
Rainbow Perfect Matchings
October 8, 2012

Instructions

In this home assignment you are going to put together an algorithm
yourself. In the previous labs you were given the complete algo-
rithms. Here you will instead be presented with two pieces of the
algorithm and it is up to you to assemble it. The idea is to mimic
the behavior of an algorithm researcher/engineer. This is no doubt
tougher than the labs and it is recommended that you read the whole
home assignment and the related material listed in the end several
times before you actually get to work.

Description

The Rainbow Perfect Matching problem (RPM) is the following:
You are given a multigraph G = (V, E) with |V| = 2n, i.e. a graph

in which there may be multiple copies of an edge u, v for any pair
u 6= v ∈ V. In addition, each edge e ∈ E has a color c(e) ∈ [n]. The
question is whether there exists a rainbow perfect matching in G, i.e. a
subset of the edge E′ ⊆ E such that

• Each vertex in V is the endpoint of exactly one edge in E′.

• There is exactly one edge in E′ of every color.

Figure 1: Left: An instance to the RPM
problem. Right: A solution to the same
instance.

Your task is to come up with an algorithm for a restricted version
of RPM: We define bRPM as the RPM problem on balanced bipartite
graphs, i.e. when we know that V can be partitioned in two equal
halfs V1 and V2 such that every edge e ∈ E has one endpoint in V1

and the other in V2.1 1 Once you have found the algorithm
for bRPM it is not too difficult to
modify your algorithm to work for the
general RPM. You’ll need to exchange
the biadjacency matrix for something
else but similar. This is however not
part of the assignment.

Figure 2: Left: A bipartite multigraph
with coloured edges. Middle: A rain-
bow perfect matching. Right: A graph
without a rainbow perfect matching.

The bRPM problem is an NP-complete problem, which follows
by an easy reduction from 3-Dimensional Perfect Matching ((8.20) in
Kleinberg and Tardos). Thus, you should expect to end up with an
exponential time algorithm. Below are the descriptions of the two
pieces.

Algorithmic Piece 1

bRPM generalizes ordinary bipartite graph perfect matching: Given
a bipartite graph find out if there is a subset of the edges such that
every vertex is part of precisely one of the chosen edges. In class
(lecture 8, see also [S11] in the related material section at the end of
this assignment) we learned how to solve for bipartite perfect match-
ings with an algebraic technique. We reiterate it here in a slightly

rainbow perfect matchings 2

modified variant without the use of fields of characteristic two. We
anticipate that you probably will find the version below easier to
implement:

The following algorithm decides if a bipartite graph G contains a
perfect matching:

1. Fix a prime p >> n.

2. In the biadjacency matrix AG of the graph G, replace each 1 with
a random value between 0 and p. Make your random choices
uniformly and independently at random.

3. Compute mG = det(AG) (mod p).

4. If mG 6= 0 return “yes” else return “no”.

The idea behind the algorithm is that mG actually computes a
polynomial in edge “variables”, here replaced by random values,
such that there is precisely one monomial in the polynomial for each
perfect matching in the graph. The success guarantee is given di-
rectly by the Schwartz-Zippel lemma.

Algorithmic Piece 2

Suppose we had some efficient means to actually count the number
of perfect matchings in a bipartite multigraph (no colors here), then
we could use the technique of inclusion–exclusion (lecture 4, see also
[Hu11] in the related material section at the end of this assignment)
to count the rainbow perfect matchings in a bRPM instance. To see
how, let pm(G) for a bipartite (uncolored) multigraph G be the num-
ber of perfect matchings in G.

The following algorithm computes the number of rainbow per-
fect matchings in the input bRPM given by the graph G and a color
function c : E→ [n]:

1. Set sum = 0.

2. For each X ⊆ [n].

3. Set GX = (V1, V2, EX) where EX = {e|e ∈ E, c(e) ∈ X}.

4. sum = sum + (−1)n−|X|pm(GX).

5. end

6. return sum.

The reason it works is that perfect matchings that do not use all
colors, and hence necessarily use some color multiple times, will

rainbow perfect matchings 3

be counted an even number of times. Exactly half of them will be
multiplied with the sign factor −1, so they will cancel each other.
Formally, if the colors used by the perfect matching m is C ⊂ [n], we
will count the perfect matching m in pm(GX) for every X ⊇ C. For
every such X for which n− |X| is odd, we will subtract the matching.
But for every X for which n− |X| is even, we will add the matching.
Altogether we will get a net result of zero from the matching since
there are as many odd sized X’s as even sized ones in the set {X|C ⊆
X ⊆ [n]}. Rainbow perfect matchings on the other hand, will only be
counted once, in pm(G[n]).

Unfortunately, we don’t have any efficient algorithms to count the
number of perfect matchings, but we do have algorithmic piece 1. We
need to replace pm(G) for something else that accounts for all perfect
matchings in G. We will not be able to count the number of rainbow
perfect matchings, but we will be able to detect if there is one.
Hint: the resulting algorithm should use one “variable” for each colored edge
in the input bRPM above.

Deliverables

Algorithm description

Describe in pseudo code how the two algorithmic pieces can be com-
bined into an algorithm for bRPM.

Runtime bound

Derive the runtime bound in O(.) notation in terms of n.

Failure bound

Present an upper bound on the probability that the algorithm fails to
report a solution to a bRPM instance that has a solution.

Implementation

Implement the algorithm in a programming language of your choice.
The trickiest part is probably to compute the determinants. Note
that you can not use Matlab’s det and take the answer modulo the
prime p since the internal calculations may overflow. You need to
implement a determinant algorithm. In the appendix we present such
an implementation of a determinant mod p function in Matlab. Use a
prime p such that p2 < 230. That way you can represent elements and
count with them using a standard 32bit int datatype.

rainbow perfect matchings 4

Benchmark

Construct some small instances of the bRBM and test your imple-
mentation. Use as large n as you seem fit with respect to the running
time. The algorithm should finish in a few seconds for the largest n.
Try to make interesting instances that have no solutions as well as in-
stances in which you plant a solution. Test the behavior with respect
to the choice of p. If you make the prime p just above n, say ≈ 2n,
you should be getting false negatives quite easily.

Related Material

[S11] http://www.cs.berkeley.edu/~sinclair/cs271/n2.pdf
[Hu11] http://arxiv.org/abs/1105.2942

rainbow perfect matchings 5

Appendix

Matlab code to compute the determinant of a square matrix A mod-
ulo a prime p.

function [d]=detg(A,p)

n=size(A,1);

d=1;

rs=zeros(1,n);

for i=1:n,

who=-1;

for j=1:n,

if rs(j)==0 && A(j,i)~=0,

rs(j) = i;

who = j;

d = mod(d*A(j,i),p);

break;

end;

end;

if who==-1,

d = 0;

break;

end;

for j=1:n,

if (rs(j)==0 && A(j,i)~=0)

d=mod(d*modexp(A(who,i),p-2,p), p);

A(j,:) = mod(A(who,i)*A(j,:)-A(j,i)*A(who,:),p);

end;

end;

end;

if (d>0),

sgn = n;

vis=zeros(1,n);

for i=1:n,

if vis(i)==0,

j=i;

sgn=sgn-1;

while (vis(j)==0),

vis(j) = 1;

j=rs(j);

end;

end;

end;

if (mod(sgn,2)==1),

d=p-d;

rainbow perfect matchings 6

end;

end

end

function [r]=modexp(a,e,p)

if (e==1)

r = a;

else

r = modexp(a,floor(e/2),p);

r = mod(r*r,p);

if (mod(e,2)==1)

r = mod(r*a,p);

end

end

end

