EDANSS, supplementary notes for fixed parameter
tractability

October 24, 2012 ° rev. fa5a008

This note extends the presentation in Kleinberg and Tardos, chap-

ter 10 with a case study of finding a k-path in a graph. In particular,

it introduces Bodleander’s algorithm. This algorithm provides a good
example of dynamic programming over a tree decomposition, but,
more importantly, finds a (not necessarily optimal) tree decomposition
in a natural way. Moreover, we see the classical colour coding tech-
nique. That section makes sense after an introduction to randomized
algorithms, such as chapter 13 ibid.

10.6 Case study: k-path

A k-path in a graph is a simple path of length k, i.e., a sequence of
distinct vertices (vy, ..., v;) such that v;v;,1 € E for 1 <i < k.

The k-path problem is given a connected graph G = (V, E) and
integer k, determine if G has a k-path. The problem makes sense for
both directed and undirected graphs. Setting k = |V/| the problem
is known as the Hamiltonian path problem, which is well known to
be NP-hard. In particular, there is little hope of solving the k-path
problem in time polynomial in # and k.

First attempts

The brute force attempt is to check every subset of k vertices and see
if they form a simple path in G by considering all of their orderings.
The running time is within a polynomial factor of O((})k!k).

We can use decrease-and-conquer from each starting vertex v € V
and iterate over all neighbours. Indeed, if we let P;(v1) denote the set
of sequences vy, ..., v; of neighbouring vertices in G (not necessarily
simple), then

Pi(vy) = U {vi-a:a€P;_q(vy),v1 ¢}, (1)
vy V102 €E
where - denotes concatenation.” This produces all sequences of * Maybe give as pseudocode instead.

distinct neighbouring vertices of length k in G, their number is
n(n—1)---(n—k— 1), the falling factorial n"* = O(n*). We need

to check each of them to see that it is simple; the total time is within
a polynomial factor of O(n¥k).

FPT for regular graphs

Assume that G is regular, i.e., all vertices u € V have the same degree
deg(u) = 0. In this case it is easy to see that the k-path problem is
FPT.

edanb5, supplementary notes for fixed parameter tractability

If k < ¢ then the k-path problem can be solved by depth first
search: Start at an arbitary vertex, mark it, and go to an unmarked
neighbour, until k vertices are marked. At no intermediate stage can
you find yourself surrounded by k marked vertices, so there is always
an unmarked neighbour. The running time is O(kd) = O(kn).

If k > ¢ then the decrease-and-conquer approach works. The
number of neighbours considered at each step in (1) is J, so the total
number of sequences constructed can be bounded by &, and the total
running time becomes O (k).

Bodlaender’s algorithm

Many of the algorithmic tools for algorithms on tree decompositions

were developed by Hans Bodlaender. In particular, an early paper? 2 Hans L. Bodlaender. On linear time
minor tests with depth-first search. J. Algo-

develops an FPT algorithm for k-path for general graphs. rithms, 14(1):1-23, 1695,

Perform a depth first search (DFS) from an arbitrary vertex r, G
constructing a DFS tree T rooted at r. If the depth of T is at least k, O ©®
then the corresponding path from root to leaf is a k-path, and we're @—)
done. '

Otherwise, the root-leaf paths (all of which have length less than e

k) form the pieces of a tree-decomposition of size k. To be precise,
Figure 1: The Bull graph G and a DFS

for every node t of T, let V; consist of the vertices on the unique path !
tree T of G starting at r = 4.

from t to rin T.
We claim that (T, {V;: t € T}) is tree decomposition of G of tree-
width k.

Node coverage. Node coverage is easily established in this tree decom-
posion, because every vertex in v is also a node in T. In particular,
v belongs to V,. (In general, the tree T in a tree decomposition can
have completely different nodes than G.)

Edge coverage. A fundamental property of DFS trees is that they have
no “crossing edges:” every edge in the graph goes from a vertex
in the DFS tree to its ancestor, cf. (3.7) in [KT, p. 85]. Therefore
every graph edge is fully contained in some piece. (For instance,
the graph edge uv € E is fully contained in V; for every ¢ in the
subtree of T rooted at u.)

Coherence. Let t1,ty,t3 be three nodes of T such that ¢ lies on the
path from t; to t3. Let v € V belong to both V}, and V;,. Since both
Vi, and V;, contain the vertex v, it must lie on both the path from
t1 to r and from t3 to r in T. In particular, v is a common ancestor
in T of t; and t3. If t; lies on the path from t; and ¢3 then v must
be an ancestor of #,.3 But then v lies on the path from #; to 7, in 3 True, but probably needs a case

particular it belongs to Vtz‘ analysis. Note to self: work this out.

edanb5, supplementary notes for fixed parameter tractability

Tree-width. Every piece contains at most k — 1 elements, because the
distance in T from f to 7 is less than k.

We solve the k-path problem using dynamic programming over
the tree decomposition (T,{V;: t € T}) in same the fashion of the
maximum independent set algorithm of section 10.4.

Modifying the tree-decomposition. We will exploit the fact that the
tree decomposition defined above has very special structure, namely e
that if t; is a parent of ¢; in the tree decomposition thne V;; C V4,.

In fact, we have V;, = V}, — {t»}. This makes our constructions G Q e @ e

slightly simpler than for a general tree decomposition. However, our

assumption is not crucial: an algorithm for finding a longest path in e

graph of tree-width k using a general tree decomposition can also be

given, and within the same time bounds. G a
However, there is a further simplification of the tree decomposition @ @

that we want to perform before moving on. The DFS tree T can have @ @

high degree, so we transform T into a binary tree using a straightfor- Q @

ward modification. Suppose that node ¢ has children £y, .. ., t; with
d > 2. Remove the edges (t;,t) fori = 2,...,d and introduce fresh Figure 2: Transformation of a node
nodes t; foreachi = 2,...,d — 1. Then connect these nodes into a t € T with more than 2 children.
binary tree by adding the edges (t;, t;) fori =2,...,d —1, the edge
(ti,t;_4) fori=3,...,d —1, and finally the edges (t;,t) and (t4,t/ ;).
See figure 2.
This results in a new, binary tree T'. We complete the tree decom-
position by specifying the pieces associated with the new nodes t/ by
setting Vy = V; for all i = 2,...,d. In other words, every fresh node is
associated with the piece of the original parent f. It is straightforward
to check that this is still a tree-composition of tree-width k. We will
abuse notation and continue using the letter T for the transformed

tree T".

Defining the subproblems. As in section 10.4, let T; denote the subtree
of T rootet at t, let V; be the vertices associated with t € T, and let
G: denote the subgraph of G induced by the vertices in the pieces
associated with the nodes of T;.

We define the subproblems of our dynamic programming solution
for each subtree T; as follows. Let w = wy, ..., w, be a sequence of
vertices from V; without repetitions, and set W = wy,..., w,. Then
the subproblem f(@) is defined as the length of a longest simple path
in G; that is consistent with the ordering wy, ..., w,. By consistent we
mean that the path visits the vertices from W in the order given by w;
the path can visit other vertices in G; \ V; in between, but no vertices
in V4 \ W. If no such path exists, the we set f(w) = 0.

The number of subproblems at node # is Y5_, (’;)r! < k2K,

3

edanb5, supplementary notes for fixed parameter tractability

Building Up Solutions. We proceed to show how solutions to sub-
problems are constructed.

For a leaf t, the subgraph G; is just the graph induced by V;. We
will solve this suproblem by exhaustive search. To be precise, to
compute the subproblem f at a leaf node t we iterate over all choices
of W C V4, and all r! orderings wy, ..., w, of the r = |W| vertices in
W, and check that the sequence of vertices wj, ..., w, defines a simple
path, i.e., we check that that w;w;; € E for1 < i < r. If so, we set
f(w) = r, otherwise 0.

Suppose node t' is a child of node t in T. Let @' = wj,..., w,
denote a subproblem associated with t' and let W = wy, ..., w, denote
a subproblem associated with t. We say that @' is compatible with @ if
the two sequences contain the same vertices in the same order, except
for possibly # itself as a detour. Formally, either @' = @ or there is
some j such that W' = wy, . W), t, Wjy1,. .., Wy with wjt’ € Eand
flw]'_H € E.

Now consider a node t with two children ¢; and t; and assume we
already computed the optimum solutions f; and f, for all subprob-
lems associated with the children. Then for subproblem w of length r
set

f(@) = max{f1(w1), f2(w2), f1(W1) + fa(w2) — 1}

wy,W2

where the maximum is taken over all subproblems w; associated
with t; for i = 1,2 that are compatible with @w. Note that these sub-
problems encode all ways of traversing G; because there is no edge
between f; and £, in G.

Nodes with only one child are handled in a similar fashion.

The time for the computation of f;(w) is O(k?), so f; is computed
for all subproblems in time O(k!2%k?). Finally, the total time for the
entire computation becomes O(k!25k? - m). This is of the desired form

fmOW.

Colour coding

A famous randomized algorithm by Alon, Yuster, and Zwick im-
proves Bodlaender’s algorithm both in running time and simplicity
of exposition.

1. Give each vertex v € V a random value x(v) € {1,2,...,k}, called

a colour.4 4 This is not a proper colouring in the
X . . . sense of graph colouring, so edges uv
2. Find a rainbow coloured k-path, i.e., a k-path on which every colour with x(u) = x(v) can occur.

appears. (And therefore appears exactly once.)

Consider a k-path P in the given graph. The vertices of P admit
kK different colourings, of which k! are rainbow colourings. Thus the

4

edanb5, supplementary notes for fixed parameter tractability

event R that P is rainbow coloured happens with probability
k! — 1

using Stirling’s formula.> The remarkable thing is that Pr(R) is st > V2mr (L)
merely exponential in k, instead of 1/k!.
Determining if a coloured graph contains a rainbow k-path can
be accomplished using dynamic programming. For every subset
X C{1,...,k} of colours and vertex u € V, let P(X, u) be true if there
is a path of length | X| starting in u that uses exactly the colours in X.
(In particular, such paths are simple.) Then

P(X,u)= A P(X—x(u),v) forx(v)eX,|X]>1,
uveE

and P({r}, u) true if and only if r = x(u). The graph G has a rain-
bow coloured k-path if and only if P({1,...,k}, u) holds for some
u. Using dynamic programming, the values P({1,...,k},u) can be
computed in time O(2n) for every u, so the rainbow coloured P can
be detected in time O(25n?). The algorithm takes O(2 1) space.

By repeating the procedure t = 1/ Pr(R) times, the path P be-
comes rainbow coloured (and is therefore detected) with constant
nonzero probability

(1 _ Pr(R))l/Pr(R) 2 411
in FPT time

0(2kn2 Pr(R)™1) = O(2kn2eF) = O(5.44n?) .

5

