Exam 26 October 2012, 8:00-13:00, Sparta:A-B

EDANSS5 Advanced Algorithms
Comments

1a For instance, A = {1,3,4,6}, B = {2}, C = {5} of cutsize 6.
(There are other correct answers.)

b A = {1,4,5}, B = {2,6}, C = {6}. This is the unique correct
answer.

1c The simplest answer seems to be the 3-star,

G=({1,234},{{1,4},{2,4},{3,4}})

with optimal solution A = {1},B = {2,3},C = {4} (cutsize 3)
and algorithm’s solution A = {1,4},B = {2},C = {3} (cutsize
2). There are many other ways of solving this. Some students
managed to find only instances with approximation factor % or
other nonoptimal answers, these were graded with 3 points.

1d There are many, many ways of doing this correct. Here’s one of
the neater: “Consider an edge ¢ = v;vx not in the cut. We will as-
sociate two unique edges that are in the cut with e. This shows that
at least %|E | > %OPT edges are in the cut. The association is given
as follows. Assume without loss of generality that k > j. When vy
was added to one of the three parts, there must have been edges
vj1v and v} vy to each of the two other parts (j/ < k and j < k).
(There may have been many such edges, for definiteness pick the
ones with j’ and j” minimal. Note that the two edges are never as-
sociated with another edge than v;vy because the association only
happens via the highest-numbered endpoint vy.) Both v; vy and
vjnv have endpoints in different parts, so they will each contribute
to the cut.” (This was super-formal. Most student answers will
miss small points such as uniqueness, or do the argument only for
vjvg € A; full marks were still obtained by those.)

What doesn’t work is to begin by saying “The worst case is when
.. .”—this is not how worst-case arguments work. The melody of
a worst-case argument is “Consider an arbitrary case. We have
...” or something similar: they make no assumption on structural
properties of the input.

1e The argument I had in mind is the following: “Set € = 5. and
run the hypothetical approximation algorithm on an instance of
Max Tripartition. By assumption, the algorithm find a partition of

size at most ﬁ below the optimum. Since the optimum is at most
|E| = m, and the solution is integral, the approximation algorithm
solves the decision problem, and by assumption runs in polyno-
mial time.” For this argument, it’s essential that the student tells
me what € is; answers of the form “by making e sufficiently small”
or similarly imprecise statements received 1 point. A popular alter-
native argument, was to reduce from 3-colouring, which is known
to be hard to approximate. Not what I had in mind, but perfectly
correct.

1f “Initially, set Ay = {v1},..., Ay = {vx}. Then, for every i with
k < i < n, greedily add v; to the set A; to which it has the fewest
edges, breaking ties arbitrarily. The resulting approximation factor
is (k — 1)/k.” Most students give a full argument for why the
approximation factor is what it is. A popular wrong answer gives
the approximation factor % Getting the algorithm right but the
analysis wrong earns % points.

1¢ “Initially, set A = {v1},B = {vp}. Then, for every i with 1 <
i < n, if there are more edges from A to v; than from v; to B, add
v; to A (otherwise to B). The resulting approximation factor is
1.7 (There are 4 quantities in play: edges from A to v;, from v; to
A, from B to v;, and from v; to B. The algorithm makes the best
choice, so it throws away at most 3 edges for each edge added.) A
popular wrong answer gives the approximation factor %

2b “Construct the set L of all lines between 2 points of S; L as size n?.

For every subset of k lines from L, check if they cover all points.
There are (%‘) = (Vf) such subsets.” There are many other ways of
doing this.

2c “If the k + 1 colinear points are not covered by a single line, they
must each lie on their own line. This requires k +1 > k lines.”

2d o , but there are many other examples.

2¢ First check if there are k + 1 colinear points in S. (This can be

done by considering every of the n? lines | between 2 points in S
and checking if I contains k 4 1 points. The time for this part is
O(n3). If such k + 1 points exist, cover them with a single line (this
is correct by 2c) and remove them. So assume now without loss of
generality that S contains at most k colinear points. If S has more
than k? points, answer “no”. (Every of the k lines could cover at
most k points each.) Otherwise solve the problem by exhaustive

search. The running time for the last step depends on |S|, which
depends only on k.

3b Check all subsets of C. Running time O*(2").

3¢ View U as the vertex set of a graph and C has the edge set. Then
(U, C) contains a perfect matching of size r if and only if the U can
be covered using n — r sets (namely, the r 2-sets from the perfect
matching, each disjointly covering 2 points, and n — 2r other sets,
one per point). Perfect matching is known to be in P.

3d By 3¢, we can assume that C contains at least one set S with |S| >
3. Branch on whether S belongs to the solution or not. In the first
case, at least 3 elements are removed from U, and one from C. In
the second case, one element is removed from C. The running time
intermsof n +mis T(n+m) =T(n+m—1) 4+ T(n +m — 4), with
solution O*(1.39"*™). Initially, we have n + m = 2n, so the total
running time grows as 1.39%" < 1.412" < ﬁzn = 2"

40 S=1{1,2,3,5,6}.

4b “Pr(v € S) = 1 —2-%): the probability that a neighbour of v
has lower priority is % By independence, all neighbours of v have
lower priority with probability (%)d(”), which is the complemen-
tary event v ¢ S5.” Note the phrase “by independence”. Popular
wrong answer (%)d(v) receives 3 points. Several students have
difficulties assessing Pr(p(u) < p(v)) (which is 1). Other popu-
lar wrong answers are 1 — 1/ (d(v) + 1) and d(v)/(d(v) + 1) and
the puzzling 1 — p(v)*®) and ¥; p(v;)d(v;) (which is not even a
probability).

gc “No. If u € Sthenv ¢ S.” There are many ways of arguing for
this, including very proper ones like “Pr(u € SAv € S) = 0,
but Pr(u € S) = 3 and Pr(v € S) = 1.7 This is a good place
to remind students the read the bloody question, several students
start with “Yes.” (which is wrong) and then proceed to give a
perfectly correct answer for dependence (which is right). I have been
very charitable in re-interpreting these answers, but it requires
that a careful argument is inluded. Also, many students fail to say
either “yes” or “no”, again leaving me to guess what the answer is
supposed to be (and trust me, not all arguments are clear enough
to determine that.)

4d “1.” A different way to ask the question would have been “Prove
that the algorithm always finds a vertex cover.”

ge “Introduce the indicator random variable X;, with X; = 1ifv; € S
and 0 otherwise. From 4b we have E[X;] =Pr(X; =1) =1 — %d(v).

Then, by linearity of expectation, E[|S|] = E[YX;] = L E[X;] =
n(l— %d(z}).” Not solving 4b (or inheriting a wrong answer) loses
you no points. You do lose points for not including an argument,
at the very least write “by linearity of expectation” or introduce
the indicator random variables. Failure to do so, loses you % to1l
points. Some students compute the expectation directly from the
definition (instead of using the indicator random variable trick
and linearity); this earns full points and my respect, but is an
immensely complicated way of solving this exercise.

4f “The optimum solution has size at most %n, by taking every other
node. From 4b, the algorithm finds a solution of size at least %n.
The resulting approximation factor is 3.” There is some confusion
about what to divide by what (including in the literature), I've
given full marks to any interpretation that made sense, as long as
the upper bound on OPT and the lower bound on the algorithm
were correct.

4¢ “The minimum vertex cover is given by S = {1}. The algorithm
finds this S if and only if p(1) < p(i) foralli = 2,...,n. This
happens with probability %.” If you want, you can expand on
the reason for the probabilty (“In any choice of priorities, exactly
1 vertex has the minimum priority. By a symmetry argument,
every vertex is equally likely.” A very popular wrong answer is
to observe that Pr(p(1) < p(i)) = % (which is correct) and then
wrongly continue “so p(1) is smaller than p(i) foralli = 2,...,n
with probability %nil.” This argument assumes independence
of the events p(1) < p(i) (otherwise you couldn’t multiply their
probabilities), but these events are not independent.

4h “The success probabilty is g = % Thus, the probability that ¢
independent repetitions all fail is (1 — q)f. For t = g~! = n this
value is at most % according to 13.1.”

	Exam 26 October 2012, 8:00–13:00, Sparta:A–B
	EDAN55 Advanced Algorithms
	Comments

