EDAN55, supplementary notes for fixed parameter tractability

October 24, 2012

This note extends the presentation in Kleinberg and Tardos, chapter 10 with a case study of finding a *k*-path in a graph. In particular, it introduces Bodleander's algorithm. This algorithm provides a good example of dynamic programming over a tree decomposition, but, more importantly, finds a (not necessarily optimal) tree decomposition in a natural way. Moreover, we see the classical colour coding technique. That section makes sense after an introduction to randomized algorithms, such as chapter 13 *ibid*.

10.6 Case study: *k*-path

A *k*-path in a graph is a simple path of length *k*, i.e., a sequence of distinct vertices (v_1, \ldots, v_k) such that $v_i v_{i+1} \in E$ for $1 \le i < k$.

The *k*-path problem is given a connected graph G = (V, E) and integer *k*, determine if *G* has a *k*-path. The problem makes sense for both directed and undirected graphs. Setting k = |V| the problem is known as the Hamiltonian path problem, which is well known to be NP-hard. In particular, there is little hope of solving the *k*-path problem in time polynomial in *n* and *k*.

First attempts

The brute force attempt is to check every subset of *k* vertices and see if they form a simple path in *G* by considering all of their orderings. The running time is within a polynomial factor of $O(\binom{n}{k}k!k)$.

We can use *decrease-and-conquer* from each starting vertex $v \in V$ and iterate over all neighbours. Indeed, if we let $P_i(v_1)$ denote the set of sequences v_1, \ldots, v_i of neighbouring vertices in *G* (not necessarily simple), then

$$P_{i}(v_{1}) = \bigcup_{v_{2}: v_{1}v_{2} \in E} \{ v_{1} \cdot \alpha : \alpha \in P_{i-1}(v_{2}), v_{1} \notin \alpha \},$$
(1)

where \cdot denotes concatenation.¹ This produces all sequences of distinct neighbouring vertices of length *k* in *G*, their number is $n(n-1)\cdots(n-k-1)$, the *falling factorial* $n^{\underline{k}} = O(n^k)$. We need to check each of them to see that it is simple; the total time is within a polynomial factor of $O(n^k k)$.

FPT for regular graphs

Assume that *G* is regular, i.e., all vertices $u \in V$ have the same degree $deg(u) = \delta$. In this case it is easy to see that the *k*-path problem is FPT.

¹ Maybe give as pseudocode instead.

° rev. fa5a008

If $k \leq \delta$ then the *k*-path problem can be solved by depth first search: Start at an arbitary vertex, mark it, and go to an unmarked neighbour, until *k* vertices are marked. At no intermediate stage can you find yourself surrounded by *k* marked vertices, so there is always an unmarked neighbour. The running time is $O(k\delta) = O(kn)$.

If $k > \delta$ then the decrease-and-conquer approach works. The number of neighbours considered at each step in (1) is δ , so the total number of sequences constructed can be bounded by $\delta^{\underline{k}}$, and the total running time becomes $O(k^k)$.

Bodlaender's algorithm

Many of the algorithmic tools for algorithms on tree decompositions were developed by Hans Bodlaender. In particular, an early paper² develops an FPT algorithm for k-path for general graphs.

Perform a depth first search (DFS) from an arbitrary vertex r, constructing a DFS tree T rooted at r. If the depth of T is at least k, then the corresponding path from root to leaf is a k-path, and we're done.

Otherwise, the root-leaf paths (all of which have length less than k) form the pieces of a tree-decomposition of size k. To be precise, for every node t of T, let V_t consist of the vertices on the unique path from t to r in T.

We claim that $(T, \{V_t : t \in T\})$ is tree decomposition of *G* of tree-width *k*.

- *Node coverage.* Node coverage is easily established in this tree decomposion, because every vertex in v is also a node in T. In particular, v belongs to V_v . (In general, the tree T in a tree decomposition can have completely different nodes than G.)
- *Edge coverage.* A fundamental property of DFS trees is that they have no "crossing edges:" every edge in the graph goes from a vertex in the DFS tree to its ancestor, cf. (3.7) in [KT, p. 85]. Therefore every graph edge is fully contained in some piece. (For instance, the graph edge $uv \in E$ is fully contained in V_t for every t in the subtree of T rooted at u.)
- *Coherence.* Let t_1, t_2, t_3 be three nodes of T such that t_2 lies on the path from t_1 to t_3 . Let $v \in V$ belong to both V_{t_1} and V_{t_3} . Since both V_{t_1} and V_{t_3} contain the vertex v, it must lie on both the path from t_1 to r and from t_3 to r in T. In particular, v is a common ancestor in T of t_1 and t_3 . If t_2 lies on the path from t_2 and t_3 then v must be an ancestor of t_2 .³ But then v lies on the path from t_2 to r, in particular it belongs to V_{t_2} .

³ True, but probably needs a case analysis. Note to self: work this out.

Tree-width. Every piece contains at most k - 1 elements, because the distance in *T* from *t* to *r* is less than *k*.

We solve the *k*-path problem using dynamic programming over the tree decomposition $(T, \{V_t : t \in T\})$ in same the fashion of the maximum independent set algorithm of section 10.4.

Modifying the tree-decomposition. We will exploit the fact that the tree decomposition defined above has very special structure, namely that if t_1 is a parent of t_2 in the tree decomposition thue $V_{t_1} \subseteq V_{t_2}$. In fact, we have $V_{t_1} = V_{t_2} - \{t_2\}$. This makes our constructions slightly simpler than for a general tree decomposition. However, our assumption is not crucial: an algorithm for finding a longest path in graph of tree-width k using a general tree decomposition can also be given, and within the same time bounds.

However, there is a further simplification of the tree decomposition that we want to perform before moving on. The DFS tree *T* can have high degree, so we transform *T* into a binary tree using a straightforward modification. Suppose that node *t* has children t_1, \ldots, t_d with d > 2. Remove the edges (t_i, t) for $i = 2, \ldots, d$ and introduce fresh nodes t'_i for each $i = 2, \ldots, d - 1$. Then connect these nodes into a binary tree by adding the edges (t_i, t'_i) for $i = 2, \ldots, d - 1$, the edge (t'_i, t'_{i-1}) for $i = 3, \ldots, d - 1$, and finally the edges (t'_2, t) and (t_d, t'_{d-1}) . See figure 2.

This results in a new, binary tree T'. We complete the tree decomposition by specifying the pieces associated with the new nodes t'_i by setting $V_{t'_i} = V_t$ for all i = 2, ..., d. In other words, every fresh node is associated with the piece of the original parent t. It is straightforward to check that this is still a tree-composition of tree-width k. We will abuse notation and continue using the letter T for the transformed tree T'.

Defining the subproblems. As in section 10.4, let T_t denote the subtree of T rootet at t, let V_t be the vertices associated with $t \in T$, and let G_t denote the subgraph of G induced by the vertices in the pieces associated with the nodes of T_t .

We define the subproblems of our dynamic programming solution for each subtree T_t as follows. Let $\overline{w} = w_1, \ldots, w_r$ be a sequence of vertices from V_t without repetitions, and set $W = w_1, \ldots, w_r$. Then the subproblem $f(\overline{w})$ is defined as the length of a longest simple path in G_t that is *consistent* with the ordering w_1, \ldots, w_r . By consistent we mean that the path visits the vertices from W in the order given by \overline{w} ; the path can visit other vertices in $G_t \setminus V_t$ in between, but no vertices in $V_t \setminus W$. If no such path exists, the we set $f(\overline{w}) = 0$.

The number of subproblems at node *t* is $\sum_{r=0}^{k} {k \choose r} r! \leq k! 2^{k}$.

Figure 2: Transformation of a node $t \in T$ with more than 2 children.

Building Up Solutions. We proceed to show how solutions to subproblems are constructed.

For a leaf *t*, the subgraph *G*_t is just the graph induced by *V*_t. We will solve this suproblem by exhaustive search. To be precise, to compute the subproblem *f* at a leaf node *t* we iterate over all choices of $W \subseteq V_t$, and all *r*! orderings w_1, \ldots, w_r of the r = |W| vertices in *W*, and check that the sequence of vertices w_1, \ldots, w_r defines a simple path, i.e., we check that that $w_i w_{i+1} \in E$ for $1 \le i < r$. If so, we set $f(\overline{w}) = r$, otherwise 0.

Suppose node t' is a child of node t in T. Let $\overline{w}' = w'_1, \ldots, w'_r$ denote a subproblem associated with t' and let $\overline{w} = w_1, \ldots, w_r$ denote a subproblem associated with t. We say that \overline{w}' is *compatible* with \overline{w} if the two sequences contain the same vertices in the same order, except for possibly t' itself as a detour. Formally, either $\overline{w}' = \overline{w}$ or there is some j such that $\overline{w}' = w_1, \ldots, w_j, t', w_{j+1}, \ldots, w_r$ with $w_j t' \in E$ and $t'w_{j+1} \in E$.

Now consider a node t with two children t_1 and t_2 and assume we already computed the optimum solutions f_1 and f_2 for all subproblems associated with the children. Then for subproblem \overline{w} of length r set

$$f(\overline{w}) = \max_{\overline{w}_1, \overline{w}_2} \{ f_1(\overline{w}_1), f_2(\overline{w}_2), f_1(\overline{w}_1) + f_2(\overline{w}_2) - r \}$$

where the maximum is taken over all subproblems \overline{w}_i associated with t_i for i = 1, 2 that are compatible with \overline{w} . Note that these subproblems encode all ways of traversing G_t because there is no edge between t_1 and t_2 in G.

Nodes with only one child are handled in a similar fashion.

The time for the computation of $f_t(\overline{w})$ is $O(k^2)$, so f_t is computed for all subproblems in time $O(k!2^kk^2)$. Finally, the total time for the entire computation becomes $O(k!2^kk^2 \cdot m)$. This is of the desired form $f(k)n^{O(1)}$.

Colour coding

A famous randomized algorithm by Alon, Yuster, and Zwick improves Bodlaender's algorithm both in running time and simplicity of exposition.

- 1. Give each vertex $v \in V$ a random value $\chi(v) \in \{1, 2, ..., k\}$, called a *colour*.⁴
- 2. Find a *rainbow coloured k*-path, i.e., a *k*-path on which every colour appears. (And therefore appears exactly once.)

Consider a *k*-path *P* in the given graph. The vertices of *P* admit k^k different colourings, of which k! are rainbow colourings. Thus the

⁴ This is not a proper colouring in the sense of graph colouring, so edges uv with $\chi(u) = \chi(v)$ can occur.

 $5 r! \geq \sqrt{2\pi r} \left(\frac{r}{a}\right)^r$

event *R* that *P* is rainbow coloured happens with probability

$$\Pr(R) = \frac{k!}{k^k} \ge \sqrt{2\pi k} \frac{1}{e^k}.$$

using Stirling's formula.⁵ The remarkable thing is that Pr(R) is merely exponential in k, instead of 1/k!.

Determining if a coloured graph contains a rainbow *k*-path can be accomplished using dynamic programming. For every subset $X \subseteq \{1, ..., k\}$ of colours and vertex $u \in V$, let P(X, u) be true if there is a path of length |X| starting in *u* that uses exactly the colours in *X*. (In particular, such paths are simple.) Then

$$P(X, u) = \bigwedge_{uv \in E} P(X - \chi(u), v) \quad \text{for } \chi(v) \in X, |X| > 1,$$

and $P(\{r\}, u)$ true if and only if $r = \chi(u)$. The graph *G* has a rainbow coloured *k*-path if and only if $P(\{1, ..., k\}, u)$ holds for some *u*. Using dynamic programming, the values $P(\{1, ..., k\}, u)$ can be computed in time $O(2^k n)$ for every *u*, so the rainbow coloured *P* can be detected in time $O(2^k n^2)$. The algorithm takes $O(2^k n)$ space.

By repeating the procedure $t = 1/\Pr(R)$ times, the path *P* becomes rainbow coloured (and is therefore detected) with constant nonzero probability

$$(1 - \Pr(R))^{1/\Pr(R)} \ge \frac{1}{4}$$

in FPT time

$$O(2^k n^2 \Pr(R)^{-1}) = O(2^k n^2 e^k) = O(5.44^k n^2).$$