
EDAN55, supplementary notes for fixed parameter
tractability
October 24, 2012 0 rev. fa5a008

This note extends the presentation in Kleinberg and Tardos, chap-
ter 10 with a case study of finding a k-path in a graph. In particular,
it introduces Bodleander’s algorithm. This algorithm provides a good
example of dynamic programming over a tree decomposition, but,
more importantly, finds a (not necessarily optimal) tree decomposition
in a natural way. Moreover, we see the classical colour coding tech-
nique. That section makes sense after an introduction to randomized
algorithms, such as chapter 13 ibid.

10.6 Case study: k-path
A k-path in a graph is a simple path of length k, i.e., a sequence of
distinct vertices (v1, . . . , vk) such that vivi+1 ∈ E for 1 ≤ i < k.

The k-path problem is given a connected graph G = (V, E) and
integer k, determine if G has a k-path. The problem makes sense for
both directed and undirected graphs. Setting k = |V| the problem
is known as the Hamiltonian path problem, which is well known to
be NP-hard. In particular, there is little hope of solving the k-path
problem in time polynomial in n and k.

First attempts
The brute force attempt is to check every subset of k vertices and see
if they form a simple path in G by considering all of their orderings.
The running time is within a polynomial factor of O((n

k)k!k).
We can use decrease-and-conquer from each starting vertex v ∈ V

and iterate over all neighbours. Indeed, if we let Pi(v1) denote the set
of sequences v1, . . . , vi of neighbouring vertices in G (not necessarily
simple), then

Pi(v1) =
⋃

v2 : v1v2∈E
{ v1 · α : α ∈ Pi−1(v2), v1 /∈ α } , (1)

where · denotes concatenation.1 This produces all sequences of 1 Maybe give as pseudocode instead.

distinct neighbouring vertices of length k in G, their number is
n(n − 1) · · · (n − k − 1), the falling factorial nk = O(nk). We need
to check each of them to see that it is simple; the total time is within
a polynomial factor of O(nkk).

FPT for regular graphs
Assume that G is regular, i.e., all vertices u ∈ V have the same degree
deg(u) = δ. In this case it is easy to see that the k-path problem is
FPT.

edan55, supplementary notes for fixed parameter tractability 2

If k ≤ δ then the k-path problem can be solved by depth first
search: Start at an arbitary vertex, mark it, and go to an unmarked
neighbour, until k vertices are marked. At no intermediate stage can
you find yourself surrounded by k marked vertices, so there is always
an unmarked neighbour. The running time is O(kδ) = O(kn).

If k > δ then the decrease-and-conquer approach works. The
number of neighbours considered at each step in (1) is δ, so the total
number of sequences constructed can be bounded by δk, and the total
running time becomes O(kk).

Bodlaender’s algorithm
Many of the algorithmic tools for algorithms on tree decompositions
were developed by Hans Bodlaender. In particular, an early paper2 2 Hans L. Bodlaender. On linear time

minor tests with depth-first search. J. Algo-
rithms, 14(1):1–23, 1993.

develops an FPT algorithm for k-path for general graphs.

4

51

2

3

G 4

5

1

2

3

T

Figure 1: The Bull graph G and a DFS
tree T of G starting at r = 4.

Perform a depth first search (DFS) from an arbitrary vertex r,
constructing a DFS tree T rooted at r. If the depth of T is at least k,
then the corresponding path from root to leaf is a k-path, and we’re
done.

Otherwise, the root-leaf paths (all of which have length less than
k) form the pieces of a tree-decomposition of size k. To be precise,
for every node t of T, let Vt consist of the vertices on the unique path
from t to r in T.

We claim that (T, {Vt : t ∈ T}) is tree decomposition of G of tree-
width k.

Node coverage. Node coverage is easily established in this tree decom-
posion, because every vertex in v is also a node in T. In particular,
v belongs to Vv. (In general, the tree T in a tree decomposition can
have completely different nodes than G.)

Edge coverage. A fundamental property of DFS trees is that they have
no “crossing edges:” every edge in the graph goes from a vertex
in the DFS tree to its ancestor, cf. (3.7) in [KT, p. 85]. Therefore
every graph edge is fully contained in some piece. (For instance,
the graph edge uv ∈ E is fully contained in Vt for every t in the
subtree of T rooted at u.)

Coherence. Let t1, t2, t3 be three nodes of T such that t2 lies on the
path from t1 to t3. Let v ∈ V belong to both Vt1 and Vt3 . Since both
Vt1 and Vt3 contain the vertex v, it must lie on both the path from
t1 to r and from t3 to r in T. In particular, v is a common ancestor
in T of t1 and t3. If t2 lies on the path from t2 and t3 then v must
be an ancestor of t2.3 But then v lies on the path from t2 to r, in 3 True, but probably needs a case

analysis. Note to self: work this out.particular it belongs to Vt2 .

edan55, supplementary notes for fixed parameter tractability 3

Tree-width. Every piece contains at most k− 1 elements, because the
distance in T from t to r is less than k.

We solve the k-path problem using dynamic programming over
the tree decomposition (T, {Vt : t ∈ T}) in same the fashion of the
maximum independent set algorithm of section 10.4.

Modifying the tree-decomposition. We will exploit the fact that the
tree decomposition defined above has very special structure, namely
that if t1 is a parent of t2 in the tree decomposition thne Vt1 ⊆ Vt2 .
In fact, we have Vt1 = Vt2 − {t2}. This makes our constructions
slightly simpler than for a general tree decomposition. However, our
assumption is not crucial: an algorithm for finding a longest path in
graph of tree-width k using a general tree decomposition can also be
given, and within the same time bounds.

t

t1 t2 t3 t4 t5

t

t1 t′2

t2 t′3

t3 t′4

t4 t5

Figure 2: Transformation of a node
t ∈ T with more than 2 children.

However, there is a further simplification of the tree decomposition
that we want to perform before moving on. The DFS tree T can have
high degree, so we transform T into a binary tree using a straightfor-
ward modification. Suppose that node t has children t1, . . . , td with
d > 2. Remove the edges (ti, t) for i = 2, . . . , d and introduce fresh
nodes t′i for each i = 2, . . . , d − 1. Then connect these nodes into a
binary tree by adding the edges (ti, t′i) for i = 2, . . . , d− 1, the edge
(t′i, t′i−1) for i = 3, . . . , d− 1, and finally the edges (t′2, t) and (td, t′d−1).
See figure 2.

This results in a new, binary tree T′. We complete the tree decom-
position by specifying the pieces associated with the new nodes t′i by
setting Vt′i

= Vt for all i = 2, . . . , d. In other words, every fresh node is
associated with the piece of the original parent t. It is straightforward
to check that this is still a tree-composition of tree-width k. We will
abuse notation and continue using the letter T for the transformed
tree T′.

Defining the subproblems. As in section 10.4, let Tt denote the subtree
of T rootet at t, let Vt be the vertices associated with t ∈ T, and let
Gt denote the subgraph of G induced by the vertices in the pieces
associated with the nodes of Tt.

We define the subproblems of our dynamic programming solution
for each subtree Tt as follows. Let w = w1, . . . , wr be a sequence of
vertices from Vt without repetitions, and set W = w1, . . . , wr. Then
the subproblem f (w) is defined as the length of a longest simple path
in Gt that is consistent with the ordering w1, . . . , wr. By consistent we
mean that the path visits the vertices from W in the order given by w;
the path can visit other vertices in Gt \ Vt in between, but no vertices
in Vt \W. If no such path exists, the we set f (w) = 0.

The number of subproblems at node t is ∑k
r=0 (

k
r)r! ≤ k!2k.

edan55, supplementary notes for fixed parameter tractability 4

Building Up Solutions. We proceed to show how solutions to sub-
problems are constructed.

For a leaf t, the subgraph Gt is just the graph induced by Vt. We
will solve this suproblem by exhaustive search. To be precise, to
compute the subproblem f at a leaf node t we iterate over all choices
of W ⊆ Vt, and all r! orderings w1, . . . , wr of the r = |W| vertices in
W, and check that the sequence of vertices w1, . . . , wr defines a simple
path, i.e., we check that that wiwi+1 ∈ E for 1 ≤ i < r. If so, we set
f (w) = r, otherwise 0.

Suppose node t′ is a child of node t in T. Let w′ = w′1, . . . , w′r
denote a subproblem associated with t′ and let w = w1, . . . , wr denote
a subproblem associated with t. We say that w′ is compatible with w if
the two sequences contain the same vertices in the same order, except
for possibly t′ itself as a detour. Formally, either w′ = w or there is
some j such that w′ = w1, . . . , wj, t′, wj+1, . . . , wr with wjt′ ∈ E and
t′wj+1 ∈ E.

Now consider a node t with two children t1 and t2 and assume we
already computed the optimum solutions f1 and f2 for all subprob-
lems associated with the children. Then for subproblem w of length r
set

f (w) = max
w1,w2
{ f1(w1), f2(w2), f1(w1) + f2(w2)− r}

where the maximum is taken over all subproblems wi associated
with ti for i = 1, 2 that are compatible with w. Note that these sub-
problems encode all ways of traversing Gt because there is no edge
between t1 and t2 in G.

Nodes with only one child are handled in a similar fashion.
The time for the computation of ft(w) is O(k2), so ft is computed

for all subproblems in time O(k!2kk2). Finally, the total time for the
entire computation becomes O(k!2kk2 ·m). This is of the desired form
f (k)nO(1).

Colour coding
A famous randomized algorithm by Alon, Yuster, and Zwick im-
proves Bodlaender’s algorithm both in running time and simplicity
of exposition.

1. Give each vertex v ∈ V a random value χ(v) ∈ {1, 2, . . . , k}, called
a colour.4 4 This is not a proper colouring in the

sense of graph colouring, so edges uv
with χ(u) = χ(v) can occur.2. Find a rainbow coloured k-path, i.e., a k-path on which every colour

appears. (And therefore appears exactly once.)

Consider a k-path P in the given graph. The vertices of P admit
kk different colourings, of which k! are rainbow colourings. Thus the

edan55, supplementary notes for fixed parameter tractability 5

event R that P is rainbow coloured happens with probability

Pr(R) =
k!
kk ≥

√
2πk

1
ek .

using Stirling’s formula.5 The remarkable thing is that Pr(R) is 5 r! ≥
√

2πr
(r

e
)r

merely exponential in k, instead of 1/k!.
Determining if a coloured graph contains a rainbow k-path can

be accomplished using dynamic programming. For every subset
X ⊆ {1, . . . , k} of colours and vertex u ∈ V, let P(X, u) be true if there
is a path of length |X| starting in u that uses exactly the colours in X.
(In particular, such paths are simple.) Then

P(X, u) =
∧

uv∈E
P(X− χ(u), v) for χ(v) ∈ X, |X| > 1 ,

and P({r}, u) true if and only if r = χ(u). The graph G has a rain-
bow coloured k-path if and only if P({1, . . . , k}, u) holds for some
u. Using dynamic programming, the values P({1, . . . , k}, u) can be
computed in time O(2kn) for every u, so the rainbow coloured P can
be detected in time O(2kn2). The algorithm takes O(2kn) space.

By repeating the procedure t = 1/ Pr(R) times, the path P be-
comes rainbow coloured (and is therefore detected) with constant
nonzero probability (

1− Pr(R))1/ Pr(R) ≥ 1
4

in FPT time

O(2kn2 Pr(R)−1) = O(2kn2ek) = O(5.44kn2) .

