values (PR@Tot).
The figures PR@Fix and PR@Tot also present a P-R curve calculated as an expo-
nential trendline.

6 Discussion 75

6.1 IR models applied to trace recovery (RQ1)

During the last decade, a wide variety of IR models have been applied to recover
trace links between artifacts. Our study shows that the most frequently applied
models have been algebraic, i.e., Salton’s classic VSM from the 60s [150] and
LSI, the enhancement developed by Deerswester in the 90s [60]. Also, we show
that VSM has been implemented more frequently than LSI, in contrast to what was
reported by Binkley and Lawrie [18]. The interest in algebraic models might have
been caused by the straightforwardness of the techniques; they have concrete geo-
metrical interpretations, and are rather easy to understand also for non-IR experts.
Moreover, several open source implementations are available. Consequently, the
algebraic models are highly applicable to trace recovery studies, and they consti-
tute feasible benchmarks when developing new methods. However, in line with
the development in the general IR field [173], LMs [138] have been getting more
attention in the last years.

While implementing an IR model, the developers inevitably have to make a
variety of design decisions. Consequently, this applies also to IR-based trace re-
covery tools. As a result, tools implementing the same IR model can produce
rather different output [23]. Thus, omitting details in the reporting obstructs the
possibility to advance the field of trace recovery through secondary studies and
evidence-based software engineering techniques [96]. Unfortunately, even funda-
mental information about the implementation of IR is commonly left out in trace
recovery publications. Concrete examples include feature selection and weight-
ing (particularly neglected for publications indexing source code) and the num-
ber of dimensions of the LSI subspace. Furthermore, the heterogeneous use of
terminology is an unnecessary difficulty in IR-based trace recovery publications.
Concerning general traceability terminology, improvements can be expected as
Cleland-Huang et al. dedicated an entire chapter of their recent book to this is-
sue [39]. However, we hope that Section 1 of this paper is a step toward aligning
also the IR terminology in the community.

To support future replications and secondary studies on IR-based trace recovery,
we suggest that:

• Studies on IR-based trace recovery should use IR terminology consistently,
e.g., as presented in Table 1 and Figure 6, and use general traceability ter-
minology as proposed by Cleland Huang et al. [39].

• Authors of articles on IR-based trace recovery should carefully report their
implemented IR model, to enable aggregating empirical evidence.

• Technology-oriented experiments on IR-based trace recovery should adhere
to rigorous methodologies such as the framework by Huffman Hayes and
Dekhtyar [84].

76 Recovering from a Decade: A Systematic Review of Information . . .

6.2 Types of software artifacts linked (RQ2)

Most published evaluations on IR-based trace recovery aim at establishing trace
links between requirements of different kinds, or between requirements and source
code. Apparently, the artifacts of the V&V side of the V-model are not as fre-
quently in focus of researchers working on IR-based trace recovery. One can think
of several reasons for this unbalance. First, researchers might consider that the
structure of the document subspace of the requirement side of the V-model is more
important to study. Second, the early public availability of a few datasets contain-
ing requirements of various kinds, might have paved the way for a series of studies
by various researchers. Third, publicly available artifacts from the open source
community might contain more requirements artifacts than V&V artifacts. Never-
theless, research on trace recovery would benefit from studies on a more diverse
mix of artifacts. For instance, the gap between requirements artifacts and V&V
artifacts is an important industrial challenge [148]. Hence, exploring whether IR-
based trace recovery could be a way to align “the two ends of software develop-
ment” is worth an effort.

Apart from the finding that requirement-centric studies on IR-based trace re-
covery are over-represented, we found that too few studies go beyond trace re-
covery in bipartite traceability graphs. Such simplified datasets hardly represent
the diverse information landscapes of large-scale software development projects.
Exceptions include studies by De Lucia et al., who repeatedly have evaluated IR-
based trace recovery among use cases, functional requirements, source code and
test cases [47,51,53,56–59], however originating from student projects, which re-
duces the industrial relevance.

To further advance the research of IR-based trace recovery, we suggest that:

• Studies should be conducted on diverse datasets containing a higher number
of artifacts.

• Studies should go beyond bipartite datasets to better represent the heteroge-
neous information landscape of software engineering.

6.3 Strength of evidence (RQ3)

Most evaluations on IR-based trace recovery were conducted on bipartite datasets
containing fewer than 500 artifacts. Obviously, as pointed out by several re-
searchers, any software development project involves much larger information
landscapes, that also consist of heterogeneous artifacts. A majority of the eval-
uations of datasets containing more than 1,000 artifacts were conducted using
open source artifacts, an environment in which fewer types of artifacts are typi-
cally maintained [28, 151], thus links to or from source code are more likely to
be studied. Even though small datasets might be reasonable to study, only two

6 Discussion 77

primary publications report from evaluations containing more than 10,000 arti-
facts [100, 128]. As a result, the question of whether the state-of-the-art IR-based
trace recovery scales to larger document spaces or not, commonly mentioned as
future work [54, 78, 90, 107, 118, 167] remains unanswered, is a major threat to
external validity.

Regarding the validity of datasets used in evaluations, a majority used artifacts
originating from university environments as input. Furthermore, most studies on
proprietary artifacts used only the CM-1 or MODIS datasets collected from NASA
projects, resulting in their roles as de-facto benchmarks from an industrial context.
Clearly, again the external validity of state-of-the-art trace recovery must be ques-
tioned. On one hand, benchmarking can be a way to advance IR tool development,
as TREC have demonstrated in the general IR research [155], but on the other
hand it can also lead the research community to over-engineering tools on specific
datasets [23]. The benchmark discussion has been very active in the traceability
community the last years [16, 37, 62, 63, 79].

A related problem, in particular for proprietary datasets that cannot be dis-
closed, is that datasets often are poorly described [24]. In some particular publica-
tions, NL artifacts in datasets are only described as ‘documents’. Thus, as already
discussed related to RQ1 in Section 6.1, inadequate reporting obstructs replica-
tions and secondary studies. Moreover, as Figure 14 shows, the choice of datasets
in evaluations of IR-based trace recovery can impact the tool output far more than
the choice of IR model, in line with results by Ali et al. [4].

Most empirical evaluations of IR-based trace recovery were conducted in the
innermost of IR contexts, i.e., a clear majority of the research was conducted “in
the cave” or just outside [92]. For some datasets, the output accuracy of IR mod-
els has been well-studied during the last decade. However, more studies on how
humans interact with the tools are required; similar to what has been explored by
Huffman Hayes et al. [45, 64, 85, 90] and De Lucia et al. [56–58]. Thus, more
evaluations in a work task context or a project context are needed. Regarding
the outermost IR context, only one industrial in-vivo evaluation [110] and three
evaluations in student projects [52–54] have been reported. Finally, regarding the
innermost IR contexts, the discrepancy of methodological terminology should be
harmonized in future studies.

To further advance evaluations of IR-based trace recovery, we suggest that:

• The community should continue its struggle to acquire a set of more repre-
sentative benchmarks.

• Researchers should better characterize the datasets used in evaluations, in
particular when they cannot be disclosed for confidentiality reasons.

• An industrial case study, even a small but well-conducted study, should be
highly encouraged as an important empirical contribution.

78 Recovering from a Decade: A Systematic Review of Information . . .

6.4 Patterns regarding output accuracy (RQ4)

We synthesized P-R values from 48 primary publications and concluded that there
is no empirical evidence that the extensive research on new IR models for trace
recovery has improved the accuracy of the candidate trace links. Hence, our results
confirm previous findings by Oliveto et al. [132] and Binkley and Lawrie [18], that
no IR model is consequently outperforming others. Instead, our results suggest
that the classic VSM, developed by Salton et al. in the 60s [150], performs better
or as good as other models. Our findings are also in line with the claim by Falessi
et al., that simple IR techniques are typically the most useful [73]. Thus, as also
pointed out by Ali et al. [4], we see little value for the traceability community to
continue publishing studies that solely hunt improved P-R values “in the cave”,
without considering other factors that impact trace recovery, e.g., the validity of
the dataset and the specific work task the tools are intended to support.

Furthermore, as Cuddeback et al. rather controversially highlighted, human
subjects vetting entire candidate traceability matrices do not necessarily benefit
from more accurate candidate trace links [45]. Instead, Cuddeback et al. showed
that humans tend to vet the candidate traceability matrix in a way that balances
precision and recall. Furthermore, while humans provided with low accuracy can-
didate traceability matrices improved them significantly, humans vetting highly
accurate candidate traceability matrices often decreased their accuracy. These
findings have also been statistically confirmed by Dekhtyar et al. [61], in a study
with 84 subjects. While these findings concern matrix-based evaluations, Borg and
Pfahl explored this phenomenon preliminary in a query-based evaluation environ-
ment [22]. In a pilot experiment on impact analysis, subjects were provided with
lists of candidate trace links, i.e., one ranked search list per artifact to trace, repre-
senting different accuracy levels. While the results were inconclusive, there were
indications that subjects benefited from more accurate tool output. However, also
in this experiment, humans tended to complete the task in a way that balanced the
precision and recall of the final set of trace links. More human-oriented research
is needed, including visualization of trace links as has been initially compassed by
Marcus et al. [123] and Chen [34].

Regarding matrix-based evaluations of IR-based trace recovery, the aggrega-
tion of precision at fixed levels clearly displays the expected trade-off between
the two measures. Also, when comparing to the quality levels defined by Huffman
Hayes et al. [88], the challenge of reaching ‘acceptable’ precision and ‘acceptable’
recall is evident, as it is only achieved in about a quarter of the reported P-R val-
ues. While the appropriateness of the proposed quality levels (originally presented
by Huffman Hayes et al. as an attempt to “draw a line in the sand”), cannot be
validated without user studies, they constitute a starting point for the synthesis of
empirical results. Some published results are ‘acceptable’, a few are even ‘good’
or ‘excellent’, while a majority of the results are ‘unacceptable’. However, more
work similar to what Cuddeback et al. [45] and Dekhtyar et al. [61] have presented

6 Discussion 79

is required to validate the quality levels.

Our findings also confirm the difficulty to determine which set of candidate
trace links to present to the user of an IR-based trace recovery tool, i.e, deciding
which cut-off strategy is the most feasible for the specific context. The accuracy
of a set of trace links is unknown at recovery time of the IR tool, at least unless it
can be compared to a set of pre-established trace links. Thus, as only a quarter of
the reported P-R values are ‘acceptable’, this supports the suggestion by De Lucia
et al., that an engineer should work incrementally with output from IR-based trace
recovery tools [57]. As described by De Lucia et al., the engineer can then itera-
tively balance on the P-R trade-off, in a manner that is suitable for the work task
at hand. However, while we argue that the fact that a user can achieve more effi-
cient results with specific ways of using a tool, it does not mean that studies should
report non-conventional P-R values in place of PR@Fix and PR@N. This is espe-
cially true regarding PR@N, as publications on IR-based trace recovery often hide
the number of candidate trace links required to reach a certain level of recall, i.e.,
only PR@Fix is reported. Thus, as argued by Spärck Jones et al. [158], researchers
should make an effort to also report PR@N to display the amount of information a
user would have to process. Obviously, in the case of a matrix-based evaluation in
a large document space a very high N might be required to recover enough trace
links, but still it is meaningful to report this piece of information. Concerning
query-based evaluations of IR-based trace recovery, the proposed quality levels do
not seem to be appropriate, thus PR@Fix and PR@N should instead be evaluated
using secondary measures such as MAP and DCG.

As discussed in Section 6.3, several studies have reported that IR-based trace
recovery tools support humans when performing tasks involving tracing. Thus, as
a majority of the P-R values reported by state-of-the-art IR-based trace recovery
tools does not reach ‘acceptable’ accuracy levels, this suggests that even support-
ing an engineer with rather inaccurate tool support is better than working manually
with tracing tasks. This seems reasonable also in the light of work by Cuddeback et
al. [45] and Dekhtyar et al. [61], in which they show that human subjects provided
poor starting points for tracing improve them significantly. Consequently, as much
state-of-the-practice tracing work is done in environments with rather limited tool
support [21, 88], providing an engineer with state-of-the-art candidate trace links
has a potential to increase the traceability in an industrial project, as well as the re-
lated concept findability, defined as “the degree to which a system or environment
supports navigation and retrieval” [127].

To strengthen the validity of evaluations of IR-based trace recovery, we suggest
that:

• Results should be carefully reported using PR@Fix and PR@N, comple-
mented by secondary measures.

80 Recovering from a Decade: A Systematic Review of Information . . .

Research theme Goal to reach by 2035
Purposed traceability to define and instrument prototypical traceability profiles

and patterns
Cost-effective traceability to perform systematic quality assessment and assurance of

the traceability
Configurable traceability to provide for levels of abstraction and granularity in

traceability techniques, methods and tools, facilitated
by improved trace visualisations, to handle very large
datasets and the longevity of these data

Trusted traceability to develop cost-benefit models for analysing stakeholder
requirements for traceability and associated solution
options at a fine-grained level of detail

Scalable traceability to use dynamic, heterogeneous and semantically rich
traceability information models to guide the definition
and provision of traceability

Portable traceability to agree upon universal policies, standards, and a unified
representation or language for expressing traceability
concepts

Valued traceability to raise awareness of the value of traceability, to gain
buy-in to education and training, and to get commitment
to implementation

Ubiquitous traceability to provide automation such that traceability is
encompassed within broader software and systems
engineering processes, and is integral to all tool support

Table 7: Traceability research themes defined by CoEST [79]. Ubiquitous trace-
ability is referred to as “the grand challenge of traceability”, since it requires sig-
nificant progress in the other research themes.

• It should be made clear whether a query-based or matrix-based evaluation
style has been used, especially when reporting P-R values.

• Focus on tool enhancements “in the cave” should be shifted towards evalu-
ations in the work task or project context.

6.5 In the light of the CoEST research agenda
Gotel et al. recently published a framework of challenges in traceability research [79],
a CoEST community effort based on a draft from 2006 [40]. The intention of the
framework is to provide a structure to direct future research on traceability. Co-
EST defines eight research themes, addressing challenges that are envisioned as
solved in 2035, as presented in Table 7. Our work mainly contributes to three
of the research themes, purposed traceability, trusted traceability, and scalable
traceability. Below, we discuss the three research themes in relation to IR-based
trace recovery, based on our empirical findings.

The research theme purposed traceability charts the development of a classifi-
cation scheme for traceability contexts, and a collection of possible stakeholder re-
quirements on traceability. Also, a “Traceability Book of Knowledge” is planned,

7 Summary and Future Work 81

including e.g., terminology, methods, and practices. Furthermore, the research
agenda calls for additional empirical studies. Our contribution intensifies CoEST’s
call for additional industrial case studies, by showing that a majority of IR-based
trace recovery studies have been conducted in the “cave of IR evalution”. To guide
future empirical studies, we propose an adapted version of the model of IR evalua-
tion contexts by Ingwersen and Järvelin [92], tailored for IR-based trace recovery.
Also, we confirm the need for a “Traceability Book of Knowledge” and an aligned
terminology in the traceability community, as our secondary study was obstructed
be language discrepancies.

Trusted traceability comprises research to gain improvements in the quality
of creation and maintenance of automatic trace links. Also, the research theme
calls for empirical evidence as to the quality of traceability methods and tools with
respect to the quality of the trace links. Our work, founded in evidence-based
software engineering approaches, aggregated the empirical evidence of IR-based
trace recovery until December 2011. Based on this, we provide several advice on
how to advance future evaluations.

Finally, the research theme scalable traceability calls for the traceability com-
munity to obtain and publish large industrial datasets from various domains to
enable researchers to investigate scalability of traceability methods. Also this call
for research is intensified by our work, as we empirically show that alarmingly few
evaluations of IR-based trace recovery have been conducted on industrial datasets
of representative sizes.

7 Summary and Future Work

Our review of IR-based trace recovery compares 79 publications containing 132
empirical studies, systematically derived according to established procedures [103].
Our study constitutes the most extensive summary of publications of IR-based
trace recovery yet published, enabling an overview of the topic based on empirical
results.

More than 10 IR models have been applied to trace recovery (RQ1). More
studies have evaluated algebraic IR models (i.e., VSM and LSI), than probabilistic
models (e.g., BIM, PIN, LM, LDA). A visible trend is, in line with development in
the general field of IR, that the probabilistic subset of statistical language models
have received increased attention in recent years. While extracting data from the
primary publications, it became clear that the inconsistent use of IR terminology
is an issue in the field. In an attempt to homogenize the language, we present
structure in the form of a hierarchy of IR models (Figure 6) and a collection of IR
terminology (Table 1).

In the 132 mapped empirical studies, artifacts from the entire development
process have been linked (RQ2). The dominant artifact type is requirements at
various level of abstraction, followed by source code. Substantially fewer studies

82 Recovering from a Decade: A Systematic Review of Information . . .

have been conducted on test artifacts, and only single publications have targeted
user manuals and defect reports. Furthermore, a majority of the evaluations of
IR-based trace recovery have been made on bipartite datasets, i.e., only trace links
between two disjoint sets of artifacts were recovered.

Among the 79 primary publications mapped in our study, we conclude that the
heterogeneity of reporting detail obstructs the aggregation of empirical evidence
(RQ3). Also, most evaluations have been conducted on small bipartite datasets
containing fewer than 500 artifacts, which is a severe threat to external validity.
Furthermore, a majority of evaluations have been using artifacts originating from
a university environment, or a dataset of proprietary artifacts from NASA. As a
result, the two small datasets EasyClinic and CM-1 constitute the de-facto bench-
mark in IR-based trace recovery. Another validity threat to the applicability of
IR-based trace recovery is that a clear majority of the evaluations have been con-
ducted in “the cave of IR evaluation” as described in Table 2, and reported in
Figure 12. Thus, we argue that in-vivo evaluations, in which IR-based trace re-
covery should be studied within the full complexity of an industrial setting, are
needed to motivate the feasibility of the approach and further studies on the topic.
As such, our empirical findings intensify the recent call for additional empirical
studies by CoEST [79].

Based on our synthesized results from IR-based trace recovery tools, we found
no empirical evidence that the technologically-oriented research on tools has re-
sulted in more accurate trace recovery (RQ4). No IR model regularly outperforms
the classic VSM with TFIDF feature weighting on text preprocessed by stop word
removal and stemming, as presented in Figure 13. As long as trace recovery is
based on nothing but the limited NL content of artifacts, there appears to be little
value in solely hunting improved P-R values in small datasets, in line with sugges-
tions by Ali et al. [4]. Instead, our recommendation is to focus on the evaluations
rather than the technical details of the tools. Simply evaluating VSM for trace re-
covery, the classical IR model with several available open source implementations,
in an industrial context has a large potential to contribute to the field.

The strongest empirical evidence in favor of IR-based trace recovery tools
comes from a set of controlled experiments on student subjects, reporting that
tool-supported subjects outperform manual control groups. However, our results
show that only a quarter of the reported P-R values in the primary publications
reach ‘acceptable’ level as defined by Huffman Hayes et al. [88]. This suggests
that more research is required on how accurate candidate trace links need to be
for an engineer to benefit from them, as has been investigated by Cuddeback et
al. [45], Dekhtyar et al. [61], and Borg and Pfahl [22].

In several primary publications it is not made clear whether a query-based or
matrix-based evaluation style has been used. Also, the different reporting styles of
P-R values make aggregation of candidate trace link accuracies challenging. We
argue that the standard measures precision at fixed recall levels and P-R at specific
document cut-offs should be reported, complemented by secondary measures such

7 Summary and Future Work 83

as MAP and DCG. Moreover, based on P-R values extracted from the query-based
evaluations in the primary publications, we show that IR-based trace recovery is
considerably more sensitive to the choice of input dataset than to the applied IR
model.

As a continuation of this literature study, we intend to publish the extracted
data to allow for collaborative editing, and for interested readers to review the de-
tails. A possible future study would be to conduct a deeper analysis of the enhance-
ment strategies that have been reported as successful in the primary publications,
to investigate patterns concerning in which contexts they have been successfully
applied. Also, future work could include categorizing the primary publications
according to other frameworks, such as positioning them related to the CoEST
research themes.

Acknowledgement
This work was funded by the Industrial Excellence Center EASE – Embedded
Applications Software Engineering5. Thanks go to our librarian Mats Berglund
for working on the search strings, and Lorand Dali for excellent comments on IR
details.

5http://ease.cs.lth.se

84 Recovering from a Decade: A Systematic Review of Information . . .

Appendix
Tables 8-15 present our classification of the primary publications, sorted by num-
ber of citations according to Google Scholar (July 1, 2012). Note that the well-
cited works by Marcus and Maletic [120] (354 citations) and Antoniol et al. [5]
(85 citations) are not listed.

Datasets are classified according to origin: proprietary (Ind), open source (OS),
university (Univ), student (Stud), not clearly reported (Unclear), and mixed ori-
gin (Mixed). Numbers in parentheses show the number of artifacts studied, a ‘?’
is used when it is not reported. Unless the full dataset name is presented, the
following abbreviations are used: IBS (Ice Breaker System), EBT (Event-Based
Traceability), LC (Light Control system), TM (Transient Meter). Evaluation, the
rightmost column, maps primary publications to the context taxonomy described
in Section 3 (Level 1-4 = retrieval context, seeking context, work task context,
project context). Finally, Tables 16 show the distinctly most productive authors
and affiliations, based upon our primary publications.

7 Summary and Future Work 85

Cit. Title Authors IR mod. Dataset Evaluation
486 Recovering traceabil-

ity links between code
and documentation

Antoniol,
Canfora, De
Lucia, Merlo

BIM,
VSM

Univ: LEDA
(296), Stud:
Albergate (116)

Level 1,
Level 3 (8
subj.)

205 Advancing candidate
link tracing Genera-
tion for requirements:
The study of methods

Huffman
Hayes,
Dekhtyar,
Sundaram

VSM,
LSI

Ind: MODIS
(68), CM-1 (455)

Level 2

169 Improving require-
ments tracing via
information retrieval

Huffman
Hayes,
Dekhtyar,
Osborne

VSM Ind: MODIS (68) Level 1

140 Recovering traceabil-
ity links in systems
using information re-
trieval methods

De Lucia,
Fasano,
Oliveto,
Tortora

LSI Stud: (Multiple
projects)

Level 4 (150
subj.)

99 Utilizing supporting
evidence to improve
dynamic requirements
traceability

Cleland-
Huang,
Settimi,
Duan, Zou

PIN Univ: IBS (252),
EBT (114), LC
(61)

Level 1

79 Best practices for au-
tomated traceability

Cleland-
Huang,
Beren-
bach, Clark,
Settimi,
Romanova

PIN Ind: Siemens
Logistics and
Automation (?),
Univ: IBT (255),
EBT (114)

Level 1

74 Helping analysts trace
requirements: An ob-
jective look

Huffman
Hayes,
Dekhtyar,
Sundaram,
Howard

VSM Ind: MODIS (68) Level 2

70 Can LSI help recon-
structing require-
ments traceability in
design and test?

Lormans,
van Deursen

LSI Ind: Philips
(359), Stud:
PacMan (46),
Callisto (?)

Level 1

68 Supporting software
evolution through
dynamically retriev-
ing traces to UML
artifacts

Settimi,
Cleland-
Huang,
Khadra,
Mody,
Lukasik,
DePalma

VSM Univ: EBT (138) Level 1

64 Enhancing an artefact
management system
with traceability
recovery Features

De Lucia,
Fasano,
Oliveto,
Tortora

LSI Stud: EasyClinic
(150)

Level 1

Table 8: Classification of primary publications, part I.

86 Recovering from a Decade: A Systematic Review of Information . . .

Cit. Title Authors IR mod. Dataset Evaluation
58 Recovery of trace-

ability links between
software documen-
tation and source
code

Marcus,
Maletic,
Sergeyev

LSI Univ: LEDA
(228-803), Stud:
Albergate (73)

Level 1

44 Recovering code to
documentation links
in OO systems

Antoniol,
Canfora, De
Lucia, Marlo

BIM Univ: LEDA
(296)

Level 1

40 Fine grained indexing
of software reposito-
ries to support impact
analysis

Canfora,
Cerulo

BM25 OS: Gedit (233),
ArgoUML
(2208), Firefox
(680)

Level 1

38 ADAMS Re-Trace: A
traceability recovery
tool

De Lucia,
Fasano,
Oliveto,
Tortora

LSI Stud: (48, 50, 54,
55, 73, 74, 111)

Level 4 (7
proj.)

36 On the equivalence
of information re-
trieval methods for
automated traceability
link recovery

Oliveto,
Gethers,
Poshyvanyk,
De Lucia

VSM,
LSI,
LM,
LDA

Stud: EasyClinic
(77), eTour (174)

Level 1

33 Incremental approach
and user feedbacks: A
silver bullet for trace-
ability recovery

De Lucia,
Oliveto,
Sgueglia

VSM,
LSI

Ind: MODIS
(68), Stud:
EasyClinic (150)

Level 1

30 A machine learning
approach for tracing
regulatory codes to
product specific re-
quirements

Cleland-
Huang,
Czauderna,
Gibiec,
Emenecker

PIN Mixed: (254) Level 2

30 Assessing IR-based
traceability recovery
tools through con-
trolled experiments

De Lucia,
Oliveto,
Tortora

LSI Stud: EasyClinic
(150)

Level 3 (20,
12 subj.)

29 A traceability tech-
nique for specifica-
tions

Abadi,
Nisenson,
Simionovici

VSM,
LSI,
PLSI,
SDR,
LM

OS: SCA (1311),
CORBA (3340)

Level 2

29 Can information
retrieval techniques
effectively support
traceability link
recovery?

De Lucia,
Fasano,
Oliveto,
Tortora

LSI Stud: EasyClinic
(150), Univ:
ADAMS (309),
LEDA (803)

Level 1,
Level 4 (150
subj.)

Table 9: Classification of primary publications, part II.

7 Summary and Future Work 87

Cit. Title Authors IR mod. Dataset Evaluation
29 Software traceability

with topic modeling
Asuncion,
Asuncion,
Taylor

LSI,
LDA

Univ: ArchStu-
dio (?), Stud:
EasyClinic (160)

Level 1

29 Speeding up require-
ments to management
in a product software
company: Linking
customer wishes to
product requirements
through linguistic
engineering

Natt och
Dag,
Gervasi,
Brinkkem-
per, Regnell

VSM Ind: Baan
(12083)

Level 2

29 Tracing object-
oriented code into
functional require-
ments

Antoniol,
Canfora,
De Lucia,
Casazza,
Merlo

BIM Stud: Albergate
(76)

Level 1

28 Clustering support for
automated tracing

Duan,
Cleland-
Huang

PIN Univ: IBS (185) Level 1

27 Text mining for soft-
ware engineering:
how analyst feedback
impacts final results

Huffman
Hayes,
Dekhtyar,
Sundaram

N/A Ind: MODIS (68) Level 3 (3
subj.)

26 A feasibility study
of automated natural
language require-
ments analysis in
market-driven devel-
opment

Natt och
Dag, Reg-
nell, Carl-
shamre,
Andersson,
Karlsson

VSM Ind: Telelogic
(1891, 1089)

Level 1

26 Implementation of an
efficient requirements
analysis support-
ing system using
similarity measure
techniques

Park, Kim,
Ko, Seo

Sliding
window,
syntactic
parser

Ind: Unclear (33) Level 1

25 Traceability recovery
in RAD software sys-
tems

Di Penta,
Gradara,
Antoniol

BIM Univ: TM (49) Level 1

23 REquirements
TRacing On target
(RETRO): Improving
software maintenance
through traceability
recovery

Huffman
Hayes,
Dekhtyar,
Holbrook,
Sundaram,
Vadlamudi,
April

VSM Ind: CM-1 (74) Level 3 (30
subj.)

22 Phrasing in dynamic
requirements trace re-
trieval

Zou, Settimi,
Cleland-
Huang

PIN Univ: IBS (235),
LC (59), EBT
(93)

Level 1

Table 10: Classification of primary publications, part III.

88 Recovering from a Decade: A Systematic Review of Information . . .

Cit. Title Authors IR mod. Dataset Evaluation
21 Combining textual

and structural analysis
of software artifacts
for traceability link
recovery

McMillan,
Poshyvanyk,
Revelle

LSI Univ: Cof-
feeMaker (143)

Level 1

20 Tracing requirements
to defect reports: An
application of infor-
mation retrieval tech-
niques

Yadla, Huff-
man Hayes,
Dekhtyar

VSM Ind: CM-1
(68,118)

Level 2

18 Automated require-
ments traceability:
The study of human
analysts

Cuddeback,
Dekhtyar,
Huffman
Hayes

VSM OS: BlueJ Plugin
(49)

Level 3 (26
subj.)

18 Incremental latent se-
mantic indexing for
automatic traceability
link evolution man-
agement

Jiang,
Nguyen,
Chen, Jay-
garl, Chang

LSI Univ: LEDA
(634)

Level 1

18 Understanding how
the requirements
are implemented in
source code

Zhao, Zhang,
Liu, Juo, Sun

VSM OS: Desktop Cal-
culator (123)

Level 1

17 Improving automated
requirements trace re-
trieval: A study of
term-based enhance-
ment methods

Zou, Settimi,
Cleland-
Huang

PIN Ind: CM-1
(455), Univ: IBS
(235), EBT (93),
LC (89), Stud:
SE450 (521)

Level 2

17 IR-based traceability
recovery processes:
An empirical compar-
ison of "one-shot" and
incremental processes

De Lucia,
Oliveto,
Tortora

LSI Stud: EasyClinic
(150)

Level 3 (30
subj.)

17 Make the most of your
time: how should
the analyst work with
automated traceability
tools?

Dekhtyar,
Huffman
Hayes,
Larsen

VSM Ind: CM-1 (455) Level 2

16 Baselines in require-
ments tracing

Sundaram,
Huffman
Hayes,
Dekhtyar

VSM,
LSI

Ind: CM-1 (455),
MODIS (68)

Level 2

11 Challenges for semi-
automatic trace recov-
ery in the automotive
domain

Leuser VSM,
LSI

Ind: Daimler AG
(1500)

Level 1

Table 11: Classification of primary publications, part IV.

7 Summary and Future Work 89

Cit. Title Authors IR mod. Dataset Evaluation
11 Monitoring require-

ments coverage using
reconstructed views:
an industrial case
study

Lormans,
Gross, van
Deursen,
Stehouwer,
van Solingen

LSI Ind: LogicaCMG
(219)

Level 1

11 On the role of the
nouns in IR-based
traceability recovery

Capobianco,
De Lucia,
Oliveto,
Panichella,
Panichella

LSI, LM Stud: EasyClinic
(150)

Level 1

10 An experiment on
linguistic tool support
for consolidation of
requirements from
multiple sources in
market-driven product
development

Natt och
Dag, Thelin,
Regnell

VSM Stud: PUSS
(299)

Level 3 (23
subj.)

9 An industrial case
study in reconstruct-
ing requirements
views

Lormans,
van Deursen,
Gross

LSI Ind: LogicaCMG
(293)

Level 1

9 Towards mining re-
placement queries for
hard-to-retrieve traces

Gibiec,
Czauderna,
Cleland-
Huang

VSM Mixed: (254) Level 2

8 Recovering rela-
tionships between
documentation and
source code based on
the characteristics of
software engineering

Wang, Lai,
Liu

LSI,
BIM

Univ: LEDA
(597), IBS (270)

Level 1

8 Trace retrieval for
evolving artifacts

Winkler LSI Ind: Robert
Bosch GmbH
(500), MODIS
(68)

Level 1

8 Traceability recovery
using numerical anal-
ysis

Capobianco,
De Lucia,
Oliveto,
Panichella,
Panichella

VSM,
LSI,
LM, B-
splines

Stud: EasyClinic
(150)

Level 1

7 Assessing traceability
of software engineer-
ing artifacts

Sundaram,
Huffman
Hayes,
Dekhtyar,
Holbrook

VSM,
LSI

Ind: MODIS
(68), CM-1
(455), Stud: 22*
Waterloo (65)

Level 2

7 Requirement-centric
traceability for change
impact analysis: A
case study

Li, Li, Yang,
Li

VSM Unclear: Re-
quirements
Management
System (501)

Level 4 (5
subj.)

Table 12: Classification of primary publications, part V.

90 Recovering from a Decade: A Systematic Review of Information . . .

Cit. Title Authors IR mod. Dataset Evaluation
6 How do we trace re-

quirements: An initial
study of analyst be-
havior in trace valida-
tion tasks

Kong, Huff-
man Hayes,
Dekhtyar,
Holden

N/A OS: BlueJ plugin
(49)

Level 3 (13
subj.)

6 Technique integration
for requirements ass-
esment

Dekhtyar,
Huffman
Hayes,
Sundaram,
Holbrook,
Dekhtyar

VSM,
LSI,
BIM,
LDA,
Chi2
key extr.

Ind: CM-1 (455) Level 1

4 Application of swarm
techniques for re-
quirements engineer-
ing: Requirements
tracing

Sultanov,
Huffman
Hayes

VSM,
Swarm

Ind: CM-1 (455),
Univ: PINE (182)

Level 1

4 On integrating orthog-
onal information re-
trieval methods to im-
prove traceability re-
covery

Gethers,
Oliveto,
Posyvanyk,
De Lucia

VSM,
LM,
RTM

Stud: eAnsi
(194), eAnsi (67),
EasyClinic (57),
EasyClinic (100),
eTour (232),
SMOS (167)

Level 1

3 A clustering-based
approach for tracing
object-oriented design
to requirement

Zhou, Yu VSM Univ: Resource
Management
Software (33)

Level 1

3 Evaluating the use of
project glossaries in
automated trace re-
trieval

Zou, Settimi,
Cleland-
Huang

PIN Ind: CM-1 (455),
Univ: IBS (235),
Stud: SE450 (61)

Level 1

3 On human analyst
performance in as-
sisted requirements
tracing: Statistical
analysis

Dekhtyar,
Dekhtyar,
Holden,
Huffman
Hayes, Cud-
deback,
Kong

VSM OS: BlueJ (49) Level 3 (84
subj.)

3 Tackling semi-
automatic trace
recovery for large
specifications

Leuser, Ott VSM Ind: Daimler
(2095, 944)

Level 1

2 Extraction and visual-
ization of traceability
relationships between
documents and source
code

Chen Unclear OS: JDK1.5 (?),
uDig 1.1.1 (?)

Level 1

2 Source code indexing
for automated tracing

Mahmoud,
Niu

VSM Stud: eTour
(174), iTrust
(264)

Level 1

Table 13: Classification of primary publications, part VI.

7 Summary and Future Work 91

Cit. Title Authors IR mod. Dataset Evaluation
2 Traceability challenge

2011: Using Tracelab
to evaluate the impact
of local versus global
IDF on trace retrieval

Czauderna,
Gibiec,
Leach,
Li, Shin,
Keenan,
Cleland-
Huang

VSM Ind: CM-1 (75),
WV-CCHIT
(1180)

Level 2

2 Trust-based require-
ments traceability

Ali, Gue-
heneuc,
Antoniol

VSM OS: Pooka (388),
SIP (1853)

Level 1

1 An adaptive approach
to impact analysis
from change requests
to source code

Gethers,
Kagdi, Dit,
Poshyvanyk

LSI OS: ArgoUML
(qualitative
analysis)

Level 2

1 Do better IR tools im-
prove the accuracy of
engineers’ traceability
recovery?

Borg, Pfahl VSM Ind: CM-1 (455) Level 3 (8
subj.)

1 Experiences with text
mining large collec-
tions of unstructured
systems development
artifacts at JPL

Port, Nikora,
Hihn, Huang

LSI Unclear Level 3

1 Improving automated
documentation to
code traceability by
combining retrieval
techniques

Chen,
Grundy

VSM OS: JDK (431) Level 1

1 Improving IR-based
traceability recovery
using smoothing
filters

De Lucia,
Di Penta,
Oliveto,
Panichella,
Panichella

VSM,
LSI

Univ: PINE
(131), Stud:
EasyClinic (150)

Level 1

1 Using semantics-
enabled information
retrieval in require-
ments tracing: An
ongoing experimental
investigation

Mahmoud,
Niu

VSM Ind: CM-1 (455) Level 1

1 Traceclipse: An
eclipse plug-in for
traceability link
recovery and manage-
ment

Klock, Geth-
ers, Dit,
Poshyvanyk

Unclear Ind: CM-1 (455),
Stud: EasyClinic
(150)

Level 1

0 A combination ap-
proach for enhancing
automated traceability
(NIER track)

Chen, Hosk-
ing, Grundy

VSM OS: JDK 1.5 (?) Level 1

Table 14: Classification of primary publications, part VII.

92 Recovering from a Decade: A Systematic Review of Information . . .

Cit. Title Authors IR mod. Dataset Evaluation
0 A comparative study

of document corre-
lation techniques for
traceability analysis

Parvathy,
Vasudevan,
Balakrishnan

VSM,
LSI,
LDA,
CTM

Unclear: (43),
(261)

Level 1

0 A requirement trace-
ability refinement
method based on
relevance feedback

Kong, Li, Li,
Yang, Wang

VSM,
LM

Ind: Web app
(511)

Level 1

0 An improving ap-
proach for recovering
requirements-to-
design traceability
links

Di, Zhang BIM Ind: CM-1 (455),
MODIS (68)

Level 1

0 Proximity-based
traceability: An
empirical validation
using ranked re-
trieval and set-based
measures

Kong, Huff-
man Hayes

VSM Ind: CM-1
(75), OS: Pine
(182), Univ:
StyleChecker
(49), Stud:
EasyClinic (77)

Level 2

0 Reconstructing trace-
ability between bugs
and test cases: An ex-
perimental study

Kaushik,
Tahvildari,
Moore

LSI Ind: RIM
(13389)

Level 1

0 Requirements trace-
ability for object
oriented systems by
partitioning source
code

Ali, Gue-
henuec,
Antoniol

VSM OS: Pooka (388),
SIP (1853), Univ:
iTrust (526)

Level 1

0 Software verifica-
tion and validation
research laboratory
(SVVRL) of the Uni-
versity of Kentucky:
Traceability challenge
2011: Language
translation

Huffman
Hayes, Sul-
tanov, Kong,
Li

VSM Stud: EasyClinic
(150), eTour
(174)

Level 2

0 The role of the cov-
erage analysis during
IR-based traceabil-
ity recovery: A
controlled experiment

De Lucia,
Oliveto,
Tortora

LSI Stud: EasyClinic
(150)

Level 3 (30
subj.)

0 Towards a benchmark
for traceability

Ben Char-
rada, Casper,
Jeanneret,
Glinz

VSM Univ: AquaLush
(793)

Level 1

Table 15: Classification of primary publications, part VIII.

7 Summary and Future Work 93

Author Publications
Andrea De Lucia 16 (9)
Jane Huffman Hayes 16 (6)
Alexander Dekhtyar 15 (3)
Rocco Oliveto 13 (1)
Jane Cleland-Huang 10 (3)
Affiliation Publications
University of Kentucky, United States 13
University of Salerno, Italy 11
DePaul University, United States 10
University of Sannio, Italy 5

Table 16: Most productive authors and affiliations. For authors, the first number
is the total number of primary publications, while the number in parenthesis is
first-authored primary publications. For affiliations, the numbers show the number
of primary publications first-authored by an affiliated researcher.

94 Recovering from a Decade: A Systematic Review of Information . . .

Bibliography

[1] A. Abadi, M. Nisenson, and Y. Simionovici. A traceability technique for
specifications. In Proceedings of the 16th International Conference on Pro-
gram Comprehension, pages 103–112, 2008.

[2] N. Ali, Y-G. Guéhéneuc, and G. Antoniol. Requirements traceability for
object oriented systems by partitioning source code. In Proceedings of the
18th Working Conference on Reverse Engineering, pages 45–54, 2011.

[3] N. Ali, Y-G. Guéhéneuc, and G. Antoniol. Trust-based requirements trace-
ability. In Proceedings of the 19th International Conference on Program
Comprehension, pages 111–120, 2011.

[4] N. Ali, Y-G. Guéhéneuc, and G. Antoniol. Factors impacting the inputs
of traceability recovery approaches. In J. Cleland-Huang, O. Gotel, and
A. Zisman, editors, Software and Systems Traceability. Springer, 2012.

[5] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia. Information re-
trieval models for recovering traceability links between code and documen-
tation. In Conference on Software Maintenance, pages 40–49, 2000.

[6] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Tracing
object-oriented code into functional requirements. In Proceedings of the 8th
International Workshop on Program Comprehension, pages 79–86, 2000.

[7] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recover-
ing traceability links between code and documentation. In Transactions on
Software Engineering, volume 28, pages 970–983, 2002.

[8] G. Antoniol, G. Canfora, A. De Lucia, and E. Merlo. Recovering code to
documentation links in OO systems. In Proceedings of the 6th Working
Conference on Reverse Engineering, pages 136–144, 1999.

[9] G. Antoniol, A. Potrich, P. Tonella, and R. Fiutem. Evolving object oriented
design to improve code traceability. In Proceedings of the 7th International
Workshop on Program Comprehension, pages 151–160, 1999.

[10] N. Assawamekin, T. Sunetnanta, and C. Pluempitiwiriyawej. Ontology-
based multiperspective requirements traceability framework. Knowledge
and Information Systems, 25(3):493–522, 2010.

[11] H. Asuncion, A. Asuncion, and R. Taylor. Software traceability with topic
modeling. In Proceedings of the International Conference on Software En-
gineering, pages 95–104, 2010.

Bibliography 95

[12] K. Ayari, P. Meshkinfam, G. Antoniol, and M. Di Penta. Threats on build-
ing models from CVS and Bugzilla repositories: The Mozilla case study.
In Proceedings of the Conference of the Center for Advanced Studies on
Collaborative Research, pages 215–228, 2007.

[13] A. Bacchelli, M. Lanza, and R. Robbes. Linking e-mails and source code
artifacts. In Proceedings of the 32nd International Conference on Software
Engineering, pages 375–384, 2010.

[14] R. Baeza-Yates and B. Ribeiro-Neto. Modern information retrieval: The
concepts and technology behind search. Addison-Wesley, 2nd edition,
2011.

[15] M. Banko and E. Brill. Scaling to very very large corpora for natural lan-
guage disambiguation. In Proceedings of the 39th Annual Meeting on As-
sociation for Computational Linguistics, pages 26–33, 2001.

[16] E. Ben Charrada, D. Caspar, C. Jeanneret, and M. Glinz. Towards a bench-
mark for traceability. In Proceedings of the 12th International Workshop on
Principles on Software Evolution, pages 21–30, 2011.

[17] A. Bianchi, A. Fasolino, and G. Visaggio. An exploratory case study of
the maintenance effectiveness of traceability models. In Proceedings of the
8th International Workshop on Program Comprehension, pages 149–158,
2000.

[18] D. Binkley and D. Lawrie. Information retrieval applications in software
maintenance and evolution. In J. Marciniak, editor, Encyclopedia of soft-
ware engineering. Taylor & Francis, 2nd edition, 2010.

[19] D. Blei and J. Lafferty. A correlated topic model of science. Annals of
Applied Statistics, 1(1):17–35, 2007.

[20] D. Blei, A. Ng, and M. Jordan. Latent dirichlet allocation. The Journal of
Machine Learning Research, 3(4-5):993–1022, 2003.

[21] M. Borg. Findability through traceability: A realistic application of can-
didate trace links? In Proceedings of the 7th International Conference
on Evaluating Novel Approaches to Software Engineering, pages 173–181,
2012.

[22] M. Borg and D. Pfahl. Do better IR tools improve the accuracy of engi-
neers’ traceability recovery? In Proceedings of the International Workshop
on Machine Learning Technologies in Software Engineering, pages 27–34,
2011.

96 Recovering from a Decade: A Systematic Review of Information . . .

[23] M. Borg, P. Runeson, and L. Brodén. Evaluation of traceability recovery
in context: A taxonomy for information retrieval tools. In Proceedings of
the 16th International Conference on Evaluation & Assessment in Software
Engineering, pages 111–120, 2012.

[24] M. Borg, K. Wnuk, and D. Pfahl. Industrial comparability of student ar-
tifacts in traceability recovery research - an exploratory survey. In Pro-
ceedings of the 16th European Conference on Software Maintenance and
Reengineering, pages 181–190, 2012.

[25] M. Borillo, A. Borillo, N. Castell, D. Latour, Y. Toussaint, and M. Fe-
lisa Verdejo. Applying linguistic engineering to spatial software engineer-
ing: The traceability problem. In Proceedings of the 10th European Con-
ference on Artificial Intelligence, pages 593–595, 1992.

[26] M. Bras and Y. Toussaint. Artificial intelligence tools for software engineer-
ing: Processing natural language requirements. In Applications of Artificial
Intelligence in Engineering, pages 275–290, 1993.

[27] P. Brereton, B. Kitchenham, D. Budgen, M. Turner, and M. Khalil. Lessons
from applying the systematic literature review process within the software
engineering domain. Journal of Systems and Software, 80(4):571–583,
2007.

[28] G. Canfora and L. Cerulo. Fine grained indexing of software repositories to
support impact analysis. In Proceedings of the International Workshop on
Mining software repositories, pages 105–111, 2006.

[29] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, and S. Panichella.
On the role of the nouns in IR-based traceability recovery. In Proceedings
of the 17th International Conference on Program Comprehension, pages
148–157, 2009.

[30] G. Capobianco, A. De Lucia, R. Oliveto, A. Panichella, and S. Panichella.
Traceability recovery using numerical analysis. In Proceedings of the 16th
Working Conference on Reverse Engineering, pages 195–204, 2009.

[31] Carnegie Mellon Software Engineering Institute. CMMI for development,
Version 1.3, 2010.

[32] N. Castell, O. Slavkova, Y. Toussaint, and A. Tuells. Quality control of
software specifications written in natural language. In Proceedings of the
7th International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems, pages 37–44, 1994.

[33] J. Chang and D. Blei. Hierarchical relational models for document net-
works. The Annals of Applied Statistics, 4(1):124–150, 2010.

Bibliography 97

[34] X. Chen. Extraction and visualization of traceability relationships between
documents and source code. In Proceedings of the International Conference
on Automated Software Engineering, pages 505–509, 2010.

[35] X. Chen, J. Hosking, and J. Grundy. A combination approach for enhancing
automated traceability. In Proceeding of the 33rd International Conference
on Software Engineering, (NIER track), pages 912–915, 2011.

[36] J. Cleland-Huang, C. K Chang, and M. Christensen. Event-based traceabil-
ity for managing evolutionary change. Transactions on Software Engineer-
ing, 29(9):796– 810, 2003.

[37] J. Cleland-Huang, A. Czauderna, A. Dekhtyar, O. Gotel, J. Huffman Hayes,
E. Keenan, J. Maletic, D. Poshyvanyk, Y. Shin, A. Zisman, G. Antoniol,
B. Berenbach, A. Egyed, and P. Mäder. Grand challenges, benchmarks, and
TraceLab: Developing infrastructure for the software traceability research
community. In Proceedings of the 6th International Workshop on Trace-
ability in Emerging Forms of Software Engineering, 2011.

[38] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker. A machine
learning approach for tracing regulatory codes to product specific require-
ments. In Proceedings International Conference on Software Engineering,
pages 155–164, 2010.

[39] J. Cleland-Huang, O. Gotel, and A. Zisman, editors. Software and systems
traceability. Springer, 2012.

[40] J. Cleland-Huang, J. Huffman Hayes, and A. Dekhtyar. Center of excel-
lence for traceability: Problem statement and grand challenges in traceabil-
ity (v0.1). Technical Report COET-GCT-06-01-0.9, 2006.

[41] J. Cleland-Huang, W. Marrero, and B. Berenbach. Goal-centric traceability:
Using virtual plumblines to maintain critical systemic qualities. Transac-
tions on Software Engineering, 34(5):685–699, 2008.

[42] J. Cleland-Huang, R. Settimi, C. Duan, and X. C. Zou. Utilizing support-
ing evidence to improve dynamic requirements traceability. In Proceedings
of the 13th International Conference on Requirements Engineering, pages
135–144, 2005.

[43] J. Cleland-Huang, R. Settimi, E. Romanova, B. Berenbach, and S. Clark.
Best practices for automated traceability. Computer, 40(6):27–35, 2007.

[44] C. Cleverdon. The significance of the Cranfield tests on index languages.
In Proceedings of the 14th Annual International SIGIR Conference on Re-
search and Development in Information Retrieval, pages 3–12, 1991.

98 Recovering from a Decade: A Systematic Review of Information . . .

[45] D. Cuddeback, A. Dekhtyar, and J. Huffman Hayes. Automated require-
ments traceability: The study of human analysts. In Proceedings of the
18th International Requirements Engineering Conference, pages 231–240,
2010.

[46] A. Czauderna, M. Gibiec, G. Leach, Y. Li, Y. Shin, E. Keenan, and
J. Cleland-Huang. Traceability challenge 2011: Using Tracelab to evalu-
ate the impact of local versus global IDF on trace retrieval. In Proceeding
of the 6th International Workshop on Traceability in Emerging Forms of
Software Engineering, pages 75–78, 2011.

[47] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella.
Improving IR-based traceability recovery using smoothing filters. In Pro-
ceedings of the 19th International Conference on Program Comprehension,
pages 21–30, 2011.

[48] A. De Lucia, M. Di Penta, R. Oliveto, and F. Zurolo. COCONUT: COde
COmprehension nurturant using traceability. In Proceedings of the 22nd
International Conference on Software Maintenance, pages 274–275, 2006.

[49] A. De Lucia, M. Di Penta, R. Oliveto, and F. Zurolo. Improving compre-
hensibility of source code via traceability information: A controlled exper-
iment. In Proceedings of the International Conference on Program Com-
prehension, pages 317–326, 2006.

[50] A. De Lucia, F. Fasano, and R. Oliveto. Traceability management for impact
analysis. In Frontiers of Software Maintenance, pages 21–30, 2008.

[51] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Enhancing an artefact
management system with traceability recovery features. In Proceedings of
the 20th International Conference on Software Maintenance, pages 306–
315, 2004.

[52] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. ADAMS re-trace: A
traceability recovery tool. In Proceedings of the 9th European Conference
on Software Maintenance and Reengineering, pages 32–41, 2005.

[53] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Can information re-
trieval techniques effectively support traceability link recovery? In Pro-
ceedings of the 14th International Conference on Program Comprehension,
pages 307–316, 2006.

[54] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Recovering traceability
links in software artifact management systems using information retrieval
methods. Transactions on Software Engineering and Methodology, 16(4),
2007.

Bibliography 99

[55] A. De Lucia, A. Marcus, R. Oliveto, and D. Poshyvanyk. Information re-
trieval methods for automated traceability recovery. In J. Cleland-Huang,
O. Gotel, and A. Zisman, editors, Software and Systems Traceability.
Springer, 2012.

[56] A. De Lucia, R. Oliveto, and P. Sgueglia. Incremental approach and user
feedbacks: A silver bullet for traceability recovery? In Proceedings of the
International Conference on Software Maintenance, pages 299–308, 2006.

[57] A. De Lucia, R. Oliveto, and G. Tortora. IR-based traceability recovery
processes: An empirical comparison of "one-shot" and incremental pro-
cesses. In Proceedings of the 23rd International Conference on Automated
Software Engineering, pages 39–48, 2008.

[58] A. De Lucia, R. Oliveto, and G. Tortora. Assessing IR-based traceability
recovery tools through controlled experiments. Empirical Software Engi-
neering, 14(1):57–92, 2009.

[59] A. De Lucia, R. Oliveto, and G. Tortora. The role of the coverage analysis
during IR-based traceability recovery: A controlled experiment. In Pro-
ceedings of the International Conference on Software Maintenance, pages
371–380, 2009.

[60] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. In-
dexing by latent semantic analysis. Journal of the American Society for
Information Science, 41(6):391–407, 1990.

[61] A. Dekhtyar, O. Dekhtyar, J. Holden, J. Huffman Hayes, D. Cuddeback, and
W. Kong. On human analyst performance in assisted requirements tracing:
Statistical analysis. In Proceedings of the 19th International Requirements
Engineering Conference, pages 111–120, 2011.

[62] A. Dekhtyar and J. Huffman Hayes. Good benchmarks are hard to find: To-
ward the benchmark for information retrieval applications in software engi-
neering. Proceedings of the International Conference on Software Mainte-
nance, 2006.

[63] A. Dekhtyar, J. Huffman Hayes, and G. Antoniol. Benchmarks for traceabil-
ity? In Proceedings of the International Symposium on Grand Challenges
in Traceability, 2007.

[64] A. Dekhtyar, J. Huffman Hayes, and J. Larsen. Make the most of your
time: How should the analyst work with automated traceability tools? In
Proceedings of the 3rd International Workshop on Predictor Models in Soft-
ware Engineering, 2007.

100 Recovering from a Decade: A Systematic Review of Information . . .

[65] A. Dekhtyar, J. Huffman Hayes, S. Sundaram, A. Holbrook, and O. Dekht-
yar. Technique integration for requirements assessment. In Proceedings of
the 15th International Requirements Engineering Conference, pages 141–
152, 2007.

[66] F. Di and M. Zhang. An improving approach for recovering requirements-
to-design traceability links. In Proceedings of the International Conference
on Computational Intelligence and Software Engineering, pages 1–6, 2009.

[67] M. Di Penta, S. Gradara, and G. Antoniol. Traceability recovery in RAD
software systems. In Proceedings of the 10th International Workshop on
Program Comprehension, pages 207–216, 2002.

[68] B. Dit, M. Revelle, M. Gethers, and D. Poshyvanyk. Feature location in
source code: A taxonomy and survey. Journal of Software Maintenance
and Evolution: Research and Practice, 2011.

[69] R. Dömges and K. Pohl. Adapting traceability environments to project-
specific needs. Communications of the ACM, 41(12):54–62, 1998.

[70] C. Duan and J. Cleland-Huang. Clustering support for automated tracing.
In Proceedings of the International Conference on Automated Software En-
gineering, pages 244–253, 2007.

[71] A. Egyed and P. Grünbacher. Automating requirements traceability: Be-
yond the record replay paradigm. In Proceedings of the 17th International
Conference on Automated Software Engineering, pages 163–171, 2002.

[72] T. Eisenbarth, R. Koschke, and D. Simon. Locating features in source code.
Transactions on Software Engineering, 29(3):210– 224, 2003.

[73] D. Falessi, G. Cantone, and G. Canfora. A comprehensive characterization
of NLP techniques for identifying equivalent requirements. In Proceed-
ings of the International Symposium on Empirical Software Engineering
and Measurement, 2010.

[74] K. R Felizardo, N. Salleh, R. M Martins, E. Mendes, S. G MacDonell, and
J. C Maldonado. Using visual text mining to support the study selection
activity in systematic literature reviews. In Proceedings of the International
Symposium on Empirical Software Engineering and Measurement, pages
77–86, 2011.

[75] R. Fiutem and G. Antoniol. Identifying design-code inconsistencies in
object-oriented software: A case study. In Proceedings of the International
Conference on Software Maintenance, pages 94–102, 1998.

Bibliography 101

[76] G. Gay, S. Haiduc, A. Marcus, and T. Menzies. On the use of relevance
feedback in IR-based concept location. In Proceedings of the 25th Interna-
tional Conference on Software Maintenance, pages 351–360, 2009.

[77] M. Gethers, R. Oliveto, D. Poshyvanyk, and A. De Lucia. On integrating
orthogonal information retrieval methods to improve traceability recovery.
In Proceedings of the International Conference on Software Maintenance,
pages 133–142, 2011.

[78] M. Gibiec, A. Czauderna, and J. Cleland-Huang. Towards mining replace-
ment queries for hard-to-retrieve traces. In Proceedings of the International
Conference on Automated Software Engineering, pages 245–254, 2010.

[79] O. Gotel, J. Cleland-Huang, J. Huffman Hayes, A. Zisman, A. Egyed,
P. Grünbacher, A. Dekhtyar, G. Antoniol, and J. Maletic. The grand chal-
lenge of traceability (v1.0). In J. Cleland-Huang, O. Gotel, and A. Zisman,
editors, Software and Systems Traceability. Springer, 2012.

[80] O. Gotel and C. Finkelstein. An analysis of the requirements traceability
problem. In Proceedings of the First International Conference on Require-
ments Engineering, pages 94–101, 1994.

[81] M. Heindl and S. Biffl. A case study on value-based requirements tracing.
In Proceedings of the 10th European Software Engineering Conference held
jointly with the 13th SIGSOFT International Symposium on Foundations of
Software Engineering, pages 60–69, 2005.

[82] T. Hofman. Unsupervised learning by probabilistic latent semantic analysis.
Machine Learning, 42(1-2):177–196, 2001.

[83] J. Huffman Hayes, G. Antoniol, and Y-G. Guéhéneuc. PREREQIR: re-
covering pre-requirements via cluster analysis. In Proceedings of the 15th
Working Conference on Reverse Engineering, pages 165–174, 2008.

[84] J. Huffman Hayes and A. Dekhtyar. A framework for comparing require-
ments tracing experiments. Interational Journal of Software Engineering
and Knowledge Engineering, 15(5):751–781, 2005.

[85] J. Huffman Hayes and A. Dekhtyar. Humans in the traceability loop: Can’t
live with ’em, can’t live without ’em. In Proceedings of the 3rd Interna-
tional Workshop on Traceability in Emerging Forms of Software Engineer-
ing, pages 20–23, 2005.

[86] J. Huffman Hayes, A. Dekhtyar, and J. Osborne. Improving requirements
tracing via information retrieval. In Proceedings of the 11th Internationl
Requirements Engineering Conference, pages 138–147, 2003.

102 Recovering from a Decade: A Systematic Review of Information . . .

[87] J. Huffman Hayes, A. Dekhtyar, and S. Sundaram. Text mining for software
engineering: How analyst feedback impacts final results. In Proceedings of
the International Workshop on Mining Software Repositories, pages 1–5,
2005.

[88] J. Huffman Hayes, A. Dekhtyar, and S. Sundaram. Advancing candidate
link generation for requirements tracing: The study of methods. Transac-
tions on Software Engineering, 32(1):4–19, 2006.

[89] J. Huffman Hayes, A. Dekhtyar, S. Sundaram, A. Holbrook, S. Vadlamudi,
and A. April. REquirements TRacing on target (RETRO): improving soft-
ware maintenance through traceability recovery. Innovations in Systems and
Software Engineering, 3(3):193–202, 2007.

[90] J. Huffman Hayes, A. Dekhtyar, S. Sundaram, and S. Howard. Helping
analysts trace requirements: An objective look. In Proceedings of the Inter-
national Conference on Requirements Engineering, pages 249–259, 2004.

[91] J. Huffman Hayes, H. Sultanov, W. Kong, and W. Li. Software verification
and validation research laboratory (SVVRL) of the University of Kentucky:
Traceability challenge 2011: Language translation. In Proceeding of the
6th international workshop on Traceability in emerging forms of software
engineering, pages 50–53. ACM, 2011.

[92] P. Ingwersen and K. Järvelin. The turn: Integration of information seeking
and retrieval in context. Springer, 2005.

[93] International Electrotechnical Commission. IEC 61511-1 ed 1.0, Safety
instrumented systems for the process industry sector, 2003.

[94] International Organization for Standardization. ISO 26262-1:2011 Road
vehicles –Functional safety –, 2011.

[95] K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving highly
relevant documents. In Proceedings of the 23rd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
pages 41–48, 2000.

[96] A. Jedlitschka, M. Ciolkowski, and D. Pfahl. Reporting experiments in soft-
ware engineering. In F. Shull, J. Singer, and D. Sjöberg, editors, Guide to
Advanced Empirical Software Engineering, pages 201–228. Springer, Lon-
don, 2008.

[97] H. Jiang, T. Nguyen, I. Chen, H. Jaygarl, and C. Chang. Incremental latent
semantic indexing for automatic traceability link evolution management. In
Proceedings of the 23rd International Conference on Automated Software
Engineering, pages 59–68, 2008.

Bibliography 103

[98] N. Kando. NTCIR workshop : Japanese- and Chinese-English cross-
lingual information retrieval and multi-grade relevance judgments. In
Cross-Language Information Retrieval and Evaluation, volume 2069, pages
24–35. 2001.

[99] V. Katta and T. Stålhane. A conceptual model of traceability for safety
systems. In Proceedings of the Complex Systems Design & Management
Conference, 2011.

[100] N. Kaushik, L. Tahvildari, and M. Moore. Reconstructing traceability be-
tween bugs and test cases: An experimental study. In Proceedings of the
Working Conference on Reverse Engineering, pages 411–414, 2011.

[101] J. Kekäläinen and K. Järvelin. Evaluating information retrieval systems un-
der the challenges of interaction and multidimensional dynamic relevance.
Proceedings of the COLIS 4 Conference, pages 253—270, 2002.

[102] B. Kitchenham, D. Budgen, and P. Brereton. Using mapping studies as the
basis for further research - A participant-observer case study. Information
and Software Technology, 53(6):638–651, 2011.

[103] B. Kitchenham and S. Charters. Guidelines for performing systematic liter-
ature reviews in software engineering. EBSE Technical Report, 2007.

[104] S. Klock, M. Gethers, B. Dit, and D. Poshyvanyk. Traceclipse: An eclipse
plug-in for traceability link recovery and management. In Proceeding of the
6th International Workshop on Traceability in Emerging Forms of Software
Eengineering, pages 24–30, 2011.

[105] L. Kong, J. Li, Y. Li, Y. Yang, and Q. Wang. A requirement traceability
refinement method based on relevance feedback. In Proceedings of the 21st
International Conference on Software Engineering and Knowledge Engi-
neering, 2009.

[106] P. Kruchten. The Rational Unified Process: An introduction. Addison-
Wesley Professional, 2004.

[107] J. Leuser. Challenges for semi-automatic trace recovery in the automotive
domain. In Proceedings of the International Workshop on Traceability in
Emerging Forms of Software Engineering, pages 31–35, 2009.

[108] J. Leuser and D. Ott. Tackling semi-automatic trace recovery for large spec-
ifications. In Requirements Engineering: Foundation for Software Quality,
pages 203–217, 2010.

[109] D. Lewis. Naive (Bayes) at forty: The independence assumption in infor-
mation retrieval. In Machine Learning: ECML-98, volume 1398, pages
4–15. Springer, 1998.

104 Recovering from a Decade: A Systematic Review of Information . . .

[110] Y. Li, J. Li, Y. Yang, and M. Li. Requirement-centric traceability for change
impact analysis: A case study. In International Conference on Software
Process, pages 100–111, 2008.

[111] E. Liddy. Natural language processing. Encyclopedia of Library and Infor-
mation Science. Marcel Decker, 2nd edition, 2001.

[112] J. Lin, L. Chan, J. Cleland-Huang, R. Settimi, J. Amaya, G. Bedford,
B. Berenbach, O. B Khadra, D. Chuan, and X. Zou. Poirot: A distributed
tool supporting enterprise-wide automated traceability. In Proceedings of
the 14th International Conference on Requirements Engineering, pages
363–364, 2006.

[113] M. Lindvall, R. Feldmann, G. Karabatis, Z. Chen, and V. Janeja. Searching
for relevant software change artifacts using semantic networks. In Proceed-
ings of the Symposium on Applied Computing, pages 496–500, 2009.

[114] M. Lormans, H-G. Gross, A. van Deursen, R. van Solingen, and A. Ste-
houwer. Monitoring requirements coverage using reconstructed views: An
industrial case study. In Procedings of the 13th Working Conference on
Reverse Engineering, pages 275–284, 2006.

[115] M. Lormans and A. van Deursen. Can LSI help reconstructing requirements
traceability in design and test? In Proceedings of the 10th European Con-
ference on Software Maintenance and Reengineering, pages 45–54, 2006.

[116] M. Lormans, A. Van Deursen, and H-G. Gross. An industrial case study
in reconstructing requirements views. Empirical Software Engineering,
13(6):727–760, 2008.

[117] A. Mahmoud and N. Niu. Using semantics-enabled information retrieval in
requirements tracing: An ongoing experimental investigation. In Proceed-
ings of the International Computer Software and Applications Conference,
pages 246–247, 2010.

[118] A. Mahmoud and N. Niu. Source code indexing for automated tracing. In
Proceeding of the 6th International Workshop on Traceability in Emerging
forms of Software Engineering, pages 3–9, 2011.

[119] C. Manning, P. Raghavan, and H. Schütze. Introduction to information
retrieval. Cambridge University Press, 2008.

[120] A. Marcus and J. Maletic. Recovering documentation-to-source-code trace-
ability links using latent semantic indexing. In Proceedings of the Interna-
tional Conference on Software Engineering, pages 125–135, 2003.

Bibliography 105

[121] A. Marcus, J. Maletic, and A. Sergeyev. Recovery of traceability links be-
tween software documentation and source code. International Journal of
Software Engineering and Knowledge Engineering, 15(5):811–836, 2005.

[122] A. Marcus, A. Sergeyev, V. Rajlich, and J. I. Maletic. An information re-
trieval approach to concept location in source code. In Proceedings of the
11th Working Conference on Reverse Engineering, pages 214–223, 2004.

[123] A. Marcus, X. Xie, and D. Poshyvanyk. When and how to visualize trace-
ability links? In Proceedings of the 3rd International Workshop on Trace-
ability in Emerging Forms of Software Engineering, pages 56–61, 2005.

[124] M. Maron and J. Kuhns. On relevance, probabilistic indexing and informa-
tion retrieval. Journal of the ACM, 7(3):216–244, 1960.

[125] C. McMillan, D. Poshyvanyk, and M. Revelle. Combining textual and struc-
tural analysis of software artifacts for traceability link recovery. In Proceed-
ings of the International Workshop on Traceability in Emerging Forms of
Software Engineering, pages 41–48, 2009.

[126] M. Miles and M. Huberman. Qualitative data analysis: An expanded
sourcebook. Sage Publications, 2nd edition, 1994.

[127] P. Morville. Ambient findability: What we find changes who we become.
O’Reilly Media, 2005.

[128] J. Natt och Dag, V. Gervasi, S. Brinkkemper, and B. Regnell. Speeding
up requirements management in a product software company: Linking cus-
tomer wishes to product requirements through linguistic engineering. In
Proceedings of the 12th International Requirements Engineering Confer-
ence, pages 283–294, 2004.

[129] J. Natt och Dag, B. Regnell, P. Carlshamre, M. Andersson, and J. Karlsson.
A feasibility study of automated natural language requirements analysis in
market-driven development. Requirements Engineering, 7(1):20–33, 2002.

[130] J. Natt och Dag, T. Thelin, and B. Regnell. An experiment on linguistic tool
support for consolidation of requirements from multiple sources in market-
driven product development. Empirical Software Engineering, 11(2):303–
329, 2006.

[131] R. Oliveto. Traceability management meets information retrieval methods:
Strengths and limitations. PhD thesis, University of Salerno, 2008.

[132] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia. On the equiv-
alence of information retrieval methods for automated traceability link re-
covery. In International Conference on Program Comprehension, pages
68–71, 2010.

106 Recovering from a Decade: A Systematic Review of Information . . .

[133] T. Olsson. Software information management in requirements and test doc-
umentation. Licentiate thesis, Lund University, 2002.

[134] S. Park, H. Kim, Y. Ko, and J. Seo. Implementation of an efficient require-
ments analysis supporting system using similarity measure techniques. In-
formation and Software Technology, 42(6):429–438, 2000.

[135] A. G Parvathy, B. G Vasudevan, and R. Balakrishnan. A comparative study
of document correlation techniques for traceability analysis. In Proceedings
of the 10th International Conference on Enterprise Information Systems,
Information Systems Analysis and Specification, pages 64–69, 2008.

[136] K. Petersen, R. Feldt, S. Mujtaba, and M. Mattsson. Systematic mapping
studies in software engineering. In Proceedings of the 12th International
Conference on Evaluation and Assessment in Software Engineering, pages
71–80, 2008.

[137] K. Pohl, G. Böckle, and F. van der Linden. Software product line engineer-
ing: foundations, principles, and techniques. Birkhäuser, 2005.

[138] J. Ponte and B. Croft. A language modeling approach to information re-
trieval. In Proceedings of the 21st Annual International SIGIR Conference
on Research and Development in Information Retrieval, pages 275–281,
1998.

[139] D. Port, A. Nikora, J. Hihn, and L. Huang. Experiences with text mining
large collections of unstructured systems development artifacts at JPL. In
Proceedings of the 33rd International Conference on Software Engineering,
pages 701–710, 2011.

[140] J. Randolph. Free-marginal multirater Kappa (multirater K[free]): An alter-
native to Fleiss’ fixed-marginal multirater Kappa. In Joensuu Learning and
Instruction Symposium, 2005.

[141] S. Robertson. The probability ranking principle in IR. Journal of Docu-
mentation, 33(4):294–304, 1977.

[142] S. Robertson and J. Robertson. Mastering the requirements process.
Addison-Wesley Professional, 1999.

[143] S. Robertson and H. Zaragoza. The probabilistic relevance framework:
BM25 and beyond. Foundation and Trends in Information Retrieval,
3(4):333–389, 2009.

[144] S. E. Robertson and S. Jones. Relevance weighting of search terms. Journal
of the American Society for Information Science, 27(3):129–146, 1976.

Bibliography 107

[145] J. Rocchio. Relevance feedback in information retrieval. In G. Salton,
editor, The SMART Retrieval System: Experiments in Automatic Document
Processing, pages 313–323. Prentice-Hall, 1971.

[146] P. Runeson, M. Alexandersson, and O. Nyholm. Detection of duplicate
defect reports using natural language processing. In Proceedings of the 29th
International Conference on Software Engineering, pages 499–510, 2007.

[147] P. Runeson, M. Höst, A. Rainer, and B. Regnell. Case study research in
software engineering: Guidelines and examples. Wiley, 2012.

[148] G. Sabaliauskaite, A. Loconsole, E. Engström, M. Unterkalmsteiner,
B. Regnell, P. Runeson, T. Gorschek, and R. Feldt. Challenges in aligning
requirements engineering and verification in a large-scale industrial con-
text. In Requirements Engineering: Foundation for Software Quality, pages
128–142, 2010.

[149] G. Salton and C. Buckley. Term-weighting approaches in automatic text
retrieval. Information Processing and Management, 24(5):513–523, 1988.

[150] G. Salton, A. Wong, and C. Yang. A vector space model for automatic
indexing. Commununications of the ACM, 18(11):613–620, 1975.

[151] W. Scacchi. Understanding the requirements for developing open source
software systems. IEEE Software, 149(1):24–39, 2002.

[152] R. Settimi, J. Cleland-Huang, O. Ben Khadra, J. Mody, W. Lukasik, and
C. DePalma. Supporting software evolution through dynamically retrieving
traces to UML artifacts. In Proceedings of the 7th International Workhop
on Principles of Software Evolution, pages 49–54, 2004.

[153] F. Shull, J. Carver, S. Vegas, and N. Juristo. The role of replications in em-
pirical software engineering. Empirical Software Engineering, 13(2):211–
218, 2008.

[154] A. Singhal. Modern information retrieval: A brief overview. Data Engi-
neering Bulletin, 24(2):1–9, 2001.

[155] A. Smeaton and D. Harman. The TREC experiments and their impact on
europe. Journal of Information Science, 23(2):169–174, 1997.

[156] G. Spanoudakis, A. d’Avila-Garcez, and A. Zisman. Revising rules to cap-
ture requirements traceability relations: A machine learning approach. In
Proceedings of the 15th International Conference in Software Engineering
and Knowledge Engineering, 2003.

108 Recovering from a Decade: A Systematic Review of Information . . .

[157] G. Spanoudakis, A. Zisman, E. Pérez-Miñana, and P. Krause. Rule-based
generation of requirements traceability relations. Journal of Systems and
Software, 72(2):105–127, 2004.

[158] K. Spärck Jones, S. Walker, and S. E. Robertson. A probabilistic model
of information retrieval: Development and comparative experiments. Infor-
mation Processing and Management, 36(6):779–808, 2000.

[159] A. Stone and P. Sawyer. Using pre-requirements tracing to investigate
requirements based on tacit knowledge. In Proceedings of the 1st Inter-
national Conference on Software and Data Technologies, pages 139–144,
2006.

[160] H. Sultanov and J. Huffman Hayes. Application of swarm techniques to
requirements engineering: Requirements tracing. In Proceedings of the
18th International Requirements Engineering Conference, pages 211–220,
2010.

[161] S. Sundaram, J. Huffman Hayes, and A. Dekhtyar. Baselines in require-
ments tracing. In Proceedings of the Workshop on Predictor Models in
Software Engineering, pages 1–6, 2005.

[162] S. Sundaram, J. Huffman Hayes, A. Dekhtyar, and A. Holbrook. Assessing
traceability of software engineering artifacts. Requirements Engineering,
15(3):313–335, 2010.

[163] M. Torchiano and F. Ricca. Impact analysis by means of unstructured
knowledge in the context of bug repositories. In Proceedings of the Inter-
national Symposium on Empirical Software Engineering and Measurement,
pages 47:1–47:4, 2010.

[164] H. Turtle and B. Croft. Evaluation of an inference network-based retrieval
model. Transactions on Information Systems, 9(3):187–222, 1991.

[165] B. Van Rompaey and S. Demeyer. Establishing traceability links between
unit test cases and units under test. In Proceedings of the 13th European
Conference on Software Maintenance and Reengineering, pages 209–218,
2009.

[166] E. Voorhees. TREC: experiment and evaluation in information retrieval.
MIT Press, 2005.

[167] X. Wang, G. Lai, and C. Liu. Recovering relationships between documen-
tation and source code based on the characteristics of software engineering.
Electronic Notes in Theoretical Computer Science, 243:121–137, 2009.

Bibliography 109

[168] S. Winkler. Trace retrieval for evolving artifacts. In Proceedings of the
International Workshop on Traceability in Emerging Forms of Software En-
gineering, pages 49–56, 2009.

[169] S. Winkler and J. Pilgrim. A survey of traceability in requirements en-
gineering and model-driven development. Software & Systems Modeling,
9(4):529–565, 2010.

[170] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wess-
lén. Experimentation in software engineering: A practical guide. Springer,
2012.

[171] S. Yadla, J. Huffman Hayes, and A. Dekhtyar. Tracing requirements to de-
fect reports: An application of information retrieval techniques. Innovations
in Systems and Software Engineering, 1:116–124, 2005.

[172] R. Yin. Case study research: Design and methods. Sage Publications, 3rd
edition, 2003.

[173] C. Zhai. A brief review of information retrieval models. Technical report,
University of Illinois at Urbana-Champaign, 2007.

[174] C. Zhai. Statistical language models for information retrieval: A critical
review. Foundations and Trends in Information Retrieval, 2(3):137–213,
2008.

[175] C. Zhai and J. Lafferty. Model-based feedback in the language modeling
approach to information retrieval. In Proceedings of the 10th International
Conference on Information and Knowledge Management, pages 403–410,
2001.

[176] W. Zhao, L. Zhang, Y. Liu, J. Luo, and J. S. Sun. Understanding how the
requirements are implemented in source code. In Proceedings of the Asia-
Pacific Software Engineering Conference, pages 68–77, 2003.

[177] X. Zhou and H. Yu. A clustering-based approach for tracing object-oriented
design to requirement. In Proceedings of the 10th International Confer-
ence on Fundamental Approaches to Software Engineering, pages 412–422,
2007.

[178] X. Zou, R. Settimi, and J. Cleland-Huang. Phrasing in dynamic require-
ments trace retrieval. In Proceedings of the International Computer Soft-
ware and Applications Conference, pages 265–272, 2006.

[179] X. Zou, R. Settimi, and J. Cleland-Huang. Evaluating the use of project
glossaries in automated trace retrieval. In Proceedings of the International
Conference on Software Engineering Research and Practice, pages 157–
163, 2008.

110 Recovering from a Decade: A Systematic Review of Information . . .

[180] X. Zou, R. Settimi, and J. Cleland-Huang. Improving automated require-
ments trace retrieval: A study of term-based enhancement methods. Empir-
ical Software Engineering, 15(2):119–146, 2010.

PAPER II

INDUSTRIAL COMPARABILITY
OF STUDENT ARTIFACTS IN
TRACEABILITY RECOVERY

RESEARCH - AN
EXPLORATORY SURVEY

Abstract

About a hundred studies on traceability recovery have been published in software
engineering fora. In roughly half of them, software artifacts developed by students
have been used as input. To what extent student artifacts differ from industrial
counterparts has not been fully explored in the literature. We conducted a sur-
vey among authors of studies on traceability recovery, including both academics
and practitioners, to explore their perspectives on the matter. Our results indi-
cate that a majority of authors consider software artifacts originating from student
projects to be only partly representative to industrial artifacts. Moreover, only few
respondents validated student artifacts for industrial representativeness. Further-
more, our respondents made suggestions for improving the description of artifact
sets used in studies by adding contextual, domain-specific and artifact-centric in-
formation. Example suggestions include adding descriptions of processes used for
artifact development, meaning of traceability links, and the structure of artifacts.
Our findings call for further research on characterization and validation of software
artifacts to support aggregation of results from empirical studies.

Markus Borg, Krzysztof Wnuk, and Dietmar Pfahl, In Proceedings of the 16th
European Conference on Software Maintenance and Reengineering, 2012

112 Industrial comparability of student artifacts in traceability recovery . . .

1 Introduction

To advance both the state-of-art and state-of-practice in software engineering, em-
pirical studies (i.e., surveys, experiments, case studies) have to be conducted [7,
20]. In order to investigate the cause-effect relationships of introducing new meth-
ods, techniques or tools in software engineering, controlled experiments are com-
monly used as the research method. Despite the benefits resulting from the con-
trolled environment that can be created in this fixed research design [19, 24],
controlled experiments are expensive due to the involvement of human subjects.
Therefore, controlled experiments are often conducted with university students -
and not with engineers working in industry.

Several researchers have studied the differences between using students and
practitioners as subjects in software engineering studies, since the inadequate choice
of subjects might be a considerable threat to the validity of the study results [8].
A number of publications report that the differences are only minor, thus using
students is reasonable under certain circumstances [2,8,9,14,23]. Senior students,
representing the next generation of professional software engineers, are relatively
close to the population of interest in studies aiming at emulating professional be-
havior [14]. Further, for relatively small tasks, trained students have been shown
to perform comparably to practitioners in industry [8, 23].

However, the question whether software artifacts (referred to as only ‘artifacts’
in this paper) produced by students should be used in empirical studies has been
less explored. How useful are results from such studies when it comes to general-
izability to industrial contexts? Using student artifacts is often motivated by low
availability of industrial artifacts due to confidentiality issues. A qualification of
the validity of student artifacts is particularly important for the domain of trace-
ability recovery, since student artifacts frequently have been used for tool evalua-
tions [5, 6, 18]. Since several software maintenance tasks (such as change impact
analysis and regression testing) depend on up-to-date traceability information [12],
it is fundamental to understand the nature of experimental artifact sets.

Furthermore, as presented in more detail in Section II, the reported charac-
terization of artifact sets used as input to experiments on traceability recovery is
typically insufficient. According to Jedlitschka et al., inadequate reporting of em-
pirical research commonly impedes integration of study results into a common
body of knowledge [13]. This applies also to traceability recovery research. First,
insufficient reporting makes it harder to assess the validity of results using student
artifacts (even if artifacts have been made available elsewhere). Second, it hinders
aggregation of empirical results, particularly when closed industrial artifact sets
have been used (that never can be made available).

In this paper, we present a study exploring differences between Natural Lan-
guage (NL) artifacts originating from students and practitioners. We conducted a
questionnaire-based survey of researchers with experience in doing experiments
on traceability recovery using Information Retrieval (IR) approaches. The survey

2 Background and Related Work 113

builds upon results from a literature study, which will be published in full detail
elsewhere.

This paper is structured as follows. Section 2 presents background, including
a short overview of related work on IR-based traceability recovery and using stu-
dents in software engineering experiments. Section 3 presents the research design
and how the survey was conducted. In Section 4 we present and analyze our re-
sults in comparison to the literature. Section 5 describes threats to validity. Finally,
Section 6 concludes the paper and discusses future work.

2 Background and Related Work

Using students as subjects in empirical software engineering studies has been con-
sidered as reasonable by several researchers [2, 8, 9, 14, 23]. Kitchenham et al.
claim that students are the next generation of software professionals and that they
are relatively close to the population of interest (practitioners) [14]. Kuzniarz et
al. concluded that students are good subjects under certain circumstances and pro-
poses a classification of the possible types of students used in an experiment [15].
Svahnberg et al. investigated if students understand the way how industry acts in
the context of requirements selection [23].

Höst et al. investigated the incentives and experience of subjects in experi-
ments and proposed a classification scheme in relation to the outcome of an ex-
periment [9]. Although Höst et al. distinguished between artificial artifacts (such
as produced by students during a course) and industrial artifacts as part of the in-
centives in the proposed classification, guidelines on how to assess the two types
of artifacts are not provided in this work. Moreover, none of the mentioned stud-
ies investigate whether artifacts produced by students are comparable to artifacts
produced in industry and how possible discrepancies could be assessed.

Several empirical studies on traceability recovery were conducted using stu-
dent subjects working on artifacts originating from student projects. De Lucia
et al. evaluated the usefulness of supported traceability recovery in a study with
150 students in 17 software development projects at the University of Salerno [6].
They also conducted a controlled experiment with 32 students using student ar-
tifacts [5]. Natt och Dag et al. conducted another controlled experiment in an
academic setting, where 45 students were solving tracing tasks on artifacts pro-
duced by students [18].

During the last decade, several researchers proposed expressing the traceabil-
ity challenge, i.e., identifying related artifacts, as an IR problem [1, 5, 17]. The
approach suggests traceability links based on textual similarity between artifacts,
since text in NL is the common format of information representation in software
development [17]. The underlying assumption is that developers use similar lan-
guage when referring to the same functionality across artifacts.

114 Industrial comparability of student artifacts in traceability recovery . . .

Figure 1: Origin of artifacts used in IR-based traceability recovery evalua-
tions. Artifact sets in darker grey are available at COEST (A=MODIS, B=CM-1,
C=Waterloo, D=EasyClinic).

Artifact set Artifact types Origin / Domain Size (#artifacts)
A MODIS Requirements NASA / 48

Embedded
B CM-1 Requirements NASA / 555

Embedded
C Waterloo Requirements 23 student 23 x ~75

projects
D EasyClinic Requirements Student 160

code, test cases project

Table 1: Publicly available artifact sets at COEST (Oct 23, 2011).

In an ongoing literature review, we have identified 59 publications on IR-based
traceability recovery of NL artifacts. Figure 1 shows the reported origin of artifacts
used in evaluations of traceability recovery tools, classified as industrial artifacts,
open source artifacts, university (artifacts developed in university projects, role of
developers unspecified) or student (deliverables from student projects). Several
publications use artifacts from more than one category, some do not report the
origin of the artifacts used for evaluations. As Figure 1 shows, a majority of the
artifacts originate from an academic environment, i.e. they have been developed
in university or student projects.

The Center of Excellence for Software Traceability (COEST) has collected and
published four artifact sets (see Table 1), that constitute the de-facto benchmarks
for IR-based traceability recovery research. In Figure 1, darker grey color repre-
sents artifact sets available at COEST. Among the 59 identified publications, the
most frequently used artifact sets in traceability recovery studies are EasyClinic
(marked with a letter D, 10 publications), CM-1 (B, 9 publications) and MODIS
(A, 6 publications).

3 Research Design 115

In 2005, Huffman Hayes and Dekhtyar proposed “A framework for comparing
requirements tracing experiments” [10]. The framework focuses on developing,
conducting and analyzing experiments, but also suggests information about arti-
facts and contexts that are worth reporting. They specifically say that the average
size of an artifact is of interest, but that it rarely is specified in research papers.
Furthermore, they propose characterizing the quality of the artifacts and the im-
portance of both the domain and object of study (on a scale from convenience to
safety-critical).

Moreover, even though the framework was published in 2005, our review of
the literature revealed that artifact sets often are presented in rudimentary fashion
in the surveyed papers. The most common way to characterize artifact sets in
the surveyed papers is to report its origins together with a brief description of
the functionality of the related system, its size and the types of artifacts included.
Size is reported as the number of artifacts and the number of traceability links
between them. This style of reporting was applied in 49 of the 59 publications
(83%). Only three publications thoroughly describe the context and process used
when the artifacts were developed. For example, Lormans et al. well describe the
context of their case study at LogicaCMG [16].

Apart from mentioning size and number of links, some publications present
more detail regarding the artifacts. Six publications report descriptive statistics of
individual artifacts, including average size and number of words. Being even more
detailed, Huffman Hayes et al. reported two readability measures to characterize
artifact sets, namely Flesch Reading Ease and Flesch-Kincaid Grade Level [11].
Another approach was proposed by De Lucia et al. [5]. They reported subjectively
assessed quality of different artifact types, in addition to the typical size measures.
As stressed by Jedlitschka et al. proper reporting of traceability recovery studies
is important, since inadequate reporting of empirical research commonly impedes
integration of study results into a common body of knowledge [13].

3 Research Design

This section presents the research questions, the research methodology, and the
data collection procedures used in our study. The study is an exploratory follow-up
to the ongoing literature review mentioned in Section 2. Table 5 presents the re-
search questions governing this study. The research questions investigate whether
the artifacts used in the reported studies are considered comparable to their indus-
trial counterparts by our respondents. Moreover, the questions aim at exploring
how to support assessing the comparability by augmenting the descriptions of the
used artifacts.

For this study, we chose a questionnaire-based survey as the tool to collect em-
pirical data, since it helps reaching a large number of respondents from geograph-
ically diverse locations [21]. Also, a survey provides flexibility and is convenient

116 Industrial comparability of student artifacts in traceability recovery . . .

Research question Aim Example answer
RQ1 When used as ex-

periment inputs,
how comparable are
artifacts produced
by students to their
industrial counterparts?

Understand to what de-
gree respondents, both
in academia and indus-
try, consider industrial
and student artifacts to
be comparable.

“As a rule, the ed-
ucational artifacts
are simpler.”

RQ2 How are artifacts
validated before be-
ing used as input to
experiments?

Survey if and how stu-
dent artifacts are val-
idated before experi-
ments are conducted.

“Our validation was
based on expert
opinion.”

RQ3 Is the typically reported
characterization of arti-
fact sets sufficient?

Do respondents, both in
academia and industry,
consider that the way
natural language arti-
facts are described is
good enough.

“I would argue that
it should also be
characterized by the
process by it was
developed.”

RQ4 How could artifacts be
described to better sup-
port aggregation of em-
pirical results?

Explore whether there
are ways to improve the
way natural language
artifacts are presented.

“The artifacts
should be com-
bined with a task
that is of principal
cognitive nature.”

RQ5 How could the dif-
ference between arti-
facts originating from
industrial and student
projects be measured?

Investigate if there
are any measures that
would be particularly
suitable to compare
industrial and student
artifacts.

“The main differ-
ence is the ver-
bosity.”

Table 2: Research questions of the study. All questions are related to the context
of traceability recovery studies.

3 Research Design 117

to both researchers and participants [7]. The details in relation to survey design
and data collection are outlined in the section that follows.

3.1 Survey design

Since the review of literature resulted in a substantial body of knowledge on IR-
based approaches to traceability recovery, we decided to use the authors of the
identified publications as our sample population. Other methods to recover trace-
ability have been proposed, including data mining [22] and ontology-based re-
covery [25], however the majority of traceability recovery publications apply IR
techniques. Furthermore, it is well-known that IR is sensitive to the input data
used in evaluations [4].

The primary aim of this study was to explore researchers’ views on the compa-
rability between NL artifacts produced by students and practitioners. We restricted
the sample to authors with documented experience, i.e., published peer-reviewed
research articles, of using either student or industrial artifact sets in IR-based trace-
ability recovery studies. Consequently, we left out authors who exclusively used
artifacts from the open source domain.

The questionnaire was constructed through a brainstorming session with the
authors, using the literature review as input. To adapt the questions to the respon-
dents regarding the origin of the artifacts used, three versions of the questionnaire
were created:

• STUD. A version for authors of published studies on traceability recovery
using student artifacts. This version was most comprehensive since it con-
tained more questions. Thus it was sent to authors, if at least one publication
using student artifacts had been identified.

• UNIV. A version for authors using artifacts originating from university pro-
jects. This version included a clarifying question on whether the artifacts
were developed by students or not, followed by the same detailed questions
about student artifacts as in version STUD. This question was used to filter
out answers related to student artifacts.

• IND. A subset of STUD, sent to authors who only had published traceability
recovery studies using industrial artifacts.

We piloted the questionnaire using five senior software engineering researchers,
including a native English speaker. The three versions of the questionnaire were
then refined, the final versions are presented in the Appendix. The mapping be-
tween research questions and questions in the questionnaire is presented in Table 3.

118 Industrial comparability of student artifacts in traceability recovery . . .

Research questions Questionnaire questions
RQ1 QQ1, QQ4, QQ6
RQ2 QQ4, QQ5
RQ3 QQ2
RQ4 QQ3
RQ5 QQ4, QQ7

Table 3: Mapping between research questions and the questionnaire. QQ4 was
used as a filter.

Figure 2: Survey response rate.

3.2 Survey execution and analysis

The questionnaires were distributed via email, sent to the set of authors described
in Section 3.1. As Figure 2 depicts, in total 90 authors were identified. We were
able to send emails that appeared to reach 75 (83%) of them. Several mails re-
turned with no found recipient and in some cases no contact information was avail-
able. In those few cases we tried contacting current colleagues; nevertheless there
remained 15 authors (17%) we did not manage to send emails successfully. The
mails were sent between September 27 and October 12, 2011. After one week,
reminders were sent to respondents who had not yet answered the survey.

24 authors (32%) responded to our emails; however four responses did not
contain answers to the survey questions. Among them, two academics referred to
other colleagues more suitable to answer the questionnaire (all however already
included in our sample) and two practitioners claimed to be too disconnected from
research to be able to answer with a reasonable effort. Thus, the final set of com-
plete answers included 20 returned questionnaires. This yielded a response rate of
27%.

The survey answers were analyzed by descriptive statistics and qualitative cat-
egorization of the answers. The results and the analysis are presented in Section 4.

4 Results and Analysis 119

Figure 3: Current main affiliation of respondents.

STUD UNIV IND
Academics 8 2 2
Practitioners 3 0 5
Total 11 2 7

Table 4: Mapping between research questions and the questionnaire. QQ4 was
used as a filter.

4 Results and Analysis

In this section, the results from the survey of authors are presented and discussed.

4.1 Demographics and sample characterization

For the 20 authors of publications on IR-based traceability recovery who answered
the questionnaire, Figure 3 depicts the distribution of practitioners and academics
based on current main affiliation. 40% of the respondents are currently working in
industry. Our respondents represent all combinations of academics and practition-
ers from Europe, North America and Asia. Table 4 presents how many answers we
received per questionnaire version. Both respondents answering UNIV reported
that students had developed the artifacts in their university projects (QQ4), thus at
least twelve of the respondents had experience with student artifacts in traceability
recovery experiments.

4.2 Representativeness of student artifacts (RQ1)

In this subsection, we present the view of our respondents on the representative-
ness of software artifacts produced by students. In this case, we investigated if
our respondents agree with the statement that software artifacts produced by stu-
dents are representative of software artifacts produced in industry (see QQ1, and
QQ6 filtered by QQ4 in the Appendix). QQ6 overlaps QQ1 by targeting specific

120 Industrial comparability of student artifacts in traceability recovery . . .

publications. To preserve the anonymity of the respondents, the analyses of the
questions are reported together.

Figure 4 shows survey answers to the statement “Software artifacts produced
by students (used as input in traceability experiments) are representative of soft-
ware artifacts produced in industry” (QQ1). Black color represents answers from
practitioners, grey color answers from academics. Half of the respondents fully or
partly disagree to the statement. Academics answered this question with a higher
degree of consensus than practitioners. No respondent totally agreed to the state-
ment.

Several respondents decided to comment on the comparability of student ar-
tifacts. Two of them, both practitioners answering QQ1 with ‘4’, pointed out
that trained students actually might produce NL artifacts of higher quality than
engineers in industry. One of them clarified: “In industry, there are a lot of un-
trained ‘professionals’ who, due to many reasons including time constraints, pro-
duce ‘flawed’ artifacts”. Another respondent answered QQ1 with ‘2’, but stressed
that certain student projects could be comparable to industrial counterparts, for in-
stance in the domain of web applications. On the other hand, he explained, would
they not at all be comparable for domains with many process requirements such
as finance and aviation. Finally, one respondent mentioned the wider diversity of
industrial artifacts, compared to artifacts produced by students: “I’ve seen ridicu-
lously short requirements in industry (5 words only) and very long ones of multiple
paragraphs. Students would be unlikely to create such monstrous requirements!”
and also added “Student datasets are MUCH MUCH smaller (perhaps 50-100 ar-
tifacts compared to several thousands)”.

Three of our respondents mentioned the importance of understanding the in-
centives of the developers of the artifacts. This result confirms the findings by Höst
et al. [9]. The scope and lifetime of student artifacts are likely to be much different
for industrial counterparts. Another respondent (academic) supported this claim
and also stressed the importance of the development context: “The vast majority
[of student artifacts] are developed for pedagogical reasons - not for practical rea-
sons. That is, the objective is not to build production code, but to teach students.”
According to one respondent (practitioner), both incentives and development con-
texts are playing an important role also in industry: “Industrial artifacts are created
and evolved in a tension between regulations, pressing schedule and lacking mo-
tivation /—/ some artifacts are created because mandated by regulations, but no
one ever reads them again, other artifacts are part of contracts and are, therefore,
carefully formulated and looked through by company lawyers etc.”

These results are not surprising, and lead to the conclusion that NL artifacts
produced by students are understood to be less complex than their industrial coun-
terparts. However, put in the light of related work outlined in Section 2, the results
can lead to interesting interpretations. As presented in Figure 1, experiments on
traceability recovery frequently use artifacts developed by students as input. Also,
as presented in Table 1, two of four publicly available artifact sets at COEST orig-

4 Results and Analysis 121

Figure 4: Are student artifacts representative to industrial counterparts? (1 =
totally disagree, 5 = totally agree) (QQ1)

inate from student projects. Nevertheless, our respondents mostly disagreed that
these artifacts are representative of NL artifacts produced in industry.

4.3 Validation of experimental artifacts (RQ2)

In this subsection, we present the results from QQ5 which is related to research
question RQ2. QQ5, filtered by QQ4, investigates whether student artifacts, when
used in traceability recovery experiments, were validated for industrial represen-
tativeness.

We received answers to QQ5 from 13 respondents (questionnaire versions
STUD and UNIV). The distribution of answers is depicted in Figure 4. Among
the five respondents who validated student artifacts being used as experimental in-
put, three respondents focused on robustness of the experiment output (of the ex-
periment in which the artifacts were used as input). The robustness was assessed
by comparing experimental results to experiments using industrial artifacts. As
another approach to validation, two respondents primarily used expert opinion to
evaluate the industrial comparability of the student artifacts. Finally, three respon-
dents answered that they did not conduct any explicit validation of the industrial
comparability at all.

Neither answering ‘yes’ nor ‘no’ to QQ5, five respondents discussed the ques-
tion in more general terms. Two of them stressed the importance of conducting
traceability recovery experiments using realistic tasks. One respondent considered
it significant to identify in which industrial scenario the student artifacts would be
representative and said “The same student artifacts can be very ‘industrial’ if we
think at a hi-tech startup company, and totally ‘unindustrial’ if we think at Boe-

122 Industrial comparability of student artifacts in traceability recovery . . .

Figure 5: Were the student artifacts validated for industrial comparability? (QQ5)

ing”. Another respondent claimed that they had focused on creating an as general
tracing task as possible.

Only a minority of researchers who used student artifacts to evaluate IR-based
traceability recovery explicitly answered with ‘yes’ to this question, suggesting
that it is no widespread common practice. Considering the questionable compara-
bility of artifacts produced by students, confirmed by QQ1, this finding is remark-
able. Simply assuming that there is an industrial context where the artifacts would
be representative might not be enough. The validation that actually takes place
appears to be ad-hoc, thus some form of supporting guidelines would be helpful.

4.4 Adequacy of artifact characterization (RQ3)
In this subsection, we present the results from asking our respondents whether the
typical way of characterizing artifacts used in experiments (mainly size and num-
ber of correct traceability links) is sufficient. In Figure 6, we present answers to
QQ2 which is related to RQ3. Black color represents practitioners, grey color aca-
demics. Two respondents (both academics) considered this to be a fully sufficient
characterization. The distribution of the rest of the answers, both for practitioners
and academics, shows mixed opinions.

Respondents answering with ‘1’ (totally insufficient) to QQ2 motivated their
answers by claiming: simple link existence being too rudimentary, complexity
of artifact sets must be presented and the meaning of traceability links should be
clarified. On the other hand, seven respondents answered with ‘4’ or ‘5’ (5=fully
sufficient). Their motivations included: tracing effort is most importantly propor-
tional to the size of the artifact set and experiments based on textual similarities
are reliable. However, two respondents answering with ‘4’ also stated that infor-
mation density and language are important factors and that the properties of the
traceability links should not be missed.

More than 50% of all answers to QQ2 were marking options ‘1’, ‘2’ or ‘3’.
Thus a majority of the respondents answering this question either disagree with

4 Results and Analysis 123

Figure 6: Is size and traceability link number sufficient to characterize an artifact
set? (1 = totally insufficient, 5 = fully sufficient) (QQ2)

the question statement or have a neutral opinion. This result is contrasting with
published literature, in which we found that characterization of input artifacts in
traceability experiments is generally brief (see Section 2). There may be two pos-
sible explanations of this misalignment. Either the authors don’t see the need of
providing more descriptions of the used artifact sets (this may be the remaining
minority of the answers), or the complementary metrics and important characteri-
zation factors are unknown. We believe that the result supports the second expla-
nation as only limited work including explicit guidance has been published to date.
Two respondents answered with ‘4’ without motivating their choices. To conclude,
since our review of literature found that the characterization of input artifacts in
traceability experiments is generally brief (see Section 2), this result justifies our
research efforts and calls for further explanatory research.

Our results indicate that authors are aware that there are other significant fea-
tures of artifact sets than the typically reported size and total number of links (see
also results in Section IV.E). Apparently, there seems to be a gap between what
is considered a preferred characterization and what actually is reported in publi-
cations. The gap could have been partly mitigated if the research community to a
higher extent had accepted “A framework for requirements tracing experiments”,
since it partly covers artifact set descriptions [10]. However, the results also indi-
cate that parts of the research community think that the basic reporting is a good
start.

124 Industrial comparability of student artifacts in traceability recovery . . .

4.5 Improved characterization (RQ4)
In this section we provide results for the RQ4, exploring ways to improve the
way NL artifacts are reported, addressed by QQ3. Eleven respondents, six aca-
demics and five practitioners, suggested explicit enhancements to artifact set char-
acterization, other respondents answered more vaguely. Those suggestions are
collected and organized below into the three classes Contextual (describes the en-
vironment of the artifact development), Link-related (describes properties of trace-
ability links) and Artifact-centric (describes the artifacts). In total, 23 aspects to
additionally characterize artifacts were suggested.

Contextual aspects:

• Domain from which the artifacts originate

• Process used when artifact was developed (agile/spiral/waterfall etc., ver-
sioning, safety regulations)

• When in the product lifecycle the artifacts were developed

• Maturity/evolution of the artifacts (years in operation, #reviews, #updates)

• Role and personality of the developer of the artifacts

• Number of stakeholders/users of the artifacts

• Tasks that are related to the artifact set

Link-related aspects:

• Meaning of a traceability link (depends on, satisfies, based on, verifies etc.)

• Typical usage of traceability links

• Values and costs of traceability links (Value of correct link, cost of estab-
lishing link, establishing false link, missing link)

• Person who created the golden standard of links (practitioners, researchers,
students, and their incentives)

• Quality of the golden standard of traceability links

• Link density

• Distribution of inbound/outbound links

4 Results and Analysis 125

Artifact-centric aspects:

• Size of individual artifacts

• Language (Natural, formal)

• Complexity of artifacts

• Verbosity of artifacts

• Artifact redundancy/overlap

• Artifact granularity (Full document/chapter/page/ section etc.)

• Quality/maturity of artifact (#defects reported, draft/reviewed/released)

• Structure/format of artifact (structured/semi-structured/unstructured infor-
mation)

• Information density

As our survey shows, several authors have ideas about additional artifact set
features that would be meaningful to report. Thus most authors both are of the
opinion that artifact sets should be better characterized, and also have suggestions
for how it could be done. Still, despite also being stressed in Huffman Hayes and
Dekhtyars framework from 2005, it has not reached the publications. However, we
collected many requests for “what” to describe, but little input on the “how” (i.e.
‘what’ = state complexity / ‘how’ = how to measure complexity?). This discrep-
ancy can be partly responsible for the insufficient artifact set characterizations.
A collection of how different aspects might be measured, tailored for reporting
artifact sets used in traceability recovery studies, appears to be a desirable compo-
sition.

One might argue that several of the suggested aspects are not applicable to stu-
dent projects. This is in line with both what Höst et al. [9] and our respondents
stated, purpose and lifecycle of student artifacts are rarely representative for indus-
trial settings. Thus, aspects such as maturity, evolution and stakeholders usually
are unfeasible to measure. Again, this indicates that artifacts originating from stu-
dent projects might be too trivial, resulting in little more empirical evidence than
proofs-of-concept.

4.6 Measuring student/industrial artifacts (RQ5)

In this section, we present results in relation to RQ5, concerning the respondents’
opinions about how differences between NL artifacts developed by students and
industrial practitioners can be assessed. QQ7, filtered by QQ4, provides answers
to this question.

126 Industrial comparability of student artifacts in traceability recovery . . .

A majority of the respondents of STUD and UNIV commented on the chal-
lenge of measuring differences between artifacts originating from industrial and
student projects. Only four respondents explicitly mentioned suitable aspects to
investigate. Two of them suggested looking for differences in quality, such as
maintainability, extensibility and ambiguities. One respondent stated that the main
differences are related to complexity (students use more trivial terminology). On
the other hand, one academic respondent instead claimed that “In fact artifact writ-
ten by students are undoubtedly the most verbose and better argued since their
evaluation certainly depends on the quality of the documentation”. Yet another
respondent, a practitioner, answered that the differences are minor.

Notably, one respondent to QQ7 warned about trying to measure differences
among artifacts, motivated by the great diversity in industry. According to the re-
spondent, there is no such thing as an average artifact. “What is commonly called
‘requirements’ in industry can easily be a 1-page business plan or a 15-volumes
requirements specification of the International Space Station”, the respondent ex-
plained.

To summarize, the results achieved for QQ7 confirm our expectations that mea-
suring the comparability is indeed a challenging task. Obviously, there is no simple
measure to aim for. This is also supported by QQ5, the few validations of student
artifacts that the respondents reported utilized only expert opinion or replications
with industrial artifacts.

5 Threats to Validity

This section provides a discussion of the threats to validity in relation to research
design and data collection phases as well as in relation to results from the study.
The discussion of the threats to validity is based on the classification proposed by
Wohlin et al. [24], focusing on threats to construct, internal and external validity.

Construct validity is concerned with the relation between the observations dur-
ing the study and the theories in which the research is grounded. The exact for-
mulations of the questions in the used questionnaire are crucial in survey research
as misunderstanding or misinterpreting the questions can happen. We alleviated
this threat to construct validity by revising the questionnaire by an independent
reviewer (except the authors of the paper who also revised the questions) who is
a native English speaker and writer. To further minimize threats to construct va-
lidity, a pilot study was conducted on five senior researchers in software engineer-
ing. Still, the subjectivity of the data provided by our respondents can negatively
influence the interpretability of the results. Due to a relatively low number of
data points, the mono-operational bias threat to construct validity is not fully ad-
dressed. The anonymity of respondents was not guaranteed as the survey was sent
via email; this leaves the evaluation apprehension threat unaddressed. Since the
research is exploratory, the experimenter expectancies threat to construct validity

6 Discussion and Concluding Remarks 127

is minimized. Finally, the literature survey conducted as the first step of the study
helps to address the mono-method threat to construct validity, which however still
requires further research to fully alleviate it.

Internal validity concerns confounding factors that can affect the causal re-
lationship between the treatment and the outcome. By performing the review of
the questionnaire questions, the instrumentation threat to internal validity was ad-
dressed. On the other hand, the selection bias can still threaten the internal validity
as the respondents were not randomly selected. We have measured the time needed
to answer the survey in the pilot study; therefore the maturation threat to internal
validity is alleviated. Finally, the selection threat to internal validity should be
mentioned here since respondents of the survey were volunteers who, according to
Wohlin et al., are not representative for the whole populations [24].

External validity concerns the ability to generalize the results of the study to
industrial practice. We have selected a survey research method in order to target
more potential respondents from various countries, companies and research groups
and possibly generate more results [7]. Still, the received number of responses is
low and thus not a strong basis for extensive generalizations of our findings. How-
ever, the external validity of the results achieved is acceptable when considering
the exploratory nature of this study.

6 Discussion and Concluding Remarks

We have conducted an exploratory survey of the comparability of artifacts used in
IR-based traceability recovery experiments, originating from industrial and student
projects. Our sample of authors of related publications confirms that artifacts de-
veloped by students are only partially comparable to industrial counterparts. Nev-
ertheless, it commonly happens that student artifacts used as input to experimental
research are not validated with regards to their industrial representativeness.

Our results show that, typically, artifact sets are only rudimentarily described,
despite the experimental framework proposed by Huffman Hayes and Dekhtyar in
2005. We found that a majority of authors of traceability recovery publications
think that artifact sets are inadequately characterized. Interestingly, a majority of
the authors explicitly suggested features of artifact sets they would prefer to see re-
ported. Suggestions include general aspects such as contextual information during
artifact development and artifact-centric measures. Also, domain-specific (link-
related) aspects were proposed, specifically applicable to traceability recovery.

The explanatory part of this study, should be followed by an in-depth study
validating the proposals made by the respondents and aim at making the proposals
more operational. This in turn could lead to characterization schemes that help as-
sess the generalizability of study results using student artifacts. The results could
complement Huffman Hayes and Dekhtyars framework [10] or be used as an em-
pirical foundation of a future revision. Moreover, studies similar to this one should

128 Industrial comparability of student artifacts in traceability recovery . . .

Figure 7: Risks involved in different combinations of subjects and artifacts in
traceability recovery studies.

be conducted for other application domains where student artifacts frequently are
used as input to experimental software engineering, such as regression testing, cost
estimation and model-driven development.

Clearly, researchers need to be careful when designing traceability recovery
studies. Previous research has shown that using students as experimental subjects
is reasonable [2, 8, 9, 14, 23]. However, according to our survey, the validity of us-
ing student artifacts is uncertain. Unfortunately, industrial artifacts are hard to get
access to. Furthermore, even with access to industrial artifacts, researchers might
not be permitted to show them to students. And even with that permission, stu-
dents might lack the domain knowledge necessary to be able to work with them.
Figure 7 summarizes general risks involved in different combinations of subjects
and artifacts in traceability recovery studies. The most realistic option, conduct-
ing studies on practitioners working with industrial artifacts, is unfortunately often
hard to accomplish with a large enough number of subjects. Instead, several pre-
vious studies used students solving tasks involving industrial artifacts [3, 12] or
artifacts developed in student projects [5, 6, 18]. However, these two experimental
setups introduce threats either related to construct validity or external validity. The
last option, conducting studies with practitioners working with student artifacts,
has not been attempted. We plan to further explore the possible combinations in
future work.

Acknowledgement

Thanks go to the respondents of the survey. This work was funded by the Indus-
trial Excellence Center EASE – Embedded Applications Software Engineering1.
Special thanks go to David Callele for excellent language-related comments.

1http://ease.cs.lth.se

6 Discussion and Concluding Remarks 129

Appendix

Questionnaire Used in versions
QQ1 Would you agree with the statement: “Software artifacts produced by

students (used as input in traceability experiments) are representative of
software artifacts produced in industry?”

STUD / UNIV /
IND

(Please select one number. 1 = totally disagree, 5 = totally agree)
1—2—3—4—5

QQ2 Typically, datasets containing software artifacts used as input to trace-
ability experiments are characterized by size and number of correct
traceability links. Do you consider this characterization as sufficient?
Please explain why you hold this opinion. (Please select one number.

STUD / UNIV /
IND

(Please select one number. 1 = totally disagree, 5 = totally agree)
1—2—3—4—5

QQ3 What would be a desirable characterization of software artifacts to en-
able comparison (for example between software artifacts developed by
students and industrial practitioners)?

STUD / UNIV /
IND

QQ4 In your experiment, you used software artifacts developed in the univer-
sity project [NAME OF PROJECT]. Were the software artifacts devel-
oped by students?

UNIV

QQ5 Did you evaluate whether the software artifacts used in your study were
representative of industrial artifacts? If you did, how did you perform
this evaluation?

STUD / UNIV

QQ6 How representative were the software artifacts you used in your exper-
iment of industrial software artifacts? What was the same? What was
different?

STUD / UNIV

QQ7 How would you measure the difference between software artifacts de-
veloped by students and software artifacts developed by industrial prac-
titioners?

STUD / UNIV

Table 5: Research questions of the study. All questions are related to the context
of traceability recovery studies.

130 Industrial comparability of student artifacts in traceability recovery . . .

Bibliography
[1] G. Antoniol, G. Canfora, G. Casazza, A. De Lucia, and E. Merlo. Recover-

ing traceability links between code and documentation. In Transactions on
Software Engineering, volume 28, pages 970–983, 2002.

[2] P. Berander. Using students as subjects in requirements prioritization. In
Prodeedings of the International Symposium on Empirical Software Engi-
neering, pages 167–176, August 2004.

[3] M. Borg and D. Pfahl. Do better IR tools improve the accuracy of engi-
neers’ traceability recovery? In Proceedings of the International Workshop
on Machine Learning Technologies in Software Engineering, pages 27–34,
2011.

[4] C. Borgman. From Gutenberg to the global information infrastructure: Ac-
cess to information in the networked world. MIT Press, 2003.

[5] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Recovering traceability
links in software artifact management systems using information retrieval
methods. Transactions on Software Engineering and Methodology, 16(4),
2007.

[6] A. De Lucia, R. Oliveto, and G. Tortora. Assessing IR-based traceability
recovery tools through controlled experiments. Empirical Software Engi-
neering, 14(1):57–92, 2009.

[7] S. Easterbrook, J. Singer, M. Storey, and D. Damian. Selecting empiri-
cal methods for software engineering research. In F. Shull, J. Singer, and
D. Sjöberg, editors, Guide to Advanced Empirical Software Engineering,
pages 285–311. Springer, 2008.

[8] M Höst, B. Regnell, and C. Wohlin. Using students as subjects: A com-
parative study of students and professionals in lead-time impact assessment.
Empirical Software Engineering, 5(3):201–214, 2000.

[9] M. Höst, C. Wohlin, and T. Thelin. Experimental context classification: In-
centives and experience of subjects. In Proceedings of the 27th international
conference on Software engineering, pages 470–478, 2005.

[10] J. Huffman Hayes and A. Dekhtyar. A framework for comparing require-
ments tracing experiments. Interational Journal of Software Engineering
and Knowledge Engineering, 15(5):751–781, 2005.

[11] J. Huffman Hayes, A. Dekhtyar, and S. Sundaram. Advancing candidate link
generation for requirements tracing: The study of methods. Transactions on
Software Engineering, 32(1):4–19, 2006.

Bibliography 131

[12] J. Huffman Hayes, A. Dekhtyar, S. Sundaram, A. Holbrook, S. Vadlamudi,
and A. April. REquirements TRacing on target (RETRO): improving soft-
ware maintenance through traceability recovery. Innovations in Systems and
Software Engineering, 3(3):193–202, 2007.

[13] A. Jedlitschka, M. Ciolkowski, and D. Pfahl. Reporting experiments in soft-
ware engineering. In F. Shull, J. Singer, and D. Sjöberg, editors, Guide to
Advanced Empirical Software Engineering, pages 201–228. Springer, Lon-
don, 2008.

[14] B. Kitchenham, S. Pfleeger, L Pickard, P. Jones, D. Hoaglin, K. El Emam,
and J. Rosenberg. Preliminary guidelines for empirical research in soft-
ware engineering. Transactions on Software Engineering and Methodology,
28(8):721–734, 2002.

[15] L. Kuzniarz, M. Staron, and C. Wohlin. Students as study subjects in soft-
ware engineering experimentation. In Proceedings of the 3rd Conference on
Software Engineering Research and Practise in Sweden, 2003.

[16] M. Lormans, H-G. Gross, A. van Deursen, R. van Solingen, and A. Ste-
houwer. Monitoring requirements coverage using reconstructed views: An
industrial case study. In Procedings of the 13th Working Conference on Re-
verse Engineering, pages 275–284, 2006.

[17] A. Marcus and J. Maletic. Recovering documentation-to-source-code trace-
ability links using latent semantic indexing. In Proceedings of the Interna-
tional Conference on Software Engineering, pages 125–135, 2003.

[18] J. Natt och Dag, T. Thelin, and B. Regnell. An experiment on linguistic tool
support for consolidation of requirements from multiple sources in market-
driven product development. Empirical Software Engineering, 11(2):303–
329, 2006.

[19] B. Robson. Real world research. Blackwell, 2nd edition, 2002.

[20] P. Runeson and M. Höst. Guidelines for conducting and reporting case
study research in software engineering. Empirical Software Engineering,
14(2):131–164, 2009.

[21] J. Singer, S. Sim, and T. Lethbridge. Software engineering data collection
for field studies. In F. Shull, J. Singer, and D. Sjöberg, editors, Guide to
Advanced Empirical Software Engineering, pages 9–34. Springer, 2008.

[22] G. Spanoudakis, A. d’Avila-Garcez, and A. Zisman. Revising rules to cap-
ture requirements traceability relations: A machine learning approach. In
Proceedings of the 15th International Conference in Software Engineering
and Knowledge Engineering, 2003.

132 Industrial comparability of student artifacts in traceability recovery . . .

[23] M. Svahnberg, A. Aurum, and C. Wohlin. Using students as subjects: An
empirical evaluation. In Proceedings of the 2nd International Symposium on
Empirical Software Engineering and Measurement, pages 288–290, 2008.

[24] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in software engineering: An introduction. Kluwer Aca-
demic Publications, 1st edition, 1999.

[25] Y. Zhang, R. Witte, J. Rilling, and V. Haarslev. Ontological approach for
the semantic recovery of traceability links between software artefacts. IET
Software, 2(3):185–203, 2008.

PAPER III

EVALUATION OF
TRACEABILITY RECOVERY IN

CONTEXT: A TAXONOMY
FOR INFORMATION
RETRIEVAL TOOLS

Abstract

Background: Development of complex, software intensive systems generates large
amounts of information. Several researchers have developed tools implementing
information retrieval (IR) approaches to suggest traceability links among artifacts.
Aim: We explore the consequences of the fact that a majority of the evaluations
of such tools have been focused on benchmarking of mere tool output. Method:
To illustrate this issue, we have adapted a framework of general IR evaluations to
a context taxonomy specifically for IR-based traceability recovery. Furthermore,
we evaluate a previously proposed experimental framework by conducting a study
using two publicly available tools on two datasets originating from development
of embedded software systems. Results: Our study shows that even though both
datasets contain software artifacts from embedded development, the characteris-
tics of the two datasets differ considerably, and consequently the traceability out-
comes. Conclusions: To enable replications and secondary studies, we suggest
that datasets should be thoroughly characterized in future studies on traceability
recovery, especially when they can not be disclosed. Also, while we conclude that
the experimental framework provides useful support, we argue that our proposed
context taxonomy is a useful complement. Finally, we discuss how empirical ev-
idence of the feasibility of IR-based traceability recovery can be strengthened in
future research.

134 Evaluation of Traceability Recovery in Context: A Taxonomy for . . .

Markus Borg, Per Runeson, and Lina Brodén, In Proceedings of the 16th Interna-
tional Conference on Evaluation and Assessment in Software Engineering, 2012

1 Introduction

Large-scale software development generates large amounts of information. En-
abling software engineers to efficiently navigate the document space of the de-
velopment project is crucial. One typical way to structure the information within
the software engineering industry is to maintain traceability, defined as “the abil-
ity to describe and follow the life of a requirement, in both a forward and back-
ward direction” [18]. This is widely recognized as an important factor for efficient
software engineering as it supports activities such as verification, change impact
analysis, program comprehension, and software reuse [2].

Several researchers have proposed using information retrieval (IR) techniques
to support maintenance of traceability information [10, 23, 28, 29]. Traceability
can be maintained between any software artifacts, i.e., any piece of information
produced and maintained during software development. Textual content in natural
language (NL) is the common form of information representation in software en-
gineering [31]. Tools implementing IR-based traceability recovery suggest trace-
ability links based on textual similarities, for example between requirements and
test cases. However, about 50% of the evaluations have been conducted using one
of the four datasets available at the Center of Excellence for Software Traceability
(COEST)1 [6]. Consequently, especially the CM-1 and EasyClinic datasets have
turned into de-facto benchmarks of IR-based traceability recovery, further ampli-
fied by “traceability challenges” issued by the Traceability in Emerging Forms of
Software Engineering (TEFSE) workshop series.

Developing a repository of benchmarks for traceability research is a central
part of COEST’s vision, and thus has been discussed in several publications [4, 7,
12, 13]. As another contribution supporting benchmarking efforts and evaluations
in general, Huffman Hayes et al. proposed an experimental framework for require-
ments tracing [21]. It is known that benchmarks can advance tool and technology
development, which for instance has been the case for the Text REtrieval Confer-
ence (TREC), driving large-scale evaluations of IR methodologies [42]. On the
other hand, benchmarking introduces a risk of over-engineering IR techniques on
specific datasets. TREC enables generalizability by providing very large amounts
of texts, but is still limited to certain domains such as news articles. Whether it
is possible for the research community on traceability in software engineering to
collect and distribute a similarly large dataset is an open question. Runeson et al.
have discussed the meaning of benchmarks, however in relation to software test-
ing [39]. They stress that researchers should first consider what the goal of the
benchmarking is, and that a benchmark is a selected case that should be analyzed

1COEST, http://www.coest.org/

2 Background and Related work 135

in its specific context. Consequently, as a benchmark is not an “average situation”,
they advocate that benchmarks should be studied with a qualitative focus rather
than with the intention to reach statistical generalizability.

To enable categorization of evaluations of IR-based traceability recovery, in-
cluding benchmarking studies, we adapted Ingwersen and Järvelins framework
of IR evaluation contexts [24] into a taxonomy of IR-based traceability recovery
evaluations. Within this context taxonomy, described in detail in Section 2, typ-
ical benchmarking studies belong to the innermost context. In the opposite end
of the context taxonomy, the outermost evaluation context, industrial case studies
reside. Furthermore, we add a dimension of study environment to the context tax-
onomy, to better reflect the external validity of the studied project, and its software
artifacts.

To illustrate the context taxonomy with an example, and to evaluate the exper-
imental framework proposed by Huffman Hayes et al. [21], we have conducted
a quasi-experiment using the tools RETRO [23] and ReqSimile [35], using two
sets of proprietary software artifacts as input. This constitutes a replication of ear-
lier evaluations of RETRO [14,44], as well as an extension considering both tools
and input data. Also, we describe how it would be possible to extend this study be-
yond the innermost level of the context taxonomy, i.e., moving beyond technology-
oriented evaluation contexts. Finally, we discuss concrete ways to strengthen the
empirical evidence of IR-based traceability tools in relation to findings and sug-
gestions by Falessi et al. [16], Runeson et al. [39], and Borg et al. [5, 6].

The paper is organized as follows. Section 2 gives a short overview of related
work on IR-based traceability recovery in software engineering, while Section 3
describes our context taxonomy. Section 4 presents the research methodology,
and the frameworks our experimentation follows. Section 4 presents the results
from the experiments. In Section 6 we discuss the implications of our results, the
validity threats of our study, and evaluations of IR-based traceability recovery in
general. Finally, Section 7 presents conclusions and suggests directions of future
research.

2 Background and Related work

During the last decade, several researchers proposed expressing traceability re-
covery as an IR problem. Proposed tools aim to support software engineers by
presenting candidate traceability links ranked by textual similarities. The query is
typically the textual content of a software artifact you want to link to other arti-
facts. Items in the search result can be either relevant or irrelevant, i.e., correct or
incorrect traceability links are suggested.

In 2000, Antoniol et al. did pioneering work on traceability recovery when
they used the standard Vector Space Model (VSM) [40] and the binary indepen-
dence model [37] to suggest links between source code and documentation in

136 Evaluation of Traceability Recovery in Context: A Taxonomy for . . .

natural language [1]. Marcus and Maletic introduced Latent Semantic Indexing
(LSI) [11] to recover traceability in 2003 [31]. Common to those papers is that
they have a technical focus and do not go beyond reporting precision-recall graphs.

Other studies reported evaluations of traceability recovery tools using humans.
Huffman Hayes et al. developed a traceability recovery tool named RETRO and
evaluated it using 30 student subjects [23]. The students were divided into two
groups, one working with RETRO and the other working manually. Students
working with the tool finished a requirements tracing task faster and with a higher
recall than the manual group, the precision however was lower. Natt och Dag
et al. developed the IR-based tool ReqSimile to support market-driven require-
ments engineering and evaluated it in a controlled experiment with 23 student sub-
jects [35]. They reported that subjects supported by ReqSimile completed trace-
ability related tasks faster than subjects working without any tool support. De
Lucia et al. conducted a controlled experiment with 32 students on the usefulness
of tool-supported traceability recovery [9] and also observed 150 students in 17
software development projects [10]. In line with previous findings, they found
that subjects using their tool completed a task, related to tracing various software
artifacts, faster and more accurately than subjects working manually. They con-
cluded that letting students use IR-based tool support is helpful when maintenance
of traceability information is a process requirement.

Several previous publications have contributed to advancing the research on
IR-based traceability recovery, either by providing methodological advice, or by
mapping previous research. Huffman Hayes and Dekhtyar published a framework
intended to advance reporting and conducting of empirical experiments on trace-
ability recovery [21]. However, the framework has unfortunately not been applied
frequently in previous evaluations, and the quality of reporting varies [6]. Another
publication that offers structure to IR-based traceability recovery, also by Huff-
man Hayes et al., distinguishes between studies of methods (are the tools capable
of providing accurate results fast?) and studies of human analysts (how do humans
use the tool output?) [22]. These categories are in line with experimental guide-
lines by Wohlin et al. [48], where the types of experiments in software engineering
are referred to as either technology-oriented or human-oriented. Moreover, Huff-
man Hayes et al. propose assessing the accuracy of tool output, wrt. precision
and recall, according to quality intervals named Acceptable, Good, and Excellent,
based on the first author’s practical experience of requirements tracing. Also dis-
cussing evaluation methodology, a recent publication by Falessi et al. proposes
seven empirical principles for evaluating the performance of IR techniques [16].
Their work covers study design, statistical guidelines, and interpretation of results.
Also, they present implementation strategies for the seven principles, and exem-
plify them in a study on industrial software artifacts originating from an Italian
company.

Going beyond the simplistic measures of precision and recall is necessary to
evolve IR tools [27], thus measures such as Mean Average Precision (MAP) [30],

3 Derivation of Context Taxonomy 137

Figure 1: The Integrated Cognitive Research Framework by Ingwersen and
Järvelin [24], a framework for IR evaluations in context.

and Discounted Cumulative Gain (DCG) [26] have been proposed. To address
this matter in the specific domain of IR-based traceability, a number of so called
secondary measures have been proposed. Sundaram et al. developed DiffAR,
DiffMR, Lag, and Selectivity [45] to assess the quality of generated candidate links.

In the general field of IR research, Ingwersen and Järvelin argue that IR is al-
ways evaluated in a context [24]. Their work extends the standard methodology of
IR evaluation, the Laboratory Model of IR Evaluation developed in the Cranfield
tests in the 60s [8], challenged for its unrealistic lack of user involvement [27].
Ingwersen and Järvelin proposed a framework, The Integrated Cognitive Research
Framework, consisting of four integrated evaluation contexts, as presented in Fig-
ure 1. The innermost IR context, referred to by Ingwersen and Järvelin as “the
cave of IR evaluation”, is the most frequently studied level, but also constitutes
the most simplified context. The seeking context, “drifting outside the cave”, is
used to study how users find relevant information among the information that is
actually retrieved. The third context, the work task context introduces evaluations
where the information seeking is part of a bigger work task. Finally, in the outer-
most realm, the socio-organizational & cultural context, Ingwersen and Järvelin
argue that socio-cognitive factors are introduced, that should be studied in natural
field experiments or studies, i.e., in-vivo evaluations are required. Moreover, they
propose measures for the different evaluation contexts [24]. However, as those
measures and the evaluation framework in itself are general and not tailored for
neither software engineering nor traceability recovery, we present an adaptation in
Section 3.

3 Derivation of Context Taxonomy

Based on Ingwersen and Järvelin’s framework [24], we introduce a four-level con-
text taxonomy in which evaluations of IR-based traceability recovery can be con-
ducted, see Table 1. Also, we extend it by a dimension of evaluation environments
motivated by our previous study [6], i.e., proprietary, open source, or university,
as depicted in Figure 2. The figure also shows how the empirical evaluations pre-

138 Evaluation of Traceability Recovery in Context: A Taxonomy for . . .

sented in Section 2 map to the taxonomy. Note that several previous empirical
evaluations of IR-based traceability recovery have used software artifacts from the
open source domain, however, none of them were mentioned in Section 2.

We refer to the four integrated contexts as the retrieval context (Level 1), the
seeking context (Level 2), the work task context (Level 3), and the project context
(Level 4). Typical benchmarking experiments [1, 16, 31], similar to what is con-
ducted within TREC, reside in the innermost retrieval context. Accuracy of tool
output is measured by the standard IR-measures precision, recall, and F-score (de-
fined in Section 4.2. In order to enable benchmarks in the seeking context, user
studies or secondary measures are required [22, 45]. In both the two innermost
contexts, traceability recovery evaluations are dominated by quantitative analysis.
On the other hand, to study the findability offered by IR tools in the seeking con-
text, defined as “the degree to which a system or environment supports navigation
and retrieval” [34], researchers must introduce human subjects in the evaluations.

Regarding evaluations in the work task context, human subjects are necessary.
Typically, IR-based traceability recovery in this context has been evaluated using
controlled experiments with student subjects [9, 23, 35]. To assess the usefulness
of tool support in work tasks involving traceability recovery, realistic tasks such
as requirements tracing, change impact analysis, and test case selection should be
studied in a controlled, in-vitro environment. Finally, in the outermost project con-
text, the effect of deploying IR-based traceability recovery tools should be studied
in-vivo in software development projects. Due to the typically low level of con-
trol in such study environments, a suitable evaluation methodology is a case study.
An alternative to industrial in-vivo evaluations is to study student development
projects, as De Lucia et al. [10] have done. In the work task context both quan-
titative and qualitative studies are possible, but in the project context qualitative
analysis dominates. As applied researchers we value technology-oriented evalu-
ations in the retrieval and seeking contexts, however, our end goal is to study IR
tools in the full complexity of an industrial environment.

4 Method

We base discussions on the context taxonomy in Section 6 on a concrete study
of traceability recovery. This section describes the definition, design and settings
of the experimentation, organized into the four phases definition, planning, re-
alization and interpretation as specified in the experimental framework by Huff-
man Hayes and Dekhtyar [21]. Also, our work followed the general experimental
guidelines by Wohlin et al. [48]. According to the proposed context taxonomy in
Figure 2, our experiment is an evaluation conducted in the retrieval context, i.e., in
the cave, using datasets from two industrial contexts.

4 Method 139

Evaluation
Context

Description Evaluation
methodol-
ogy

Example
measures

Level 4: Project
context

Evaluations in a socio-
organizational context. The
IR tool is studied when used
by engineers within the full
complexity of an in-vivo
setting.

Case studies Project met-
rics, tool us-
age

Level 3: Work
task context

Humans complete real work
tasks, but in an in-vitro setting.
Goal of evaluation is to assess
the casual effect of an IR tool
when completing a task.

Controlled
experi-
ments, case
studies

Work task
results, time
spent

Level 2: Seek-
ing context

A seeking context with a focus
on how the human finds relevant
information among what was re-
trieved by the system.

Technology-
oriented
experiments

Usability,
MAP, DCG,
DiffAR, Lag

Level 1: Re-
trieval context

A strict retrieval context, perfor-
mance is evaluated wrt. the ac-
curacy of a set of search results.

Benchmarks Precision,
recall,
F-measure

Table 1: Four integrated levels of context in IR-based traceability recovery eval-
uations.

4.1 Phase I: Definition
The definition phase presents the scope of the experimentation and describes the
context. We entitle the study a quasi-experiment since there is no randomization
in the selection of data sets nor IR tools.

Experiment Definition

The goal of the quasi-experiment is to evaluate traceability recovery tools in the
context of embedded development, with the purpose of reporting results using
proprietary software artifacts. The quality focus is to evaluate precision and recall
of tools from the perspective of a researcher who wants to evaluate how existing
approaches to traceability recovery perform in a specific industrial context.

Industrial Context

The software artifacts in the industrial dataset are collected from a large multi-
national company active in the power and automation sector. The context of the
specific development organization within the company is safety critical embedded

140 Evaluation of Traceability Recovery in Context: A Taxonomy for . . .

Figure 2: Contexts and environments in evaluations of IR-based traceability re-
covery. The numbers refer to references. Note that the publication by Sundaram
et al. [45] contains both an evaluation in an industrial environment, as well as an
evaluation in the university environment.

development in the domain of industrial control systems. The number of devel-
opers is in the magnitude of hundreds; a project has typically a length of 12-18
months and follows an iterative stage-gate project management model. The soft-
ware is certified to a Safety Integrity Level (SIL) of 2 as defined by IEC 61508 [25],
corresponding to a risk reduction factor of 1,000,000-10,000,000 for continuous
operation. There are process requirements on maintenance of traceability infor-
mation, especially between requirements and test cases. The software develop-
ers regularly perform tasks requiring traceability information, for instance when
performing change impact analysis. Requirements and tests are predominantly
specified in English NL text.

Characterization of Datasets

The first dataset used in our experiment originates from a project in the NASA
Metrics Data Program, publicly available at COEST as the CM-1 dataset. The
dataset specifies parts of a data processing unit and consists of 235 high-level
requirements and 220 corresponding low-level requirements specifying detailed
design. 361 traceability links between the requirement abstraction levels have been
manually verified, out of 51 700 possible links. Items in the dataset have links to
zero, one or many other items. This dataset is a de-facto benchmark of IR-based
traceability recovery [6], thus we conduct a replication of previous evaluations.

4 Method 141

Number of traceability links: 225
Characteristic Requirements Test Case Descriptions
Items 224 218
Words 4 813 6 961
Words/Item 21.5 31.9
Avg. word length 6.5 7.0
Unique words 817 850
Gunning Fog Index 10.7 14.2
Flesch Reading Ease 33.7 14.8

Table 2: Descriptive statistics of the industrial data

Number of traceability links: 361
Characteristic High-level Reqs. Low-level Reqs.
Items 235 220
Words 5 343 17 448
Words/Items 22.7 79.3
Avg. word length 5.2 5.1
Unique words 1 056 2 314
Gunning Fog Index 7.5 10.9
Flesch Reading Ease 67.3 59.6

Table 3: Descriptive statistics of the NASA data

The second dataset, referred to as the industrial data, consists of 225 require-
ments describing detailed design. These requirements are verified by 220 corre-
sponding test case descriptions. The golden standard of 225 links was provided by
the company, containing one link per requirement to a specific test case descrip-
tion. Thus, the link structure is different to the NASA data. The total number of
combinatorial links is 49 500.

Both the NASA and the industrial datasets are bipartite, i.e., there exist only
links between two subsets of software artifacts. Descriptive statistics of the datasets,
calculated using the Advanced Text Analyzer at UsingEnglish.com2, are presented
in Tables 2 and 3. Calculating Gunning Fog Index [19] as a complexity metric for
requirement specifications written in English has been proposed by Farbey [17].
The second complexity metric reported in Tables 2 and 3 is the Flesch Reading
Ease. Wilson et al. have previously calculated and reported it for requirement
specifications from NASA [47]. Both datasets are considered large according to
the framework of Huffman Hayes and Dekhtyar [21], even though we would prefer
to label them very small.

2http://www.usingenglish.com/members/text-analysis/

142 Evaluation of Traceability Recovery in Context: A Taxonomy for . . .

4.2 Phase II: Planning

This section describes the traceability recovery tools and the experimental design.

Description of Tools

We selected two IR-based traceability recovery tools for our experiment. Require-
ments Tracing on Target (RETRO) was downloaded from the library of Open
Source Software from NASA’s Goddard Space Flight Center3, however only bi-
naries were available. Source code and binaries of ReqSimile was downloaded
from the source code repository SourceForge4.

RETRO, developed by Huffman Hayes et al., is a tool that supports software
development by tracing textual software engineering artifacts [23]. The tool we
used implements VSM with features having term frequency-inverse document fre-
quency weights. Similarities are calculated as the cosine of the angle between
feature vectors [3]. RETRO also implements a probabilistic retrieval model. Fur-
thermore, the tool supports relevance feedback from users using the Standard Ro-
chio feedback. Stemming is done as a preprocessing step and stop word removal
is optional according to the settings in the tool. Later versions of RETRO also im-
plement LSI, but were not available for our experiments. We used RETRO version
V.BETA, Release Date February 23, 2006.

ReqSimile, developed by Natt och Dag et al., is a tool with the primary pur-
pose to provide semi-automatic support to requirements management activities
that rely on finding semantically similar artifacts [35]. Examples of such activities
are traceability recovery and duplicate detection. The tool was intended to support
the dynamic nature of market-driven requirements engineering. ReqSimile also
implements VSM and cosine similarities. An important difference to RETRO is
the feature weighting; terms are weighted as 1 + log2(freq) and no inverse doc-
ument frequencies are considered. Stop word removal and stemming is done as
preprocessing steps. In our experimentation, we used version 1.2 of ReqSimile.

To get yet another benchmark for comparisons, a tool was implemented using
a naïve tracing approach as suggested by Menzies et al. [32]. The Naïve tool
calculates the number of terms shared by different artifacts, and produces ranked
lists of candidate links accordingly. This process was done without any stop word
removal or stemming.

Experimental Design

The quasi-experiment has two independent variables: the IR-based traceability
recovery tool used and the input dataset. The first one has three factors: RETRO,
ReqSimile and Naïve as explained in Section 4.2. The second independent variable

3http://opensource.gsfc.nasa.gov/projects/RETRO/
4http://reqsimile.sourceforge.net/

4 Method 143

has two factors: Industrial and NASA as described in Section 4.1. Consequently,
six test runs were required to get a full factorial design.

IR-based traceability recovery tools are in the innermost evaluation context
evaluated by verifying how many suggested links above a certain similarity thresh-
old are correct, compared to a hand-crafted gold standard of correct links. Then,
as presented in Figure 2, the laboratory model of IR evaluation is applied, thus
recall and precision constitute our dependent variables. Recall and precision mea-
sure both the percentage of correct links recovered by a tool, and the amount of
false positives. The aggregate measure F-score was also calculated, defined as the
harmonic mean of precision and recall [3]:

F = 2 ∗ precision ∗ recall
precision + recall

Our null hypotheses, guiding the data analysis, are stated below. Performance
is considered wrt. recall and precision.

NH1 The two tools implementing the vector space model, RETRO and ReqSim-
ile, show equivalent performance.

NH2 Performance differences between the tools show equivalent patterns on the
NASA and Industrial datasets.

NH3 RETRO and ReqSimile do not perform better than the Naïve tool.

4.3 Phase III: Realization

This section describes how the data was converted to valid input formats, and the
actual tool usage.

Preprocessing of Datasets

Preprocessing the datasets was required since RETRO and ReqSimile use differ-
ent input formats. The NASA dataset was available in a clean textual format and
could easily be converted. The industrial data was collected as structured Mi-
crosoft Word documents including references, diagrams, revision history etc. We
manually extracted the textual content and removed all formatting.

Experimental Procedure

Conducting the experiment consisted of six test runs combining all tools and
datasets. In RETRO, two separate projects were created and the tool was run using
default settings. We did not have access to neither a domain specific thesaurus nor
a list of stop words. Relevance feedback using the standard Rochio method was
not used. The Trace All command was given to calculate all candidate links, no
filtering was done in the tool.

144 Evaluation of Traceability Recovery in Context: A Taxonomy for . . .

ReqSimile does not offer any configuration of the underlying IR models. The
two input datasets were separated in two projects. After configuring the drivers
of the database connections, the commands Fetch requirements and Preprocess
requirements were given and the lists of candidate links were presented in the
Candidate requirements tab.

The Naïve tool uses the same input format as RETRO. The tool does not have
a graphical user interface, and was executed from a command-line interface.

5 Results and Interpretation
This section presents the results from our six test runs.

5.1 Phase IV: Interpretation
Huffman Hayes and Dekhtyar define the interpretation context as “the environ-
ment/circumstances that must be considered when interpreting the results of an
experiment” [21]. We conduct our evaluation in the retrieval context as described
in Section 3. Due to the small number of datasets studied, our hypotheses are not
studied in a strict statistical context.

The precision-recall graphs and the plotted F-scores are used as the basis for
our comparisons. All hypotheses do to some extent concern the concept of equiv-
alence, which we study qualitatively in the resulting graphs. However, presenting
more search results than a user would normally consider adds no value to a tool.
We focus on the top ten search results, in line with recommendations from previ-
ous research [33,43,46], and common practise in web search engines. The stars in
Figures 3 and 4 indicate candidate link lists of length 10.

The first null hypothesis stated that the two tools implementing the VSM show
equivalent performance. Figures 3 and 5 show that RETRO and ReqSimile pro-
duce candidate links of equivalent quality, the stars are even partly overlapping.
However, Figures 4 and 6 show that RETRO outperforms ReqSimile on the NASA
dataset. As a result, the first hypothesis is rejected; the two IR-based traceability
recovery tools RETRO and ReqSimile, both implementing VSM, do not perform
equivalently.

The second null hypothesis stated that performance differences between the
tools show equivalent patterns on the both datasets. The first ten datapoints of the
precision-recall graphs, representing search hits of candidate links with lengths
from 1 to 10, show linear quality decreases for both datasets. Graphs for the in-
dustrial data starts with higher recall values for short candidate lists, but drops
faster to precision values of 5% compared to the NASA data. The Naïve tool per-
forms better on the industrial data than on the NASA data, and the recall values
increase at a higher pace, passing 50% at candidate link lists of length 10. The
second hypothesis is rejected; the tools show different patterns on the industrial
dataset and the NASA dataset.

6 Discussion 145

Figure 3: Precision-recall graph for the Industrial dataset. The stars show candi-
date link lists of length 10.

Figure 4: Precision-recall graph for the NASA dataset. The stars show candidate
link lists of length 10.

The third null hypothesis, RETRO and ReqSimile do not perform better than
the Naïve tool, is also rejected. Our results show that the Naïve tool, just compar-
ing terms without any preprocessing, does not reach the recall and precision of the
traceability recovery tools implementing VSM. RETRO and ReqSimile perform
better than the Naïve tool.

6 Discussion

In this section, the results from the quasi-experiment and related threats to validity
are discussed. Furthermore, we discuss how we could conduct evaluations in outer
contextual levels based on this study, and we discuss how to advance evaluations
of IR-based traceability recovery in general.

146 Evaluation of Traceability Recovery in Context: A Taxonomy for . . .

Figure 5: F-Score for the Industrial dataset. The X-axis shows the length of
candidate link lists considered.

Figure 6: F-Score for the NASA dataset. The X-axis shows the length of candi-
date link lists considered.

6.1 Implication of Results

The IR-based traceability recovery tools RETRO and ReqSimile perform equiv-
alently on the industrial dataset and similarly on the NASA data. From reading
documentation and code of RETRO and ReqSimile, it was found that the tools
construct different feature vectors. RETRO, but not ReqSimile, takes the inverse
document frequency of terms into account when calculating feature weights. Con-
sequently, terms overly frequent in the document set are not down-weighted as
much in ReqSimile as in RETRO. This might be a major reason why RETRO gen-
erally performs better than ReqSimile in our quasi-experiment, even without the
use of optional stop word removal. This shows that the construction of feature vec-
tors is important to report when classifying traceability recovery tools, an aspect
that often is omitted when reporting overviews of the field.

Our experimentation was conducted on two bipartite datasets of different na-
ture. The NASA data has a higher density of traceability links and also a more
complex link structure. RETRO and ReqSimile both perform better on the indus-
trial dataset. The average amount of words of this dataset is fewer than in the
NASA dataset, the reason for better IR performance is rather the less complex link
structure. Not surprisingly, the performance of the traceability recovery is heav-
ily dependant on the dataset used as input. Before there is a general large-scale
dataset available for benchmarking, traceability recovery research would benefit
from understanding various types of software artifacts. Especially for proprietary
datasets used in experiments, characterization of both industrial context and the

6 Discussion 147

dataset itself must be given proper attention.
As mentioned in Section 1, our quasi-experiment is partly a replication of stud-

ies conducted by Sundaram et al. [44], and Dekhtyar et al. [14]. Our results of
using RETRO on the NASA dataset are similar, but not identical. Most likely,
we have not applied the same version of the tool. Implementation of IR solutions
forces developers to make numerous minor design decisions, i.e., details of the
preprocessing steps, order of computations, numerical precision etc. Such minor
variations can cause the differences in tool output we observe, thus version control
of tools is important and should be reported.

6.2 Validity Threats

This section contains a discussion on validity threats to help define the creditability
of the conclusions [48]. We focus on construct, internal and external validity.

Threats to construct validity concern the relationship between theory and ob-
servation. Tracing errors include both errors of inclusion and errors of exclusion.
By measuring both recall and precision, the retrieval performance of a tool is well
measured. However, the simplifications of the laboratory model of IR evaluation
have been challenged [27]. There is a threat that recall and precision are not effi-
cient measures of the overall usefulness of traceability tools. The question remains
whether the performance differences, when put in a context with a user and a task,
will have any practical significance. However, we have conducted a pilot study
on RETRO and ReqSimile on a subset of the NASA dataset to explore this matter,
and the results suggest that subjects supported by a slightly better tool also produce
slightly better output [5].

Threats to internal validity can affect the independent variable without the re-
searcher’s knowledge and threat the conclusion about causal relationships between
treatment and outcome. The first major threat comes from the manual preprocess-
ing of data, which might introduce errors. Another threat is that the downloaded
traceability recovery tools were incorrectly used. This threat was addressed by
reading associated user documentation and running pilot runs on smaller dataset
previously used in our department.

External validity concerns the ability to generalize from the findings. The
bipartite datasets are not comparable to a full-size industrial documentation space
and the scalability of the approach is not fully explored. However, a documentation
space might be divided into smaller parts by filtering artifacts by system module,
type, development team etc., thus also smaller datasets are interesting to study.

On the other hand, there is a risk that the industrial dataset we collected is
a very special case, and that the impact of datasets on the performance of trace-
ability recovery tools normally is much less. The specific dataset was selected in
discussion with the company, to be representative and match our requirements on
size and understandability. It could also be the case that the NASA dataset is not
representative to compare RETRO and ReqSimile. The NASA data has been used

148 Evaluation of Traceability Recovery in Context: A Taxonomy for . . .

in controlled experiments of RETRO before, and the tool might be fine-tuned to
this specific dataset. Consequently, RETRO and ReqSimile must be compared on
more datasets to enable firm conclusions.

6.3 Advancing to outer levels

The evaluation we have conducted resides in the innermost retrieval context of the
taxonomy described in Section 3. Thus, by following the experimental framework
by Huffman Hayes et al. [21], and by using proprietary software artifacts as input,
our contribution of empirical evidence can be classified as a Level 1 evaluation in
an industrial environment, as presented in Figure 7. By adhering to the experimen-
tal framework, we provided enough level of detail in the reporting to enable future
secondary studies to utilize our results.

Building upon our experiences from the quasi-experiment, we outline a possi-
ble research agenda to move the empirical evaluations in a more industry relevant
direction. Based on our conducted Level 1 study, we could advance to outer levels
of the context taxonomy. Primarily, we need to go beyond precision-recall graphs,
i.e., step out of “the cave of IR evaluation”. For example, we could introduce DCG
as a secondary measure to analyze how the traceability recovery tools support find-
ing relevant information among retrieved candidate links, repositioning our study
as path A shows in the Figure 7.

However, our intention is to study how software engineers interact with the
output from IR-based traceability recovery tools, in line with what we initially
have explored in a pilot study [5]. Based on our experimental experiences, a future
controlled experiment should be conducted with more subjects, and preferably not
only students. An option would be to construct a realistic work task, using the
industrial dataset as input, and run the experiment in a classroom setting. Such a
research design could move a study as indicated by path B in Figure 7. Finally,
to reach the outermost evaluation context as path C shows, we would need to
study a real project with real engineers, or possibly settle for a student project.
An option would be to study the information seeking involved in the state-of-
practice change impact analysis process at the company from where the industrial
dataset originates. The impact analysis work task involves traceability recovery,
but currently the software engineers have to complete it without dedicated tool
support.

6.4 Advancing traceability recovery evaluations in gen-
eral

Our experiences from applying the experimental framework proposed by Huff-
man Hayes and Dekhtyar [21] are positive. The framework provided structure to
the experiment design activity, and also it encouraged detailed reporting. As a
result, it supports comparisons between experimental results, replications of re-

6 Discussion 149

ported experiments, and it supports secondary studies to aggregate empirical ev-
idence. However, as requirements tracing constitutes an IR problem (for a given
artifact, relations to others are to be identified), it must be evaluated according to
the context of the user as argued by Ingwersen and Järvelin [24]. The experimental
framework includes “interpretation context”, but it does not cover this aspect of IR
evaluation. Consequently, we claim that our context taxonomy fills a purpose, as
a complement to the more practical experimental guidelines offered by Huffman
Hayes and Dekhtyar’s framework [21].

While real-life proprietary artifacts are advantageous for the relevance of the
research, the disadvantage is the lack of accessibility for validation and replication
purposes. Open source artifacts offer in that sense a better option for advancing
the research. However, there are two important aspects to consider. Firstly, open
source development models tend to be different compared to proprietary devel-
opment. For example, wikis and change request databases are more important
than requirements documents or databases [41]. Secondly, there are large varia-
tions within open source software contexts, as there is within proprietary contexts.
Hence, it is critical that research matches pairs of open source and proprietary
software, as proposed by Robinson and Francis [38], based on several character-
istics, and not only their being open source or proprietary. This also holds for
generalization from studies from one domain to the other, as depicted in Figure 7.

Despite the context being critical, also evaluations in the innermost evalua-
tion context can advance IR-based traceability recovery research, in line with the
benchmarking discussions by Runeson et al. [39] and suggestions by members of
the COEST [7, 12, 13]. Runeson et al. refer to the automotive industry, and argue
that even though benchmarks of crash resistance are not representative to all types
of accidents, there is no doubt that such tests have been a driving force in making
cars safer. The same is true for the TREC conferences as mentioned in Section 1.
Thus, the traceability community should focus on finding a series of meaningful
benchmarks, including contextual information, rather than striving to collect a sin-
gle large set of software artifacts to “rule them all”. Regarding size however, such
benchmarks should be considerably larger that the de-facto benchmarks used to-
day. The same benchmark discussion is active within the research community on
enterprise search, where it has been proposed to extract documents from compa-
nies that no longer exist, e.g., Enron [20], an option that might be possible also in
software engineering.

Runeson et al. argue that a benchmark should not aim at statistical general-
ization, but a qualitative method of analytical generalization. Falessi et al. on
the other hand, bring attention to the value of statistical hypothesis testing of tool
output [16]. They reported a technology-oriented experiment in the seeking con-
text (including secondary measures), and presented experimental guidelines in the
form of seven empirical principles. However, the principles they proposed focus
on the innermost contexts of the taxonomy in Figure 2, i.e., evaluations without
human subjects. Also, since the independence between datapoints on a precision-

150 Evaluation of Traceability Recovery in Context: A Taxonomy for . . .

Figure 7: Our quasi-experiment, represented by a square, mapped to the taxon-
omy. Paths A-C show options to advance towards outer evaluation contexts, while
the dashed arrow represents the possibility to generalize between environments as
discussed by Robinson and Francis [38].

recall curve for a specific dataset is questionable, we argue that the result from
each dataset instead should be treated as a single datapoint, rather than applying
the cross-validation approach proposed by Falessi et al. As we see it, statistical
analysis turns meaningful in the innermost evaluation contexts when we have ac-
cess to sufficient numbers of independent datasets. On the other hand, when con-
ducting studies on human subjects, stochastic variables are inevitably introduced,
making statistical methods necessary tools.

Research on traceability recovery has the last decade, with a number of ex-
ceptions, focused more on tool improvements and less on sound empirical eval-
uations [6]. Since several studies suggest that further modifications of IR-based
traceability recovery tools will only result in minor improvements [15, 36, 45], the
vital next step is instead to assess the applicability of the IR approach in an indus-
trial setting. The strongest empirical evidence on the usefulness of IR-based trace-
ability recovery tools comes from a series of controlled experiments in the work
task context, dominated by studies using student subjects [5, 9, 23, 35]. Conse-
quently, to strengthen empirical evaluations of IR-based traceability recovery, we
argue that contributions must be made along two fronts. Primarily, in-vivo evalua-
tions should be conducted, i.e., industrial case studies in a project context. In-vivo
studies on the general feasibility of the IR-based approach are conspicuously ab-
sent despite more than a decade of research. Thenceforth, meaningful benchmarks
to advance evaluations in the two innermost evaluation contexts should be col-
lected by the traceability community.

7 Conclusions and Future Work

We propose a context taxonomy for evaluations of IR-based traceability recovery,
consisting of four integrated levels of evaluation contexts (retrieval, seeking, work

7 Conclusions and Future Work 151

task, and project context), and an orthogonal dimension of study environments
(university, open source, proprietary environment). To illustrate our taxonomy, we
conducted an evaluation of the framework for requirements tracing experiments
by Huffman Hayes and Dekhtyar [21].

Adhering to the framework, we conducted a quasi-experiment with two tools
implementing VSM, RETRO and ReqSimile, on proprietary software artifacts
from two embedded development projects. The results from the experiment show
that the tools performed equivalently on the dataset with a low density of traceabil-
ity links. However, on the dataset with a more complex link structure, RETRO out-
performed ReqSimile. An important difference between the tools is that RETRO
takes the inverse document frequency of terms into account when representing ar-
tifacts as feature vectors. We suggest that information about feature vectors should
get more attention when classifying IR-based traceability recovery tools in the fu-
ture, as well as version control of the tools. Furthermore, our research confirms
that input software artifacts is an important factor in traceability experiments. Re-
search on traceability recovery should focus on exploring different industrial con-
texts and characterize the data in detail, since replications of experiments on closed
data are unlikely.

Following the experimental framework supported our study by providing struc-
ture and practical guidelines. However, it lacks a discussion on the evaluation con-
texts highlighted by our context taxonomy. On the other hand, when combined,
the experimental framework and the context taxonomy offer a valuable platform,
both for conducting and discussing, evaluations of IR-based traceability recovery.

As identified by other researchers, the widely used measures recall and pre-
cision are not enough to compare the results from tracing experiments [22]. The
laboratory model of IR evaluation has been questioned for its lack of realism, based
on progress in research on the concept of relevance and information seeking [27].
Critics claim that real human users of IR systems introduce non-binary, subjective
and dynamic relevance, which affect the overall IR process. Our hope is that our
proposed context taxonomy can be used to direct studies beyond “the cave” of IR
evaluation, and motivate more industrial case studies in the future.

Acknowledgement
This work was funded by the Industrial Excellence Center EASE – Embedded
Applications Software Engineering5. Special thanks go to the company providing
the proprietary dataset.

5http://ease.cs.lth.se

152 Evaluation of Traceability Recovery in Context: A Taxonomy for . . .

Bibliography

[1] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia. Information retrieval
models for recovering traceability links between code and documentation. In
Conference on Software Maintenance, pages 40–49, 2000.

[2] G. Antoniol, G. Canfora, A. De Lucia, and E. Merlo. Recovering code to
documentation links in OO systems. In Proceedings of the 6th Working Con-
ference on Reverse Engineering, pages 136–144, 1999.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern information retrieval.
Addison-Wesley, 1999.

[4] E. Ben Charrada, D. Caspar, C. Jeanneret, and M. Glinz. Towards a bench-
mark for traceability. In Proceedings of the 12th International Workshop on
Principles on Software Evolution, pages 21–30, 2011.

[5] M. Borg and D. Pfahl. Do better IR tools improve the accuracy of engi-
neers’ traceability recovery? In Proceedings of the International Workshop
on Machine Learning Technologies in Software Engineering, pages 27–34,
2011.

[6] M. Borg, K. Wnuk, and D. Pfahl. Industrial comparability of student artifacts
in traceability recovery research - an exploratory survey. In Proceedings of
the 16th European Conference on Software Maintenance and Reengineering,
pages 181–190, 2012.

[7] J. Cleland-Huang, A. Czauderna, A. Dekhtyar, O. Gotel, J. Huffman Hayes,
E. Keenan, J. Maletic, D. Poshyvanyk, Y. Shin, A. Zisman, G. Antoniol,
B. Berenbach, A. Egyed, and P. Mäder. Grand challenges, benchmarks, and
TraceLab: Developing infrastructure for the software traceability research
community. In Proceedings of the 6th International Workshop on Traceabil-
ity in Emerging Forms of Software Engineering, 2011.

[8] C. Cleverdon. The significance of the Cranfield tests on index languages. In
Proceedings of the 14th Annual International SIGIR Conference on Research
and Development in Information Retrieval, pages 3–12, 1991.

[9] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Recovering traceability
links in software artifact management systems using information retrieval
methods. Transactions on Software Engineering and Methodology, 16(4),
2007.

[10] A. De Lucia, R. Oliveto, and G. Tortora. Assessing IR-based traceability
recovery tools through controlled experiments. Empirical Software Engi-
neering, 14(1):57–92, 2009.

Bibliography 153

[11] S. Deerwester, S. Dumais, G. Furnas, T. Landauer, and R. Harshman. Index-
ing by latent semantic analysis. Journal of the American Society for Infor-
mation Science, 41(6):391–407, 1990.

[12] A. Dekhtyar and J. Huffman Hayes. Good benchmarks are hard to find:
Toward the benchmark for information retrieval applications in software en-
gineering. Proceedings of the International Conference on Software Mainte-
nance, 2006.

[13] A. Dekhtyar, J. Huffman Hayes, and G. Antoniol. Benchmarks for traceabil-
ity? In Proceedings of the International Symposium on Grand Challenges in
Traceability, 2007.

[14] A. Dekhtyar, J. Huffman Hayes, and J. Larsen. Make the most of your time:
How should the analyst work with automated traceability tools? In Pro-
ceedings of the 3rd International Workshop on Predictor Models in Software
Engineering, 2007.

[15] D. Falessi, G. Cantone, and G. Canfora. A comprehensive characterization of
NLP techniques for identifying equivalent requirements. In Proceedings of
the International Symposium on Empirical Software Engineering and Mea-
surement, 2010.

[16] D. Falessi, G. Cantone, and G. Canfora. Empirical principles and an indus-
trial case study in retrieving equivalent requirements via natural language
processing techniques. Transactions on Software Engineering, 2011.

[17] B. Farbey. Software quality metrics: considerations about requirements and
requirement specifications. Information and Software Technology, 32(1):60–
64, 1990.

[18] O. Gotel and C. Finkelstein. An analysis of the requirements traceability
problem. In Proceedings of the First International Conference on Require-
ments Engineering, pages 94–101, 1994.

[19] R. Gunning. Technique of clear writing - Revised edition. McGraw-Hill,
1968.

[20] D. Hawking. Challenges in enterprise search. In Proceedings of the 15th
Australasian database conference, pages 15–24, 2004.

[21] J. Huffman Hayes and A. Dekhtyar. A framework for comparing require-
ments tracing experiments. Interational Journal of Software Engineering
and Knowledge Engineering, 15(5):751–781, 2005.

[22] J. Huffman Hayes, A. Dekhtyar, and S. Sundaram. Advancing candidate link
generation for requirements tracing: The study of methods. Transactions on
Software Engineering, 32(1):4–19, 2006.

154 Evaluation of Traceability Recovery in Context: A Taxonomy for . . .

[23] J. Huffman Hayes, A. Dekhtyar, S. Sundaram, A. Holbrook, S. Vadlamudi,
and A. April. REquirements TRacing on target (RETRO): improving soft-
ware maintenance through traceability recovery. Innovations in Systems and
Software Engineering, 3(3):193–202, 2007.

[24] P. Ingwersen and K. Järvelin. The turn: Integration of information seeking
and retrieval in context. Springer, 2005.

[25] International Electrotechnical Commission. IEC 61508 ed 2.0, Electrical/-
Electronic/Programmable electronic safety-related systems, 2010.

[26] K. Järvelin and J. Kekäläinen. IR evaluation methods for retrieving highly
relevant documents. In Proceedings of the 23rd Annual International ACM
SIGIR Conference on Research and Development in Information Retrieval,
pages 41–48, 2000.

[27] J. Kekäläinen and K. Järvelin. Evaluating information retrieval systems un-
der the challenges of interaction and multidimensional dynamic relevance.
Proceedings of the COLIS 4 Conference, pages 253—270, 2002.

[28] J. Lin, L. Chan, J. Cleland-Huang, R. Settimi, J. Amaya, G. Bedford,
B. Berenbach, O. B Khadra, D. Chuan, and X. Zou. Poirot: A distributed
tool supporting enterprise-wide automated traceability. In Proceedings of
the 14th International Conference on Requirements Engineering, pages 363–
364, 2006.

[29] M. Lormans, H-G. Gross, A. van Deursen, R. van Solingen, and A. Ste-
houwer. Monitoring requirements coverage using reconstructed views: An
industrial case study. In Procedings of the 13th Working Conference on Re-
verse Engineering, pages 275–284, 2006.

[30] C. Manning, P. Raghavan, and H. Schütze. Introduction to information re-
trieval. Cambridge University Press, 2008.

[31] A. Marcus and J. Maletic. Recovering documentation-to-source-code trace-
ability links using latent semantic indexing. In Proceedings of the Interna-
tional Conference on Software Engineering, pages 125–135, 2003.

[32] T. Menzies, D. Owen, and J. Richardson. The strangest thing about software.
Computer, 40(1):54–60, 2007.

[33] G. Miller. The magical number seven, plus or minus two: Some limits on our
capacity for processing information. The Psychological Review, 63:81–97,
1956.

[34] P. Morville. Ambient findability: What we find changes who we become.
O’Reilly Media, 2005.

Bibliography 155

[35] J. Natt och Dag, T. Thelin, and B. Regnell. An experiment on linguistic tool
support for consolidation of requirements from multiple sources in market-
driven product development. Empirical Software Engineering, 11(2):303–
329, 2006.

[36] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia. On the equivalence
of information retrieval methods for automated traceability link recovery. In
International Conference on Program Comprehension, pages 68–71, 2010.

[37] S. E. Robertson and S. Jones. Relevance weighting of search terms. Journal
of the American Society for Information Science, 27(3):129–146, 1976.

[38] B. Robinson and P. Francis. Improving industrial adoption of software engi-
neering research: A comparison of open and closed source software. In Pro-
ceedings of the International Symposium on Empirical Software Engineering
and Measurement, pages 21:1–21:10, 2010.

[39] P. Runeson, M. Skoglund, and E. Engström. Test benchmarks: What is the
question? In Proceedings of the International Conference on Software Test-
ing Verification and Validation Workshop, pages 368–371, 2008.

[40] G. Salton, A. Wong, and C. Yang. A vector space model for automatic in-
dexing. Commununications of the ACM, 18(11):613–620, 1975.

[41] W. Scacchi. Understanding the requirements for developing open source
software systems. IEEE Software, 149(1):24–39, 2002.

[42] A. Smeaton and D. Harman. The TREC experiments and their impact on
europe. Journal of Information Science, 23(2):169–174, 1997.

[43] K. Spärck Jones, S. Walker, and S. E. Robertson. A probabilistic model of in-
formation retrieval: Development and comparative experiments. Information
Processing and Management, 36(6):779–808, 2000.

[44] S. Sundaram, J. Huffman Hayes, and A. Dekhtyar. Baselines in requirements
tracing. In Proceedings of the Workshop on Predictor Models in Software
Engineering, pages 1–6, 2005.

[45] S. Sundaram, J. Huffman Hayes, A. Dekhtyar, and A. Holbrook. Assess-
ing traceability of software engineering artifacts. Requirements Engineering,
15(3):313–335, 2010.

[46] T. Welsh, K. Murphy, T. Duffy, and D. Goodrum. Accessing elaborations
on core information in a hypermedia environment. Educational Technology
Research and Development, 41(2):19–34, 1993.

156 Evaluation of Traceability Recovery in Context: A Taxonomy for . . .

[47] W. Wilson, L. Rosenberg, and L. Hyatt. Automated analysis of requirement
specifications. In Proceedings of the 19th international conference on Soft-
ware engineering, pages 161–171, 1997.

[48] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in software engineering: An introduction. Kluwer Aca-
demic Publications, 1st edition, 1999.

PAPER IV

DO BETTER IR TOOLS
IMPROVE THE ACCURACY OF
ENGINEERS’ TRACEABILITY

RECOVERY?

Abstract

Large-scale software development generates an ever-growing amount of informa-
tion. Multiple research groups have proposed using approaches from the domain of
Information Retrieval (IR) to recover traceability. Several enhancement strategies
have been initially explored using the laboratory model of IR evaluation for per-
formance assessment. We conducted a pilot experiment using printed candidate
lists from the tools RETRO and ReqSimile to investigate how different quality
levels of tool output affect the tracing accuracy of engineers. Statistical testing of
equivalence, commonly used in medicine, has been conducted to analyze the data.
The low number of subjects in this pilot experiment resulted neither in statistically
significant equivalence nor difference. While our results are not conclusive, there
are indications that it is worthwhile to investigate further into the actual value of
improving tool support for semi-automatic traceability recovery. For example, our
pilot experiment showed that the effect size of using RETRO versus ReqSimile is
of practical significance regarding precision and F-measure. The interpretation of
the effect size regarding recall is less clear. The experiment needs to be replicated
with more subjects and on varying tasks to draw firm conclusions.

Markus Borg, and Dietmar Pfahl, In Proceedings of the International Workshop
on Machine Learning Technologies in Software Engineering, 2011

158 Do Better IR Tools Improve the Accuracy of Engineers’ Traceability . . .

1 Introduction

Development and maintenance of software often result in information overload.
Knowledge workers are in general forced to spend more and more time to extract
useful information. Maintaining traceability links between software artifacts is
one approach to structure the information space of software development projects.
Introducing information taxonomies and manually maintaining links is, however,
an approach that does not scale very well. As a result, several researchers have
proposed to support traceability recovery with tools based on IR methods, utilizing
the fact that artifacts often have textual content in natural language.

Traceability recovery tools are generally evaluated by verifying how many sug-
gested links above a certain similarity threshold are correct compared to a hand-
crafted set of correct links. The laboratory model of IR evaluation is applied to
calculate the measures recall and precision, sometimes extended by a harmonic
mean, the F-measure. Recall and precision are commonly reported using graphs,
like the one shown in Figure 4. The “X” in Figure 4 marks the recall and precision
values of RETRO [13] and ReqSimile [16] for the first ten links proposed by these
tools. For “X”, the recall and precision values of RETRO are 50% respectively
60% larger than those of ReqSimile. RETRO is a well-known traceability recov-
ery tool. ReqSimile is a research tool developed at Lund University for the purpose
to support information retrieval in the context of market-driven requirements en-
gineering. However, since the real question is to what extent tools like RETRO
and ReqSimile actually help engineers in performing traceability recovery tasks,
one may wonder whether it is worthwhile to keep hunting for recall-precision im-
provements of traceability recovery tools.

To tackle this questions, we conducted a controlled experiment with 8 sub-
jects to study how tool support affects the tracing process performed by engineers.
The purpose of our experiment was to explore how the output from two traceabil-
ity recovery tools, RETRO and ReqSimile, impacted a task requiring traceability
information.

We analyzed our results using a test of equivalence, trying to prove that one
treatment is indistinguishable from another. In equivalence testing, the null hy-
pothesis is formulated such that the statistical test is a proof of similarity i.e.,
checking whether the tracing accuracies of engineers using different tools differ
by more than a tolerably small amount ∆ [20]. Our null hypothesis is the follow-
ing:
Hypothesis: The engineers’ accuracy of traceability recovery supported by RETRO
differs by more than ∆ compared to that supported by ReqSimile.

The alternative hypothesis is that the difference between the engineers’ ac-
curacies is smaller than ∆, which implies that the treatments can be considered
equivalent. Accuracy is expressed in terms of recall and precision.

2 Related work 159

2 Related work

The last decade, several researchers proposed semi-automatic support to the task
of traceability recovery. For example, traceability recovery tools have been de-
veloped implementing techniques based on algebraic or probabilistic models [1],
data mining [23] and machine learning [19]. Several researchers have expressed
the tracing task as an IR problem. The query in such a tool is typically the soft-
ware artifact you want to link to other artifacts. The answer to a query is normally
a ranked list of artifact suggestions, most often sorted by the level of textual sim-
ilarity. The ranked list is analogous to the output of search engines used on the
web. Items in the list can be either relevant or irrelevant for the given task.

In 2000, Antoniol et al. did pioneering work on traceability recovery when
they used the standard vector space model (VSM) and probabilistic models to sug-
gest links between source code and documentation in natural language [1]. Mar-
cus and Maletic introduced Latent Semantic Indexing (LSI), another vector space
approach, to recover traceability in 2003 [15]. Their work showed that LSI can
achieve good results without the need for stemming, which is fundamental in VSM
and the probabilistic models. The same year Spanoudakis et al. used a machine
learning approach to establish traceability links [19]. By generating traceability
rules from a set of artifacts given by the user, links were derived in the document
set. Zhang et al. proposed automatic ontology population for traceability recov-
ery [23]. They developed a text mining system to semantically analyze software
documents. Concepts discovered by the system were used to populate a documen-
tation ontology, which was then aligned with a source code ontology to establish
traceability links.

Common to those papers is that they have a technical focus and present no
or limited evaluations using software engineers solving real tasks. The major-
ity of the published evaluations of traceability tools do not go beyond reporting
recall-precision graphs or other measures calculated without human involvement.
Exceptions include studies comparing subjects working with tool support to man-
ual control groups. Huffman Hayes et al. developed a traceability recovery tool
named RETRO and evaluated it using 30 student subjects [13]. The students were
divided into two groups, one working with RETRO and the other working man-
ually. Students working with the tool finished a requirements tracing task faster
and with a higher recall than the manual group, the precision however was lower.
De Lucia et al. conducted a controlled experiment with 32 students on the useful-
ness of supported traceability recovery [9]. They found that subjects using their
tool completed a task related to tracing various software artifacts faster and more
accurately than subjects working manually, i.e. without any support from a ded-
icated traceability recovery tool. In another study, De Lucia et. al observed 150
students in 17 software development projects and concluded that letting them use
IR-based tool support is helpful when maintenance of traceability information is a
process requirement [10]. An experiment similar to ours was conducted by Cud-

160 Do Better IR Tools Improve the Accuracy of Engineers’ Traceability . . .

deback et. al, using students and student artifacts [8]. They had 26 subjects vet
candidate requirements traceability matrices (RTMs) of varying accuracy. They
concluded that subjects receiving the most inaccurate RTMs drastically improved
them and that subjects in general balanced recall and precision.

Several researchers proposed ways to obtain better tool output, either by en-
hancing existing tools implementing standard IR techniques, or by exploring new
or combined approaches. Using a thesaurus to deal with synonymy is one pro-
posed enhancement strategy explored by different researchers [12, 18]. Zou et al.
investigated term based improvement strategies such as including a part-of-speech
tagger to extract key phrases and using a project glossary to weight certain terms
higher [24]. Recently, Cleland-Huang et al. [6] and Asuncion et al. [2] used a
machine learning approach, Latent Direchlet Allocation, to trace requirements.
Furthermore, Chen has done preliminary work on combining IR-methods and text
mining in a traceability recovery tool and reported improved results [5].

Even though enhancements lead to better tool outputs in certain cases, their
general applicability and the benefit they generate for engineers performing a spe-
cific task remain uncertain. Oliveto et al. studied the impact of using four dif-
ferent methods for traceability recovery. In their empirical study, VSM, LSI and
the Jensen-Shannon method resulted in almost equivalent results wrt. tracing ac-
curacy [17]. LDA however, while not resulting in better accuracy, was able to
capture different features than the others. As far as we know, no studies except
Cuddeback et. al [8], have been published comparing how different quality levels
of tool output impact of an engineer in a specific traceability task. If more em-
pirical studies with humans were available, one could conduct a meta-analysis to
investigate this matter. Since this is not the case, our approach is instead to com-
pare in an experimental setting the effect of using support tools with differently
accurate outputs on traceability tasks performed by humans.

3 Experimental Setup

This section describes the definition, design and setting of the experiment, follow-
ing the general guidelines by Wohlin et al. [22]. An overview of our experimental
setup is shown in Figure 1.

3.1 Experiment Definition and Context

The goal of the experiment was to study the tool-supported traceability recovery
process of engineers, for the purpose of evaluating the impact of traceability re-
covery tools’ accuracies, with respect to the engineers’ accuracy of traceability re-
covery, from the perspective of a researcher evaluating whether quality variations
between IR tool outputs significantly affect the tracing accuracy of engineers.

3 Experimental Setup 161

Figure 1: Overview of the experimental setup

3.2 Subjects and Experimental Setting

The experiment was executed at Lund University, Sweden. Eight subjects involved
in software engineering research participated in the study. Six subjects were doc-
toral students, two subjects were senior researchers. Most subjects had industrial
experience of software development.

The experiment was conducted in a classroom setting, the subjects worked in-
dividually. Each subject was randomly seated and supplied with a laptop with two
electronic documents containing the artifacts that were to be traced in PDF format.
Each subject also received a printed list per artifact to trace, containing candidate
links as described in section 3.5. Four subjects received lists with candidate links
generated by RETRO, the other four received candidate lists generated by ReqSim-
ile. The lists were distributed randomly. The subjects received a pen, a two-page
instruction, an answer sheet and a debriefing questionnaire. The subjects were
supposed to navigate the PDF documents as they preferred, using the candidate
link lists as support. All individual requirements were clickable as bookmarks,
and keyword searching using the Find tool of their PDF viewer was encouraged.

3.3 Task and Description of the Dataset

It was decided to reuse a publicly available dataset and a task similar to previous
tracing experiments to enable comparison to old results. The task, in which trace-
ability recovery was required, was to estimate impact of a change request on the
CM-1 dataset. For twelve given requirements, the subjects were asked to identify
related requirements on a lower abstraction level. The task was given a realis-
tic scenario involving time pressure, by having the subjects assume they should
present their results in a meeting 45 minutes later. Before the actual experiment

162 Do Better IR Tools Improve the Accuracy of Engineers’ Traceability . . .

Figure 2: Histograms showing the link densities of CM-1 (left) and the subset
used as the experimental sample (right).

started, the subjects were given a warm-up exercise to become familiar with the
document structure and the candidate link lists.

The CM-1 data is a publicly available1 set of requirements with complete trace-
ability information. The data originates from a project in the NASA Metrics Data
Program and has been used in several traceability experiments before [13, 14, 24].
The dataset specifies parts of a data processing unit and consists of 235 high-level
requirements and 220 corresponding low-level requirements specifying detailed
design. Many-to-many relations exist between abstraction levels. The link den-
sity of CM-1 and the representative subset used in the experiment are presented in
Figure 2. This figure depicts histograms with the X-axis representing the number
of low-level requirements related to one high-level requirement. Due to the rather
unintuitive nature of the dataset, having many unlinked system requirements, the
subjects received a hint saying that “Changes to system requirements normally im-
pact zero, one or two design items. Could be more, but more than five would really
be exceptional”.

Descriptive statistics of CM-1, including two commonly reported text com-
plexity measures, are presented in Table 1. Farbey proposed calculating Gunning
Fog Index as a complexity metric for requirement specifications written in En-
glish [11]. The second complexity metric reported is the Flesch Reading Ease, pre-
viously reported by Wilson et al. for requirement specifications from NASA [21].

3.4 Decription of the Tools
RETRO, developed by Huffman Hayes et al., is a tool that supports software devel-
opment by tracing textual software engineering artifacts [13]. The tool generates
RTMs using standard information retrieval techniques. The evolution of RETRO
accelerated when NASA analysts working on independent verification and valida-
tion projects showed interest in the tool. The version of the software we used im-
plements VSM with features having term frequency-inverse document frequency

1www.coest.org

3 Experimental Setup 163

Number of traceability links: 361
Characteristic High-level Reqs. Low-level Reqs.
Items 235 220
Words 5 343 17 448
Words/Items 22.7 79.3
Avg. word length 5.2 5.1
Unique words 1 056 2 314
Gunning Fog Index 7.5 10.9
Flesch Reading Ease 67.3 59.6

Table 1: Statistics of the CM-1 data, calculated using the Text Content Analyzer
on UsingEnglish.com.

weights. Similarities are calculated as the cosine of the angle between feature
vectors [3]. Stemming is done as a preprocessing step by default. For stop word
removal, an external file must be provided, a feature we did not use. We used the
RETRO version V.BETA, Release Date February 23, 2006.

ReqSimile, developed by Natt och Dag et al., is a tool with the primary pur-
pose to provide semi-automatic support to requirements management activities
that rely on finding semantically similar artifacts [16]. Examples of such activities
are traceability recovery and duplicate detection. The tool was intended to support
the dynamic nature of market-driven requirements engineering. ReqSimile also
implements VSM and cosine similarities. An important difference to RETRO is
the feature weighting; terms are weighted as 1 + log2(freq) and no inverse docu-
ment frequencies are considered. Preprocessing steps in the tool include stop word
removal and stemming. We used version 1.2 of ReqSimile.

3.5 Experimental Variables

In the context of the proposed experiment, the independent variable was the qual-
ity of the tool output given to the subjects. For each item to trace, i.e. for each
high-level requirement, entire candidate link lists generated by the tools using de-
fault settings were used. No filtering was applied in the tools. The output varied
between 47 and 170 items, i.e. each item representing a low-level requirement. An
example of part of such a list is presented in Figure 3, showing high-level require-
ment SRS5.14.1.6 and the top part of a list of candidate low-level requirements and
their cosine similarities. The two tools RETRO [13] and ReqSimile [16] are fur-
ther described in Section 3.4. RETRO has outperformed ReqSimile wrt. accuracy
of tool output in a previous experiment on the CM-1 dataset [4].

The lists were printed with identical formatting to ensure the same presenta-
tion. Thus, the independent variable was given two treatments, printed lists of can-
didate links ranked by RETRO (Treatment RETRO), and printed lists of candidate
links ranked by ReqSimile (Treatment ReqSimile). The recall-precision graphs

164 Do Better IR Tools Improve the Accuracy of Engineers’ Traceability . . .

Figure 3: Example of top part of a candidate link list.

for the two tools on the experiment sample are presented in Figure 4, extended
by the accuracy of the tracing results, i.e. the answer sets returned by subjects as
described in Section 4.

The dependent variable, the outcome observed in the study, was the accuracy
of the tracing result. Accuracy was measured in terms of recall, precision and
F-measure. Recall measures the percentage of correct links traced by a subject,
while precision measures the percentage of traced links that were actually correct.
The F-measure is the harmonic mean of recall and precision. The time spent on the
task was limited to 45 minutes, creating realistic time pressure. We also recorded
the number of requirements traced by the subjects.

3.6 Experiment Design and Procedure

A completely randomized design was chosen. The experiment was conducted
during one single session. The design was balanced, i.e. both treatments, RETRO
and ReqSimile, were assigned to the same number of subjects. The two treatment
were given to the subjects at random. Each subject received the same tasks and had
not studied the system previously. When the 45 minutes had passed, the subjects
were asked to answer a debriefing questionnaire.

3.7 Statistical Analysis

The null hypothesis was formulated as existence of a difference in the outcomes
bigger than ∆. ∆ defines the interval of equivalence, i.e., the interval where varia-
tion is considered to have no practical value. For this pilot study, we decided to set
∆ to 0.05 for both recall, precision and F-measure. This means that finishing the
task with 0.05 better or worse recall and precision does not have a practical value.

The two one-sided test (TOST) is the most basic form of equivalence testing
used to compare two treatments. Confidence intervals for the difference between

4 Results and Data Analysis 165

Figure 4: Recall-Precision graph for RETRO and ReqSimile for requirements
tracing (our sample). The ’X’-symbols mark candidate link lists of length 10.
Overall accuracy of answer sets returned by subjects is presented as circles, the
diameter represents the relative number of links in the answer set. For a picture
where also tool output is presented with relative sizes, see Figure 5.

two treatments must be defined. In a TOST analysis, a (1 - 2α)100% confidence
interval is constructed [20]. We selected α = 0.05, thus we reject the null hypothe-
ses that the outcomes of the treatments differ by at least ∆, if the 90% confidence
interval for the difference is completely confined within the endpoints -∆ and +∆.
The 90% confidence intervals are calculated as follows:

point_estimate_outcomeRETRO − point_estimate_outcomeReqSimile ±
2.353

√
std_dev2RETRO + std_dev2ReqSimile

4 Results and Data Analysis

The experiment had no dropouts and as a result we collected 8 valid answer sheets
and debriefing questionnaires. The answer sets were compared to the gold standard
available for the datasets and the corresponding values for recall (Rc), precision
(Pr) and F-measure (F) were calculated. The descriptive statistics for Rc, Pr, F, and
the number of requirements traced are presented in Table 2. We also calculated
the effect sizes using Cohen’s d (cf. last column in Table 2). Results from the
questionnaire are shown in Table 3.

Most subjects experienced the task as challenging and did not have enough
time to finish. The list of common acronyms provided to assist the subjects, as
was done in a previous case study using the CM-1 dataset [13], was not considered
enough to appropriately understand the domain. Generally, the subjects considered

166 Do Better IR Tools Improve the Accuracy of Engineers’ Traceability . . .

the printed candidate link lists as supportive and would prefer having tool support
if performing a similar task in the future.

Table 4 characterizes the tool outputs of RETRO and ReqSimile as well as
the tracing results provided by the subjects participating in the experiment. The
upper part of the table shows the data for the treatment with RETRO, the lower
part that for the treatment with ReqSimile. Each row in the table provides the
following data: the ID of the high-level requirement (Req. ID), the number of
low-level requirements suggested by the tool (#Links), the cosine similarities of
the first and last link in the list of suggested low-level requirements (Sim. 1st link,
Sim. last link), and for each subject (A to H) the number of reported links and the
associated recall and precision (Sub. A: # / Rc / Pr). Bold values represent fully
accurate answers. A hyphen indicates that a subject did not provide any data on
that high-level requirement. IDs of high-level requirements printed in italics have
no associated low-level requirements links, thus a correct answer would have been
to report 0 links. For those requirements we define rc and pr equal to 1 if a subject
actually reported 0 links, otherwise rc and pr equal 0. When subjects reported
0 links for high-level requirements that actually have low-level requirements, we
define rc and pr equal to 0.

The number of high-level requirements the subjects had time to investigate dur-
ing the experiment varied between three and twelve. On average, RETRO subjects
investigated eight items and ReqSimile subjects investigated 8.75. All subjects ap-
parently proceeded in the order the requirements were presented to them. Since
subjects A and E investigated only three and four high-level requirements respec-
tively, they clearly focused on quality rather than coverage. However, the precision
of their tracing results does not reflect this focus. The mean recall for subjects sup-
ported by RETRO was higher than for subjects supported by ReqSimile, and also
the mean precision. The standard deviations were however high, as expected when
using few subjects. Not surprisingly, subjects reporting more links in their answer
set reached higher recall values.

The debriefing questionnaire was also used to let subjects briefly describe their
tracing strategies. Most subjects expressed focus on the top of the candidate lists.
One subject reported the strategy of investigating the top 10 suggestions. Two
subjects reported comparing similarity values and investigating candidate links
until the first “big drop”. Two subjects investigated links on the candidate lists
until several in a row were clearly incorrect. Only one subject explicitly reported
considering links after position 10. This subject investigated the first ten links,
then every second until position 20, then every third until the 30th suggestion.
This proved to be a a time-consuming approach and the resulting answer set was
the smallest in the experiment. The strategies explained by the subjects are in line
with our expectation that presenting more than 10 candidate links per requirement
adds little value.

As Figure 4 shows, a naïve strategy of just picking the first one or two candi-
date links returned by the tools would in most cases result in better accuracy than

4 Results and Data Analysis 167

Figure 5: Circle diameters show relative number of links in answer sets. Tool
output is plotted for candidate link lists of length from 1 to 6.

the subjects achieved. Also, there is a trend that subjects supported by RETRO
handed in more accurate answer sets. Pairwise comparison of subjects ordered
according to accuracy, i.e. B to E, A to F, C to G, D to H, indicates that the better
accuracy of RETRO actually spills over to the subjects’ tracing result.

Figure 5 shows relative sizes of answer sets returned by both human subjects
and the tools, presenting how the number of tool suggestions grows linearly. The
majority of human answer sets contained between one or two links per require-
ment, comparable to tools generating one or two candidate links.

The 90% confidence intervals of the differences between RETRO and ReqSim-
ile are presented in Figure 6. Since none of the 90% confidence intervals of recall,
precision, and F-measure are covered by the interval of equivalence, there is no
statistically significant equivalence of the engineers’ accuracies of traceability re-
covery, when using our choice of ∆. For completeness, we also did difference
testing with the null hypothesis: The engineers’ accuracy of traceability recovery
supported by RETRO is equal to that supported by ReqSimile. This null hypoth-
esis could not be rejected neither by a two-sided T-test nor a two-sided Wilcoxon
rank-sum test with α=0.05. Consequently, there were no statistically significant
differences on the engineers’ accuracies of traceability recovery when supported
by candidate link lists from different tools.

Our tests of significance are accompanied by effect-size statistics. Effect size
is expressed as the difference between the means of the two samples divided by
the root mean square of the variances of the two samples. On the basis of the effect
size indices proposed by Cohen, effects greater or equal 0.5 are considered to be of

168 Do Better IR Tools Improve the Accuracy of Engineers’ Traceability . . .

TREATMENT Reqs. Traced (number)
Mean Median Std. Dev. Eff. Size

RETRO 8.00 8.50 2.74
ReqSimile 8.75 10.0 3.70 -0.230

Recall
Mean Median Std. Dev. Eff. Size

RETRO 0.237 0.237 0.109
ReqSimile 0.210 0.211 0.118 0.232

Precision
Mean Median Std. Dev. Eff. Size

RETRO 0.328 0.325 0.058
ReqSimile 0.247 0.225 0.077 1.20

F-Measure
Mean Median Std. Dev. Eff. Size

RETRO 0.267 0.265 0.092
ReqSimile 0.218 0.209 0.116 0.494

Table 2: Descriptive statistics of experimental results.

medium size, while effect sizes greater or equal than 0.8 are considered large [7].
The effect sizes for precision and F-measure are high and medium respectively.
Most researchers would consider them as being of practical significance. For re-
call, the effect size is too small to say anything conclusive.

5 Threats to Validity

The entire experiment was done during one session, lowering the risk of matura-
tion. The total time for the experiment was less than one hour to help subjects keep
focused. As the answers in the debriefing questionnaire suggests, it is likely that
different subjects had different approaches to the process of artifact tracing, and
the chosen approach might have influenced the outcome more than the different
treatments. This is a threat to the internal validity. The fully randomized experi-
ment design was one way to mitigate such effects. Future replications should aim
at providing more explicit guidance to the subjects.

A possible threat to construct validity is that using printed support when tracing
software artifacts is not representing how engineers would actually interact with
the supporting IR tools, but it straightens the internal validity.

The CM-1 dataset used in the experiment, has been used in several previous
tracing experiments and case studies. The dataset is not comparable to a large-scale
industrial documentation space but is a representative subset. The CM-1 dataset
originates from a NASA project, and is probably the most referenced dataset for
requirements tracing. The subjects all do research in software engineering, most

5 Threats to Validity 169

QUESTIONS
(1=Strongly agree, 5=Strongly disagree) RETRO ReqSimile
1. I had enough time to finish the task. 4.0 3.3
2. The list of acronyms gave me enough
understanding of the domain to complete
the task. 4.3 3.8
3. The objectives of the task were
perfectly clear to me. 2.5 1.5
4. I experienced no major difficulties in
performing the task. 3.3 4.3
5. The tool output (proposed links) really
supported my task. 2.3 2.0
6. If I was performing a similar task
in the future, I would want to use a
software tool to assist. 2.3 1.8

Table 3: Results from the debriefing questionnaire. All questions were answered
using a five-level Likert item. The means for each group are shown.

Figure 6: Differences in recall, precision and F-measure between RETRO and
ReqSimile. The horizontal T-shaped bars depict confidence intervals. The interval
of equivalence is the grey-shaded area.

170 Do Better IR Tools Improve the Accuracy of Engineers’ Traceability . . .

Treatm
entR

E
T

R
O

R
eq.ID

#L
inks

Sim
.

Sim
.

Sub.A
Sub.B

Sub.C
Sub.D

1stlink
lastlink

#
/R

c
/Pr

#
/R

c
/Pr

#
/R

c
/Pr

#
/R

c
/Pr

SR
S5.1.3.5

134
0.551

0.019
1

/1
/1

1
/1

/1
3

/1
/0.33

1
/1

/1
SR

S5.1.3.9
116

0.180
0.005

4
/0.2

/0.25
1

/0
/0

1
/0

/0
2

/0
/0

SR
S5.12.1.11

156
0.151

0.004
2

/0
/0

2
/0

/0
2

/0
/0

1
/0

/0
SR

S5.12.1.8
125

0.254
0.005

2
/0.5

/0.5
0

/0
/0

3
/0.5

/0.33
0

/0
/0

SR
S5.14.1.6

101
0.280

0.006
-

1
/0

/0
1

/0.25
/1

3
/0.25

/0.33
SR

S5.14.1.8
117

0.173
0.005

-
1

/0
/0

0
/0

/0
1

/0
/0

SR
S5.18.4.3

47
0.136

0.009
-

2
/1

/0.5
3

/1
/0.3

2
/1

/0.5
SR

S5.19.1.10
135

0.140
0.004

-
-

1
/0

/0
1

/0
/0

SR
S5.19.1.2.1

101
0.151

0.006
-

-
0

/0
/0

2
/1

/0.5
SR

S5.2.1.3
127

0.329
0.005

-
-

3
/0.67

/0.67
4

/0.67
/0.5

SR
S5.9.1.1

163
0.206

0.003
-

-
2

/0
/0

-
SR

S5.9.1.9
159

0.240
0.005

-
-

-
-

Treatm
entR

eqSim
ile

R
eq.ID

#L
inks

Sim
.

Sim
.

Sub.E
Sub.F

Sub.G
Sub.H

1stlink
lastlink

#
/R

c
/Pr

#
/R

c
/Pr

#
/R

c
/Pr

#
/R

c
/Pr

SR
S5.1.3.5

145
0.568

0.004
3

/1
/0.33

4
/1

/0.25
2

/1
/0.5

1
/1

/1
SR

S5.1.3.9
142

0.318
0.029

1
/0

/0
2

/0
/0

3
/0

/0
1

/0
/0

SR
S5.12.1.11

166
0.315

0.029
1

/0
/0

1
/0

/0
2

/0
/0

0
/1

/1
SR

S5.12.1.8
111

0.335
0.022

-
0

/0
/0

1
/0

/0
4

/0.5
/0.25

SR
S5.14.1.6

134
0.397

0.021
-

4
/0.25

/0.25
3

/0.25
/0.33

2
/0.25

/0.5
SR

S5.14.1.8
170

0.397
0.029

-
2

/0
/0

2
/0

/0
2

/0
/0

SR
S5.18.4.3

143
0.259

0.021
-

3
/1

/0.33
1

/1
/1

1
/0

/0
SR

S5.19.1.10
160

0.340
0.025

-
2

/0
/0

0
/1

/1
3

/0
/0

SR
S5.19.1.2.1

146
0.433

0.021
-

-
2

/0
/0

3
/1

/0.66
SR

S5.2.1.3
151

0.619
0.018

-
-

2
/0.66

/1
1

/0.33
/1

SR
S5.9.1.1

167
0.341

0.019
-

-
2

/0
/0

0
/1

/1
SR

S5.9.1.9
157

0.527
0.018

-
-

1
/0

/0
1

/1
/1

Table
4:

C
haracterization

oftooloutputs
and

tracing
results

provided
by

the
subjects

participating
in

the
experim

ent.

6 Discussion and Future Work 171

have also worked as software developers in industry. Since the dataset is complex,
dealing with embedded development in a safety critical domain, it was challeng-
ing for the subjects to fully understand the information they received to perform
their task. In that regard, the subjects are comparable to newly employed software
engineers in industry. This limits the generalizability of the experimental results,
as software engineers normally would be more knowledgeable.

6 Discussion and Future Work

The results of the pilot experiment are inconclusive. The low number of sub-
jects did not enable us to collect strong empirical evidence. The equivalence test
(TOST) did not reject difference and the difference test (two-sided T-test) did not
reject similarity. Thus, in this experiment, neither the evidence against equality
nor difference was strong enough to reject either null hypothesis.

Although not statistically significant, we could see a trend that subjects sup-
ported with the better tool performed more accurately. Somewhat surprisingly, the
precision of the subjects was not higher than that of the results the tools produced.
For our specific task, with a time pressure, just using the tool output would gen-
erally be better than letting our subjects solve the task, using the tool output as
support. One could argue that our subjects actually made the results worse. One
direction of future research could be to explore under which circumstances this is
the case.

Our experiment is in line with the finding of Cuddeback et. al [8], stating that
subjects seem to balance recall and precision. We observed this trend in a very
different experimental setup. Foremost, our task was to trace a subset of artifacts
under time pressure using printed candidate link lists as support, as opposed to vet
a complete RTM without time pressure using a tool. Other differences include:
types of subjects and artifacts, and a sparser golden standard RTM.

Is it meaningful to study a tracing task with subjects that are not very knowl-
edgeable in the domain? Embedded software development in the space industry
is not easy to simulate in a classroom setting. Yet there is a need to understand
the return on investment of improved accuracy of IR tools in support of traceabil-
ity recovery. Controlled experiments can be one step forward. Our ambition is to
replicate this pilot experiment using a larger number of student subjects, to explore
whether any statistically significant results appear.

Recall and precision of traceability recovery tools are not irrelevant measures,
but the main focus of research should be broader. For example, Figure 4 shows that
the accuracy of RETRO is clearly better than that that of ReqSimile. However, the
effect of using RETRO in a specific traceability recovery task is not that clear, as
our pilot experiment suggests. Therefore, our future work aims at moving closer
to research about information access, especially to the sub-domain of enterprise
search, where more holistic approaches are explored. For example, we think that

172 Do Better IR Tools Improve the Accuracy of Engineers’ Traceability . . .

assessing quality aspects such as findability in the software engineering context
would mature the traceability recovery research.

Acknowledgements
This work was funded by the Industrial Excellence Center EASE - Embedded
Applications Software Engineering2. Parts of this work were funded by the Excel-
lence Center at Linköping-Lund in Information Technology (ELLIIT).

2http://ease.cs.lth.se

Bibliography 173

Bibliography

[1] G. Antoniol, G. Canfora, G. Casazza, and A. De Lucia. Information retrieval
models for recovering traceability links between code and documentation. In
Conference on Software Maintenance, pages 40–49, 2000.

[2] H. Asuncion, A. Asuncion, and R. Taylor. Software traceability with topic
modeling. In Proceedings of the International Conference on Software En-
gineering, pages 95–104, 2010.

[3] R. Baeza-Yates and B. Ribeiro-Neto. Modern information retrieval.
Addison-Wesley, 1999.

[4] L. Brodén. Requirements traceability recovery: A study of available tools.
Master thesis, Lund University, http://sam.cs.lth.se/ExjobGetFile?id=377,
2011.

[5] X. Chen. Extraction and visualization of traceability relationships between
documents and source code. In Proceedings of the International Conference
on Automated Software Engineering, pages 505–509, 2010.

[6] J. Cleland-Huang, A. Czauderna, M. Gibiec, and J. Emenecker. A machine
learning approach for tracing regulatory codes to product specific require-
ments. In Proceedings International Conference on Software Engineering,
pages 155–164, 2010.

[7] J. Cohen. Statistical power analysis for the behavioral sciences. Routledge,
1988.

[8] D. Cuddeback, A. Dekhtyar, and J. Huffman Hayes. Automated require-
ments traceability: The study of human analysts. In Proceedings of the 18th
International Requirements Engineering Conference, pages 231–240, 2010.

[9] A. De Lucia, F. Fasano, R. Oliveto, and G. Tortora. Recovering traceability
links in software artifact management systems using information retrieval
methods. Transactions on Software Engineering and Methodology, 16(4),
2007.

[10] A. De Lucia, R. Oliveto, and G. Tortora. Assessing IR-based traceability
recovery tools through controlled experiments. Empirical Software Engi-
neering, 14(1):57–92, 2009.

[11] B. Farbey. Software quality metrics: considerations about requirements and
requirement specifications. Information and Software Technology, 32(1):60–
64, 1990.

174 Do Better IR Tools Improve the Accuracy of Engineers’ Traceability . . .

[12] J. Huffman Hayes, A. Dekhtyar, and S. Sundaram. Advancing candidate link
generation for requirements tracing: The study of methods. Transactions on
Software Engineering, 32(1):4–19, 2006.

[13] J. Huffman Hayes, A. Dekhtyar, S. Sundaram, A. Holbrook, S. Vadlamudi,
and A. April. REquirements TRacing on target (RETRO): improving soft-
ware maintenance through traceability recovery. Innovations in Systems and
Software Engineering, 3(3):193–202, 2007.

[14] A. Mahmoud and N. Niu. Using semantics-enabled information retrieval in
requirements tracing: An ongoing experimental investigation. In Proceed-
ings of the International Computer Software and Applications Conference,
pages 246–247, 2010.

[15] A. Marcus and J. Maletic. Recovering documentation-to-source-code trace-
ability links using latent semantic indexing. In Proceedings of the Interna-
tional Conference on Software Engineering, pages 125–135, 2003.

[16] J. Natt och Dag, V. Gervasi, S. Brinkkemper, and B. Regnell. A linguistic-
engineering approach to large-scale requirements management. IEEE Softw.,
22(1):32–39, 2005.

[17] R. Oliveto, M. Gethers, D. Poshyvanyk, and A. De Lucia. On the equivalence
of information retrieval methods for automated traceability link recovery. In
International Conference on Program Comprehension, pages 68–71, 2010.

[18] R. Settimi, J. Cleland-Huang, O. Ben Khadra, J. Mody, W. Lukasik, and
C. DePalma. Supporting software evolution through dynamically retrieving
traces to UML artifacts. In Proceedings of the 7th International Workhop on
Principles of Software Evolution, pages 49–54, 2004.

[19] G. Spanoudakis, A. d’Avila-Garcez, and A. Zisman. Revising rules to cap-
ture requirements traceability relations: A machine learning approach. In
Proceedings of the 15th International Conference in Software Engineering
and Knowledge Engineering, 2003.

[20] S. Wellek. Testing statistical hypotheses of equivalence. Chapman and Hall,
2003.

[21] W. Wilson, L. Rosenberg, and L. Hyatt. Automated analysis of requirement
specifications. In Proceedings of the 19th international conference on Soft-
ware engineering, pages 161–171, 1997.

[22] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén.
Experimentation in software engineering: An introduction. Kluwer Aca-
demic Publications, 1st edition, 1999.

Bibliography 175

[23] Y. Zhang, R. Witte, J. Rilling, and V. Haarslev. Ontological approach for
the semantic recovery of traceability links between software artefacts. IET
Software, 2(3):185–203, 2008.

[24] X. Zou, R. Settimi, and J. Cleland-Huang. Improving automated require-
ments trace retrieval: A study of term-based enhancement methods. Empiri-
cal Software Engineering, 15(2):119–146, 2010.

